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Abstract— Rhythmic movements during animal locomotion
are controlled by the neuronal circuits called central pattern
generators (CPGs). The intrinsic frequency of a CPG in
isolation is often different from that of observed movements, but
appears to entrain to a natural mode of body oscillation through
sensory feedback to achieve efficient locomotion. The objective
of this paper is to reveal the feedback control mechanism
underlying the entrainment of CPGs. Motivated by musculo-
skeletal biomechanics, we consider the class of mechanical
systems for which actuators, sensors, springs and dampers, are
all collocated. Our main result provides a condition under which
a CPG-based controller approximately achieves a selected mode
of natural oscillation with a bound on the entrainment error.

I. INTRODUCTION

During animal locomotion, energy consumption appears to

be minimized by exploiting the mechanical resonance inher-

ent to the body and surrounding environment. The rhythmic

body movement is controlled by the neuronal circuit called

the central pattern generator (CPG) [1]. CPGs are biological

oscillators activating the muscle contractions in a coordinated

manner, where the commanded pattern is modified through

sensory feedback in response to environmental changes.

A fundamental question is how the CPG processes the

sensory information to achieve natural entrainment, i.e., to

determine, and entrain to, the resonance frequency and corre-

sponding natural motion. The problem has been addressed in

the literature, but only for single degree-of-freedom (DOF)

systems [2]–[5]. Through a study of a damped pendulum

driven by a simple CPG, called the reciprocal inhibition

oscillator (RIO) [6], positive rate feedback and negative

integral feedback have been identified as a basic mechanism

for resonance entrainment.

In this paper, we extend the analytical result in [5] for a

class of n-DOF collocated mechanical systems. We consider

distributed feedback controllers consisting of RIOs, each

of which is placed between a pair of actuator and sensor,

without direct communications to other RIOs. Conditions are

obtained for the intrinsic RIO frequency and feedback gains

such that a selected mode of natural oscillation is achieved

for the closed-loop system. Our results are approximate in

nature due to the limitation of the method employed, har-

monic balancing. However, numerical simulations confirm

reliability of our results. All proofs and preliminary lemmas

are omitted due to the page limitation.

This work is supported by NSF0654070 and NSF0237708.

We use the following notation. For matrices A and B,

A⊗B denotes the Kronecker product. For a vector v ∈ R
n,

diag(v) denotes the n×n diagonal matrix whose (i, i) entry

is the ith entry of v. For a function f and a set X , the

collection of f(x) for various x ∈ X is denoted by f(X).
The set of integers from 1 to n is denoted by In.

II. PROBLEM FORMULATION

A. Reciprocal Inhibition Oscillator

We use the RIO as the basic control unit. The RIO is a sim-

ple CPG consisting of two neurons with mutually inhibitory

synaptic connections as shown in Fig. 1, where µ > 0 is the

synaptic strength parameter and N represents a neuron. The

neuronal dynamics N is modeled by the following mapping

from the synaptic input w to the membrane potential (or

spike frequency) v:

v = ψ(q), q = b(s)w, b(s) :=
2ωos

(s + ωo)2
,

where ωo > 0. We choose the band pass filter to embed the

time lag and the adaptation effect, for the latter is essential

for an RIO [6]. The static nonlinearity ψ : R → R is typically

a sigmoid function and the following properties are assumed:

• ψ is odd, bounded, and strictly increasing.

• ψ(x) is strictly concave on x > 0, and ψ′(0) = 1.

We denote by Ψ the class of functions satisfying these

conditions. A function ψ ∈ Ψ satisfies the slope condition

0 <
ψ(x) − ψ(y)

x − y
< 1,

for any x 6= y, and the slope is maximum at the origin as

shown in [5]. For example, tanh(x) belongs to this class.
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Fig. 1. Reciprocal inhibition oscillator

Following the development in [5], we consider the control

unit in Fig. 2 where u and y are the activation input to,
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and sensory output from, the mechanical system, and g

and h are feedback gains. This architecture is motivated by

the biological control mechanism where the neurons in the

CPG receive sensory feedback, and the membrane potentials

(or spike frequency) of the neurons are used for muscle

activation.

The relation between y and u is described by

q = b(s)(MoΨo(q) + Hy), u = GΨo(q), (1)

where

Mo := −µ

[

0 1
1 0

]

, Ψo(q) :=

[

ψ(q1)
ψ(q2)

]

,

l :=
[

1 −1
]⊺

, G := g l⊺, H := hl.

(2)

The structure of H guarantees that the out-of-phase property

of RIO oscillations is preserved and we have

lim
t→∞

|q1(t) + q2(t)| = 0,

for any initial states q(0) and q̇(0) and arbitrary input y as

shown in [5]. Moreover, with y(t) ≡ 0 and µ > 1, the

internal variables q1(t) and q2(t) in the RIO autonomously

oscillate. It can be shown that the harmonic balance method

predicts the frequency of the autonomous oscillation to be

the center frequency ωo of b(s). For this reason we call ωo

the intrinsic frequency of the RIO.
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Fig. 2. RIO-based control unit

B. Oscillation Analysis Problems

Consider the class of mechanical systems given by

Jẍ + Dẋ + Kx = Bu, y = Cx, (3)

where x(t) ∈ R
n, u(t) ∈ R

n, and y(t) ∈ R
n are the

generalized coordinates, inputs, and outputs, respectively.

Assumption 1: The system matrices J , D, and K are

symmetric positive definite, B and C are square nonsingular,

and, for positive scalars ρ and ki with i ∈ In, we have

C = B⊺, D = ρK,

K = BKC, K := diag(k1, · · · , kn).

Moreover, the natural frequencies are distinct.

The conditions in Assumption 1 are motivated by biologi-

cal systems where the actuators, sensors, stiffness and damp-

ing elements are all located at the same position. In addition,

Rayleigh damping D = ρK and distinct natural frequencies

are assumed so that the analysis becomes simple enough to

provide insights into the natural entrainment mechanism. We

shall refer to the system (3) satisfying Assumption 1 as the

collocated system.

We will develop a theory for the linear collocated system,

but will examine, through numerical experiments, applica-

bility of the theory to nonlinear systems whose linearized

system is given by (3). For later reference, let us recall that

a natural mode of the system (3) is defined by a pair of

the natural frequency ωi ∈ R+ and mode shape xi ∈ R
n

satisfying (K − ω2

i J)xi = 0 with ‖xi‖ = 1. There are

n natural modes, (ωi, xi) with i ∈ In, for the n-DOF

collocated system. Let us arrange the natural frequencies in

the ascending order: 0 < ω1 < ω2 < · · · < ωn.

CPGs often consist of multiple segmental oscillators that

are coupled to each other. For undulatory swimming animals

like leeches and lampreys, for instance, the CPG is formed as

a chain of segmental oscillators, each of which receives local

sensory feedback and induces local muscle contraction. The

intersegmental coupling is considered essential for coordinat-

ing the phase timing of the oscillators so that traveling waves

are generated down the slender body. However, experiments

have shown that this is not true; even if the nerve cord

connecting the segmental oscillators is severed in the middle

of the body, the leech can still swim by coordinating the

head and tail undulations based on the sensory feedback

information [7].

Motivated by this result, we consider the extreme case

where the collocated system is driven by n RIO-based control

units (1) that are completely uncoupled to each other. In

particular, each RIO drives an actuator and receives no direct

signals from the other RIOs but only the local sensory

feedback. The RIOs share the same intrinsic frequency ωo

and synaptic strength µ. Let (gi, hi) ∈ R×R and qi(t) ∈ R
2

be the feedback gains and internal variable for the ith unit.

The set of n units can be written as

q = b(s) (MΨ(q) + Hy) , u = GΨ(q) (4)

where

M := I ⊗ Mo, G := diag(g) ⊗ l⊺, H := diag(h) ⊗ l,

g :=
[

g
1

· · · gn

]⊺

, h :=
[

h1 · · · hn

]⊺

,

q :=







q1

...

qn






, Ψ(q) :=







Ψo(q1)
...

Ψo(qn)






.

The closed-loop system consisting of the linearized me-

chanical system (3) and the CPG-based controller (4) is

described by the kernel representation:

Z(s,Ψ)ξ = 0, ξ :=

[

x
q

]

, (5)

Z(s,Ψ) :=

[

Js2 + Ds + K −BGΨ
b(s)HC b(s)MΨ − I

]

. (6)

We address the following problems posed on (5):

1) Characterize the relationship between the oscillation

profile and the parameters of the plant (3) and con-

troller (4) for the closed-loop system (5).

2) Determine a condition under which the natural en-

trainment is approximately induced and quantify the

closeness to the specified natural frequency.

3) Prove that the derived condition for the natural entrain-

ment guarantees that ξ oscillates in the steady state.
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Since we are interested in natural entrainment, we will

restrict our attention to the oscillations with one of the natural

mode shapes. The answers for 1), 2) and 3) will be given by

Theorems 1, 2 and 3, respectively.

III. APPROACH VIA HARMONIC BALANCE

A. Multivariable Harmonic Balance Method

Assume that (5) has a periodic solution ξ(t) with fre-

quency ω. We shall approximate ξ(t) by sinusoidal signals

and ψ by its describing function κ defined by

κ(α) :=
4

απ

∫ π/2

0

ψ(α sin θ) sin θ dθ. (7)

It was shown in [5] that κ(α) for ψ ∈ Ψ takes a value in

the interval (0, 1) when α > 0, and κ is strictly decreasing

from 1 to 0 on α > 0.

Let ξ̂ be the phasor of ξ(t) and partition it into x̂ ∈ C
n

and q̂ ∈ C
2n. The MHB equation for (5) is given by

Z(jω, Φ)ξ̂ = 0, (8)

q̂ := α̂ ⊗ l, Φ := diag(κ(|α̂1|), · · · , κ(|α̂n|)) ⊗ I.

The structure of q̂ is enforced without loss of generality due

to the structure of H [5]. Let us define the associated linear

system by

Z(s,Φ)ξ = 0. (9)

The basic idea of the MHB method is the following.

• If the MHB equation (8) is satisfied, then the system

(5) is expected to possess the oscillatory trajectory

xi(t) ∼= |x̂i| sin(ωt + θi),

qi(t) ∼=

[

|α̂i| sin(ωt + φi)
−|α̂i| sin(ωt + φi)

]

,

where θi := ∠x̂i, and φi := ∠α̂i for i ∈ In.

• If the associated linear system (9) is marginally stable

for the amplitude |α̂i| predicted from (8), then the

estimated oscillation is expected to be stable.

For given mechanical system (J,D,K,B,C) and controller

(ωo, µ, g, h) and ψ ∈ Ψ, we call (ω, x̂, α̂) a stable solution

of (8) if it satisfies (8) and (9) is marginally stable.

B. Basic Analysis

The MHB equation (8) provides an estimated relationship

between the system parameters and the resulting oscillation

profile. Since we are interested in natural entrainment, we

consider the case where x(t) oscillates with one of the natural

mode shapes, but its frequency ω is not fixed to the natural

frequency to allow for perturbation analysis. With x̂ := xℓ

for a selected ℓ ∈ In, the MHB equation reduces to more

insightful conditions. To present the result, define, for i ∈ In,

̟o :=
1

2

(

ω

ωo
−

ωo

ω

)

, ̟i :=
1

2

(

ω

ωi
−

ωi

ω

)

, (10)

ζi :=
ωi

2
ρ, γi := (µ − 1)ζi, (11)

fi(ω) := ̟o̟i, gi(ω) :=
ω̟o(̟

2

i + ζ2

i )

ωi(̟o̟i − ζi)
. (12)

Theorem 1: Let the plant (3) and controller (4) be given,

where ψ ∈ Ψ and Assumption 1 holds. Let ω ∈ R+, α̂ ∈ C
n,

and ℓ ∈ In be given. Suppose gihiα̂i 6= 0 for all i ∈ In. Then

the MHB equation (8) with x̂ := xℓ is satisfied if and only

if there exist η ∈ R and a ∈ R+ such that

κ(a) =
1

µ

(

1 −
fℓ(ω)

ζℓ

)

, (13)

gℓ(ω) =
η

µ
, (14)

hiŷi

α̂i
=

̟o

ζℓ
(̟ℓ + jζℓ), (15)

|α̂i| = a, gihi = kiη,

for all i ∈ In where κ is defined by (7), and ŷi is the ith

entry of ŷ := Cx̂. In this case, it holds that

−γℓ < fℓ(ω) < ζℓ, (16)

and (9) has poles at s = ±jω.

Furthermore, all the poles of (9) except s = ±jω are in

the open left half plane if and only if

− min(β, υi) < fℓ(ω), (17)

gi(w
+

i ) < gℓ(ω) < gi(w
−

i ), (18)

for all i 6= ℓ, i ∈ In, where ζi, fi and gi are defined by

(11) and (12), w = w±

i are the unique positive solutions of

ωℓfi(w) = ωifℓ(ω) with w−

i < w+

i , and

β :=
(ρω1)

2ωℓ

4ωo
, υi :=

ωℓ

4ωi

(√

ωo

ωi
−

√

ωi

ωo

)2

. (19)

The result indicates that, for the closed-loop system (5) to

oscillate with the natural mode shape xℓ, it is necessary that

(i) the magnitudes of the sensory feedback, |hiŷi|, are uni-

form over all RIOs (or i ∈ In), and (ii) the overall feedback

gain, gihi, is proportional to the stiffness (or damping) of the

input/output channel ki (or ρki). The assumption gihiα̂i 6= 0
is reasonable because it implies that all the control inputs are

used (gi 6= 0), every RIO receives sensory feedback (hi 6= 0)

and oscillates (α̂i 6= 0).

Another observation from Theorem 1 is that, whenever

x(t) oscillates with the natural mode shape xℓ and the

oscillation is stable, its frequency ω is expected to be in Wℓ

which is defined as the set of ω satisfying (16)–(18) for all

i 6= ℓ, i ∈ In. Conversely, if the gains are chosen such that

η/µ ∈ gℓ(Wℓ) and the uniformity and proportionality condi-

tions are satisfied, then there is a stable solution (ω, xℓ, α̂)
to the MHB equation, predicting the existence of a stable

oscillation with frequency ω ∈ Wℓ as summarized below.

Corollary 1: Let the plant (3) and controller (4) be given,

where ψ ∈ Ψ and Assumption 1 holds. Let ℓ ∈ In be given

and ŷi be the ith entry of ŷ := Cxℓ. Suppose there exist

η ∈ R and ro > 0 such that

gihi = kiη, |hiŷi| = ro ∀ i ∈ In, (20)
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and η/µ ∈ gℓ(Wℓ). Then the MHB equation (8) has a stable

solution (ω, x̂, α̂) where

x̂ = σ xℓ, α̂i = sgn(hiŷi̟o)aejφ, (21)

σ :=
a

ro

∣

∣

∣

∣

̟o

sinφ

∣

∣

∣

∣

, φ := ∠(̟ℓ − jζℓ). (22)

and (ω, a) is a solution of (13) and (14).

While this result predicts existence and profile of oscilla-

tions for a given set of feedback gains, one can reverse the

process to develop design equations. That is, one can obtain

explicit formulas for the feedback gains (g, h) that would

achieve a stable oscillation for the collocated system with

a prescribed frequency ω, amplitude σ, and natural mode

shape xℓ, i.e., x(t) ∼= σxℓ sinωt.
Corollary 2: Let the plant (3) and controller (4) be given,

where ψ ∈ Ψ and Assumption 1 holds. Let ℓ ∈ In, σ > 0,

and ω ∈ Wℓ be given. Then there exists α̂ ∈ C
n such that

(ω, σxℓ, α̂) is a stable solution of (8) if feedback gains (g, h)
are given by

gi =
kiµgℓ(ω)

hi
, hi = −

̟oa|̟ℓ + jζℓ|

σζℓ|ŷi|
, (23)

where ŷi is the ith entry of ŷ := Cxℓ, and a is the solution

of (13).

IV. MAIN RESULTS

A. Mechanism of Natural Entrainment

We have seen in Corollary 1 that a stable oscillation with

the natural mode shape xℓ is expected if the gains satisfy the

uniformity and proportionality conditions and η/µ ∈ gℓ(Wℓ).
A drawback of this result is that the characterization of the

gain set gℓ(Wℓ) is complex and does not indicate the structure

of the set (e.g., a few intervals or many intervals). Moreover,

it is not clear what subset of the gain set yields stable

oscillations with frequencies close to the natural frequency

ωℓ. This section will address these issues.

To this end, we consider a subset of gains gℓ(Wℓ) which

admits a simple and clean characterization. In particular, we

consider gℓ(W̃ℓ) where W̃ℓ := Vℓ ∩ Wℓ with

Vℓ := {ω ∈ R+ | − min(γℓ, 0) < fℓ(ω) < ζℓ}. (24)

Using the property of gℓ, the set gℓ(Vℓ) can be explicitly

characterized as

gℓ(Vℓ) = { x ∈ R | x < gℓ(ωM) or gℓ(ωm) < x }, (25)

ωm := min(ωo, ωℓ, ω
−

γ ), ωM := max(ωo, ωℓ, ω
+

γ ), (26)

where ω = ω±

γ are the positive solutions of fℓ(ω) = −γℓ

with ω−

γ ≤ ω+

γ if they exist; otherwise let ω±

γ := ∓∞.

Now, it can be shown that η/µ ∈ gℓ(W̃ℓ) holds if and only

if η/µ ∈ gℓ(Vℓ) and aℓ > ai hold for all i 6= ℓ, i ∈ In, where

a1, . . . , an are defined for η/µ as follows.

Definition 1: For given i ∈ In and η/µ ∈ R, set ai := 0
if η/µ 6∈ gi(Vi); otherwise, let ω be the positive solution

ω ∈ Vi to (14) with ℓ = i, and define ai as the solution a to

(13) with ℓ = i

The existence and uniqueness of ω and ai in the above

definition are guaranteed by η/µ ∈ gi(Vi) [5]. We are now

ready to state a main result.

Theorem 2: Let the plant (3) and controller (4) be given,

where ψ ∈ Ψ and Assumption 1 holds. Suppose there exists

η ∈ R such that gihi = kiη for all i ∈ In. Let ai for

i ∈ In be as specified in Definition 1 and let ℓ ∈ In be such

that aℓ > ai for all i 6= ℓ, i ∈ In. Furthermore, suppose

η/µ ∈ gℓ(Vℓ) and there exists ro > 0 such that |hiŷi| = ro

for all i ∈ In where ŷi is the ith entry of ŷ := Cxℓ.

Then, a stable solution of (8) is given by (ω, x̂, α̂) where

ω ∈ Vℓ is the solution to (14) and x̂ and α̂ are specified by

(21), (22), and (13). Furthermore, the frequency ω satisfies

the following:

• ω is close to ω⋆ := min(ωo, ωℓ) if η/µ > gℓ(ωm).
• ω is close to ω⋆ := max(ωo, ωℓ) if η/µ < gℓ(ωM),

where the closeness is in the sense that
∣

∣

∣

∣

ω − ω⋆

ω⋆

∣

∣

∣

∣

≤

∣

∣

∣

∣

ζℓ

̟

∣

∣

∣

∣

, ̟ :=
1

2

(

ωo

ωℓ
−

ωℓ

ωo

)

. (27)

Theorem 2 provides a characterization of the feedback gains

η/µ such that the closed-loop system is expected to oscillate

with a natural mode shape. Furthermore, it shows that

the frequency of oscillation would be close to either the

intrinsic RIO frequency ωo or the natural frequency ωℓ, with

an explicit bound on the frequency perturbation (27). The

bound gets smaller as the damping ζℓ gets smaller and/or

the difference between ωo and ωℓ gets larger. This is in

agreement with the case of one-DOF systems [5].

1 2 3 4 5 6
−2

−1

0

1

2

ω
o
 [rad/s]

η
 /

 µ

Fig. 3. An example of mode partitions (ω1 = 0.292, ω2 = 1.92, ω3 =
5.15); solid pink: (1, 1), shaded pink: (0, 1), solid blue: (2, 2), shaded
blue: (0, 2), solid green: (3, 3), shaded green: (0, 3), where in the region
labeled as (p, q), the MHB analysis predicts that the closed-loop oscillation

has a frequency close to the p
th natural frequency ωp (or the intrinsic RIO

frequency if p = 0) with the q
th natural mode shape xq .

Consider the control design problem of achieving a closed-

loop oscillation with a natural mode shape. The essential

degree of freedom of the controller parameters (ωo, µ, g, h) is

only two and represented by (ωo, η/µ) due to the uniformity

and proportionality requirements on the gains as seen in

Theorem 1. For a given pair (ωo, η/µ), one can determine

which mode of natural oscillations is expected stable by

examining whether aℓ > ai for all i 6= ℓ, i ∈ In as shown

in Theorem 2. As a result, one can draw partitions on the
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(ωo, η/µ)-plane so that in each partitioned region a distinct

pair of frequency and natural mode shape is achieved.

Figure 3 shows an example of the mode-partition diagram

for a 3-link mechanical system. Each colored area represents

the entrained frequency and natural mode shape, and the

thick vertical lines represent the natural frequencies. The

entrained frequency in the solid area is close to ωℓ while

that in the shaded area is close to ωo in the sense of (27).

For example, the solid blue region (2, 2) implies that the

oscillation shape is the second mode and ω is close to

ω2 while the shaded blue region (0, 2) implies that the

oscillation shape is the second mode but ω is close to ωo.

B. Existence of Stable Oscillations

We now turn our attention to the condition for existence

of oscillation. The MHB method in Theorem 2 predicts

that the closed-loop system (5) has a stable oscillatory

trajectory when the feedback gains satisfy the uniformity

and proportionality conditions (20) and η/µ ∈ gℓ(Vℓ) for the

particular ℓ specified by the property aℓ > ai. Since the MHB

analysis is based on sinusoidal approximations, the result

does not rigorously prove that the gain conditions guarantee

the existence of oscillations. It turns out, however, that the

conditions are indeed sufficient to guarantee existence of

oscillations. In fact, the conditions can be relaxed to the

requirements that gihi = kiη for all i ∈ In and η/µ ∈ gℓ(Vℓ)
for some ℓ ∈ In.

Theorem 3: Let the plant (3) and controller (4) be given,

where ψ ∈ Ψ and Assumption 1 holds. Suppose the origin of

the closed-loop system (5) is a hyperbolic equilibrium, and

there exist η ∈ R such that gihi = kiη holds for all i ∈ In,

and η/µ ∈ G where, with gℓ(Vℓ) defined by (25),

G :=
n
⋃

ℓ=1

gℓ(Vℓ). (28)

Then, for almost all initial conditions, the trajectory ξ(t) of

(5) oscillates in the steady state.

The idea behind this result is the following. Using the fact

that ψ is bounded, and b(s) and plant (3) are stable, it can be

shown that every trajectory is bounded. Due to ψ(0) = 0 and

b(0) = 0, the origin ξ = 0 is the unique equilibrium of (5).

Hence, if the origin is hyperbolic and unstable, then a generic

trajectory cannot converge to a fixed point, nor diverge to

infinity, resulting in oscillation in the sense of Yakubovich

[8], [9]. When η/µ ∈ G and gihi = kiη for all i ∈ In, the

origin can be shown to be hyperbolic and unstable, and thus

trajectories with almost all initial conditions oscillate. Note

that the uniformity condition |hiȳi| = ro for all i ∈ In in

Theorem 2 is not required to guarantee hyperbolic instability.

V. NUMERICAL EXPERIMENTS

Consider a flexible mechanical arm formed as a chain of

three rigid links connected by two rotational joints to each

other. The ith link has mass mi and length 2li, and the first

link is connected to the inertial frame through a rotational

joint. Mounted at the ith joint are a spring of stiffness ki,

a dashpot of damping coefficient ρki, and an actuator that

generate torque input ui. The equation of motion is given by

Jxẍ + Gxẋ2 + Dẋ + Kx = Bu, y = Cx, (29)

where xi is the angular displacement of the ith link, yi is the

relative angle between the ith and (i + 1)
th

links, ẋ2 is the
vector whose ith entry is ẋ2

i , and

Jx := Jo + SxQSx + CxQCx, Gx := SxQCx − CxQSx,

Q := L⊺ML, C := B⊺ , K := BKC, D := ρK,

M := diag(m1, m2, m3), K := diag(k1, k2, k3),

B :=





1 −1 0
0 1 −1
0 0 1



 , L :=





l1 0 0
2l1 l2 0
2l1 2l2 l3



 ,

Jo := diag
(

m1l
2

1, m2l
2

2, m3l
2

3

)

/3,

Sx := diag(sin(x1), sin(x2), sin(x3)),

Cx := diag(cos(x1), cos(x2), cos(x3)).

We use the following parameter values:

li = 0.5, mi = 1.0, ki = 1.0, ρ = 0.1,

for i ∈ I3. By linearizing (29) around the origin, we obtain

(3) with J := Jo + Q. The natural frequencies and mode

shapes are given by

1st mode 2nd mode 3rd mode

ωℓ 0.292 1.92 5.15

xℓ





0.402
0.615
0.678









0.476
−0.242
−0.846









0.291
−0.654

0.698





The mode-partition diagram for the link system are given

by Fig. 3. Based on this figure, we selected the controller

parameters (ωo, η/µ) as (A), (B) and (C) in the table below

so that the entrained oscillation profiles are close to the 1st,

2nd and 3rd natural mode, respectively. For each case, we have

designed the feedback gains (g, h) by (23), where µ = 1.5
and ψ(x) = tanh(x).

(A) (B) (C)

(ωo, η/µ) (0.2,−1.0) (0.5,−1.0) (3.0,−1.0)

First, to evaluate the accuracy of the MHB method,

the linearized three-link chain system (3) was numerically

simulated and we found the following results:

ωMHB ωSIM ePRD eω ex |ζℓ/̟|
(A) 0.302 0.302 0.077 3.28 0 3.76
(B) 1.99 1.99 0.197 3.88 0.276 5.37
(C) 6.25 6.17 1.18 20.0 4.34 45.4

where ωMHB is the estimated frequency, (ωNAT, xNAT) is the nat-
ural mode for which the controller was designed, (ωSIM, xSIM)
is the steady-state oscillation profile obtained by the simula-
tions, and

ePRD :=
|ωMHB − ωSIM|

ωSIM

× 100, eω :=
|ωSIM − ωNAT|

ωNAT

× 100,

ex :=
‖x̄SIM − xNAT‖

‖xNAT‖
× 100, x̄SIM :=

xSIM

‖xSIM‖
.

Thus, ePRD measures the accuracy of prediction, and eω and

ex indicate the closeness of the entrained oscillation profile

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 ThC05.3

5224



to the natural mode. Since ePRD and ex are small, and eω

is smaller than |ζℓ/̟|, we conclude that the MHB method

provided fairly accurate result.

Next, we simulated the original system (29) with (g, h)
designed above to evaluate applicability of the MHB method

for nonlinear systems. Snapshots of the steady-state oscilla-

tion during a half period are depicted in the right column of

Table I, and the frequencies ωSIM are given by

(A) (B) (C)

ωSIM 0.303 1.58 3.98
ωNAT 0.293 1.30 2.77

To evaluate whether the achieved steady-state oscillations are

close to the corresponding natural modes of the nonlinear

system (29), we have numerically determined the nonlinear

natural modes as follows. Let the damping and input be zero

(ρ := 0 and u := 0) in (29) and set the initial values so that

the angular velocities are zero and the 3rd angle of (29) is

equal to the simulated amplitude of x3(t). Then the initial

values of the other angles x1(t) and x2(t) were searched

by “fminsearch” in Matlab so that the square sum of the

differences between the state values after one cycle and their

initial values is minimized. The nonlinear natural modes are

thus found through numerical computation, and the natural

frequencies ωNAT are given in the table above while the mode

shapes are depicted in the left column of Table I. Although

ωSIM is not very close to ωNAT for (B) and (C), the oscillation

shapes in Table I are similar. Thus, we conclude that the

RIO-based decentralized controller roughly achieved natural

entrainment for the nonlinear system.

TABLE I

NONLINEAR NATURAL MODE SHAPES AND ACHIEVED OSCILLATIONS

Nonlinear Natural Modes Simulation Results

(A)

(B)

(C)

VI. CONCLUSION

We have considered the feedback control system consist-

ing of a collocated mechanical system (3) and distributed

RIOs (4), and examined the natural entrainment condition

under which the closed-loop system (5) oscillates at (or near)

one of the natural modes of the mechanical system. Our

findings can be summarized as follows.

(i) If the closed-loop oscillations are desired to have one of

the natural mode shapes, it is necessary for the feedback

gains to satisfy (20), i.e., the overall gain for each

input/output channel is proportional to the stiffness (or

damping), and the magnitudes of the inputs to RIOs are

uniform (Theorem 1).

(ii) When the gains satisfy (20), the closed-loop system

oscillates for almost all initial conditions if the feedback

gains are sufficiently large in magnitude; η/µ ∈ G
(Theorem 3). For the rest of the statements, the gains

are assumed to satisfy (20) and η/µ ∈ G.

(iii) There may be multiple (up to n) solutions to the MHB

equation (8), and among these, the oscillation with the

largest amplitude is the one that is stable (Theorem 2).

(iv) With positive feedback η/µ > 0 and ω1 < ωo, the

closed-loop oscillations are entrained to the first natural

mode. With negative feedback η/µ < 0 and ωi−1 ≪
ωo < ωi, the closed-loop oscillations are entrained to

the ith natural mode, where the lower bound on ωo is

replaced by zero when i = 1 (Fig. 3).

(v) During the natural entrainment in item (iv), the error

between the frequency of the closed-loop oscillation and

the natural frequency is smaller if the distance between

the intrinsic RIO frequency and the natural frequency

is larger and/or the damping is small (Theorem 2).

Item (ii) is a result guaranteed by a rigorous proof, while

the others are approximate results, derived from the MHB

analysis, that are expected to hold if the oscillations are close

to sinusoids. Numerical experiments have demonstrated that

the approximate results are fairly reliable, even when applied

to nonlinear collocated systems.
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