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Abstract— This paper presents new results concerning the
existence of solutions for robust (parameter-dependent) LMIs
with parameters lying in a Cartesian product of simplexes,
called multi-simplex. These results allow to derive convergent
procedures based on LMI relaxations to check the positivity
of polynomial matrices with parameters in multi-simplexes.
As an application, the robust stability analysis of uncertain
linear systems is investigated. As an immediate advantage of
this flexible representation, polynomially parameter-dependent
Lyapunov functions can be constructed to handle simulta-
neously time-invariant, arbitrarily time-varying and bounded
time-varying parameters in an appropriate way. Numerical
experiments illustrate the advantages of the method.

I. INTRODUCTION

Linear Matrix Inequalities (LMIs) subject to uncertain

data are known as robust (or parameter-dependent) LMIs.

Optimization procedures based on robust LMIs are convex

but of infinite dimension [1] and several efforts, coming from

different fronts [2–6], have been devoted in the last few

years to provide LMI relaxations that completely characterize

the solution of robust LMIs. Notoriously, control problem

as stability analysis, stabilizability, filtering, H2 and H∞

performance analysis, and other related design issues, cast

straightforwardly in the form of robust LMIs. Particularly

in the case of robust stability analysis of uncertain linear

systems with parameters lying in compact sets, several con-

tributions to solve the associated robust LMIs have appeared

in the literature. In general, the solutions are expressed in

terms of a hierarchy of LMI relaxations which provides better

and better approximations, some with guaranteed conver-

gence. Basically, three major classes of uncertain parameters

can be distinguished: time-invariant parameters, time-varying

parameters with bounded rates of variation and arbitrarily

fast time-varying parameters.

In the case of linear time-invariant uncertain systems, the

robust stability analysis methods available nowadays have

reached a high level of maturity, allowing to treat the problem

in terms of convergent relaxations [4, 7–11]. Most of the

strategies rely on the use of parameter-dependent Lyapunov

functions whose existence is verified by LMI relaxations.

It is worth mentioning in this context the methods that use

region-dividing techniques and can be conclusive about the

solution under a given precision [12, 13].
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The problem of robust stability analysis of linear time-

varying uncertain systems where the parameters can vary

arbitrarily fast, has been tackled, in general, by approaches

that use Lyapunov functions independent of the parame-

ters. Among others, one can mention the quadratic stability

method, results based on piecewise quadratic Lyapunov

functions [14, 15] and strategies based on Lyapunov func-

tions with homogeneous polynomial dependence of arbitrary

degree in the state [16, 17].
In the context of time-varying uncertain systems where the

parameters have bounded rates of variation, several contribu-

tions using affine [18–20], quadratic [21], and polynomially

[22–25] parameter-dependent Lyapunov functions can be

found. It is also worthy to mention [26, 27] that use the IQC

(Integral Quadratic Constraint) approach.
As a general observation, the aforementioned methods are

not flexible in the sense of being easily adapted to cope with

the other classes of parameters. The reason is that methods

are highly dependent on the characteristics of the space

where the parameters can assume values. In general, the

uncertain parameters are assumed either to lie in a polytope,

or to be individually bounded — thus resulting in a hyper-

cube uncertainty set. Hypercubes are special polytopes, and

reciprocally polytopes can be parametrized as hypercubes,

at the expense of a possible overparametrization. However,

according to the nature of the parameters, the corresponding

change of variables can be rather unnatural, and computa-

tionally cumbersome. Moreover, this rewriting can lead to

conservative considerations when time-invariant and time-

varying parameters are merged in the same polytope. (As

an example, one can see easily that the time variation of

every parameters should be considered unbounded in the new

parametrization as soon as one parameter has unbounded

variations in the initial setting). The main application of

the results of this paper is to provide a unified and direct

approach to investigate the problem of robust stability of

continuous-time systems with parameters in a Cartesian

product of simplexes, (called multi-simplex in the sequel).

In this setting, the Lyapunov functions assessing robust

stability can be appropriately constructed accordingly to

the uncertain parameters class: invariant, arbitrarily time-

varying or time-varying with bounded rates of variation. The

proposed approach produces better results when compared

to others from the literature, even in the case where all the

uncertain parameters belong to the same class, as illustrated

by numerical experiments.
Notation: N denotes the natural numbers and R the real

numbers; The space of symmetric matrices in Rp×p is

denoted by Sp; The symbol (′) indicates transpose; P > 0

(≥ 0) means that P is symmetric positive (semi)definite; 0p
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is the zero matrix of dimension p × p; ⊗ stands for the

Kronecker product.

II. MULTI-SIMPLEX AND CORRESPONDING

HOMOGENEOUS POLYNOMIAL

The unit simplex Λr of dimension r ≥ 2 is given by

Λr =
{

α =(α1 · · ·αr)
′ ∈R

r :
r

∑
i=1

αi = 1, αi ≥ 0, i = 1, . . . ,r
}
.

Definition 1 (Multi-simplex): A multi-simplex Λ is the

Cartesian product ΛN1
× ·· · × ΛNm of a finite number of

simplexes ΛN1
, . . . ,ΛNm , i = 1, . . . ,m. The dimension of Λ is

defined as the index N = (N1, . . . ,Nm). For ease of notation,

RN denotes the space RN1+···+Nm . A given element α of Λ is

decomposed as (α1,α2, . . . ,αm) according to the structure of

Λ and, subsequently, each αi (being in Λi), is decomposed

in the form (αi1,αi2, . . . ,αiNi
).

As an example, let Λ = Λ2×Λ3×Λ2. Then a generic element

of Λ writes as α = (α1,α2,α3) with α1 = (α11,α12) ∈ Λ2,

α2 = (α21,α22,α23) ∈ Λ3 and α3 = (α31,α32) ∈ Λ2.

Definition 2 (Λ-homogeneous polynomial): Given a

multi-simplex Λ of dimension N, a polynomial P(α) defined

on RN and taking values in a finite dimensional vector

space is said Λ-homogeneous if, for any i0 ∈ {1, . . . ,m},

and for any given αNi
∈ RNi , i ∈ {1, . . . ,N} \ {i0}, the

partial application αNi0
∈ R

Ni0 7→ P(α) is a homogeneous

polynomial.

As an illustration, considering the previous example for

Λ, P(α) = 3α11(α
2
21 + α22α23)+ α12α2

23 is Λ-homogeneous

(of degree 1 in the components of α1 ∈ Λ2 and of degree 2

in the components of α2 ∈ Λ3).

Definition 3 (Λ-completion of a polynomial): Given a

multi-simplex Λ of dimension N and a polynomial P(α)
defined on RN taking values in a finite dimensional vector

space, the Λ-completion of P(α), denoted compΛ(P(α)), is

the (unique) polynomial Λ-homogeneous of minimal degree

equal to P(α) on Λ.

The Λ-completion of P(α) is easily constructed by in-

troducing, in each term of the sum of factors defining

P(α), factors of the form (αi1 + · · ·+ αiNi
)βi with minimal

degree βi. In this notation, (αi1, . . . ,αiNi
) corresponds to

the component of α lying into the unit simplex ΛNi
. For

example, with Λ = Λ2 ×Λ3, the Λ-completion of P(α) =
3α11(α22 +α2

23)+2 is given by

compΛ(P(α)) = 3α11(α22(α21 +α22 +α23)+α2
23)

+2(α11 +α12)(α21 +α22 +α23)
2

which is a homogeneous polynomial of degree 1 in Λ2 and

homogeneous of degree 2 in Λ3, equal to P(α) on Λ, and

it is clearly the polynomial of minimal degree having these

properties.

III. A KEY EXISTENCE RESULT FOR LMIS WITH

PARAMETERS IN MULTI-SIMPLEX

In general, robust LMI with parameters belonging to Λ
can be written as F(x,α) > 0p where the map F is affine

in x and polynomial in α . The next theorem establishes an

existence result for the solution of this robust LMI.

Theorem 1: Let Λ be a multi-simplex of dimension N

and F : Rℓ ×RN → Sp a map that defines a feasibility

problem based on LMIs with parameters in Λ. The following

properties are equivalent.

(a) For all α ∈ Λ, there exists x(α) ∈ Rℓ such that

F(x(α),α) > 0p.

(b) There exists a Λ-homogeneous polynomial x∗ tak-

ing values in Rℓ, such that all the coefficients of

compΛ(F(x∗(α),α)) are positive definite.

Proof: The demonstration, based on Pólya’s theorem, is

made by recursion on the number m of terms in the Cartesian

product defining Λ. Firstly, the property is shown for the

case m = 1. Consider a multi-simplex formed by only one

simplex, i.e. Λ = ΛN1
, and a problem based on robust LMIs

with parameters belonging to Λ. As proved in [28], there

exists a solution x(α) solving the LMI for any α belonging

to Λ if and only if there exists a homogeneous polynomial

solution x∗∗(α). For such a solution, the validity of the

positivity constraint on the coefficients is equivalent to the

existence of a nonnegative (large enough) integer β such that

every coefficients of (α11 + · · ·+α1N1
)β compΛ(F(x∗∗(α),α)

are positive definite. This claim is nothing but an appli-

cation of the extension of Pólya’s Theorem to polynomi-

als with matrix-valued coefficients [10, 29]. It is immedi-

ate to verify that (α11 + · · ·+α1N1
)β compΛ(F(x∗∗(α),α) =

compΛ(F((α11 + · · ·+ α1N1
)β x∗∗(α),α), since F is affine

in x. As a consequence, x∗(α) = (α11 + · · ·+ α1N1
)β x∗∗(α)

solves the problem.

Assume now that the property is valid for any product of

up to m simplexes: our aim is to deduce it for any Λ with

m + 1 components. Let Λ be such multi-simplex, i.e. Λ =
Λ1 × ·· ·×Λm+1. For any fixed αm+1 ∈ Λm+1, to check the

existence, for any α̂ = (α1,α2, . . . ,αm) ∈ Λ̂
.
= Λ1 ×·· ·×Λm

of an x(α̂ ,αm+1)∈Rℓ such that F(x(α̂,αm+1),(α̂,αm+1)) >

0p is an LMI problem with parameters in the simplex

Λ̂ of dimension m. By the recursion assumption, the

latter problem is equivalent to the existence of a Λ̂-

homogeneous polynomial x̂∗αm+1
(α̂) such that every coeffi-

cients of compΛ̂(F(x̂∗αm+1
(α̂),(α̂,αm+1))) > 0p are positive

definite.

The latter problem can be considered as an LMI with the

coefficients of x̂∗αm+1
(α̂) being the new variables (intervening

in an affine way), and with parameters αm+1 belonging

to Λm+1 (entering polynomially): applying the recursion

hypothesis to the case of a unique simplex shows that

the LMI solvability is equivalent to the existence of x∗(α)
such that compΛm+1

(compΛ̂(F(x∗(α),α))) > 0p. Note that

polynomials in the variables α1, . . . ,αm+1 can be viewed as

polynomials in the variables α1, . . . ,αm, whose coefficients

are polynomials in αm+1. Thus, it is immediate to observe

that this quantity is equal to compΛ(F(x∗(α),α)). This

establishes the property for m + 1. In conclusion, the result

has been proved by induction.

The result of Theorem 1 guarantees that an LMI with pa-

rameters lying in multi-simplexes can be completely charac-

terized by Λ-homogeneous polynomials of arbitrary degrees.

Note that the degrees do not need to be necessarily equal

and can be chosen independently.
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IV. REPRESENTATION OF Λ-HOMOGENEOUS

POLYNOMIAL MATRICES

Some definitions and notations to handle Λ-homogeneous

polynomials are necessary.
For N,g ∈N, let KN(g) be the set of N-tuples obtained

from all possible combinations of N nonnegative integers

with sum g. The number of elements in KN(g) is thus

JN(g) = card KN(g) =
(N +g−1)!

g!(N −1)!
.

Let now N,g ∈ Nm. The set KN(g) is defined as the

Cartesian product KN(g) = KN1
(g1)× . . .×KNm(gm).

One is now in position to represent Λ-homogeneous poly-

nomials. Any Λ-homogeneous polynomial matrix P(α) of

partial degrees g = (g1, . . . ,gm) can be generically repre-

sented by

P(α) = ∑
k∈K (g)

αkPk, (1)

where the αk are monomials which are homogeneous of

degree gi in each variable αi:

αk = αk1
1 αk2

2 · · ·αkm
m , αki

i = α
ki1
i1 α

ki2
i2 · · ·α

kiNi
iNi

where ki = (ki1,ki2, . . . ,kiNi
) is such that ki1 + ki2 + · · · +

kiNi
= gi; and Pk ∈Rn×n are the corresponding matrix-valued

coefficients.
For instance, a Λ-homogeneous polynomial with dimen-

sions: m = 2, g = (1,2), N = (2,2) yields KN(g) = K2(1)×
K2(2)={(0,1),(1,0)}×{(0,2),(1,1),(2,0)}, with JN1

(1) =
2 and JN2

(2) = 3, corresponding to the following matrix-

valued polynomial

P(α) = α11

(
α2

21P((1,0),(2,0)) +α21α22P((1,0),(1,1))

+α2
22P((1,0),(0,2))

)
+α12

(
α2

21P((0,1),(2,0))

+α21α22P((0,1),(1,1)) +α2
22P((0,1),(0,2))

)
.

Finally, note that the indices k = (k1,k2, . . . ,km) are obtained

by combining all the N-tuples of the sets KNi
(gi), i =

1, . . . ,m, yielding a total of JN(g) monomials equal to

JN(g) =
m

∏
i=1

JNi
(gi).

In the previous example, JN(g) = 6.
By definition, for N-tuples k, k̃ one writes k � k̃ if ki j ≤

k̃i j, i = 1, . . . ,m, j = 1, . . . ,Ni. Operations of sum k + k̃

and subtraction k− k̃ (whenever k̃ � k) are defined compo-

nentwise. In the case m = 1, i.e. multi-simplex formed by

only one simplex, the definitions and notations presented are

similar to the ones used in [10].

V. SYSTEMS WITH TIME-INVARIANT PARAMETERS

Now, let A(α) be a Λ-homogeneous polynomial matrix of

partial degrees r = (r1, . . . ,rm) with time-invariant parameters

α ∈ Λ. Through the Lyapunov stability theory, Hurwitz

robust stability of A(α) can be investigated as follows:
Lemma 1: Matrix A(α) is Hurwitz robustly stable if and

only if there exists a symmetric parameter-dependent matrix

P(α) ∈Rn×n such that, for all α ∈ Λ,

P(α) > 0n, A(α)′P(α)+P(α)A(α) < 0n

Clearly, the inequalities of Lemma 1 are robust LMIs

depending upon scalar parameters (entries of matrix P(α)).
Applying Theorem 1 yields to the following LMI relaxations.

Theorem 2: Let Λ be a multi-simplex of dimension N =
(N1, . . . ,Nm). The Λ-homogeneous polynomial matrix A(α)
of partial degrees r = (r1, . . . ,rm) is Hurwitz robustly stable

∀α ∈ Λ if and only if there exist g = (g1, . . . ,gm), k ∈KN(g)
and matrices Pk ∈ Sn such that the following LMIs are

verified

Pk > 0n, ∀k ∈ KN(g) (2)

∑
k̃∈KN(r)

k̃�k

A′
k̃
Pk−k̃ +Pk−k̃Ak̃ < 0n, ∀k ∈ KN(g+ r). (3)

Proof: Necessity is demonstrated using condition (b) of The-

orem 1, which guarantees that the desired Λ-homogeneous

solution can be constrained to the class of Λ-homogeneous

polynomials with positive definite matrix-valued coefficients.

For the sufficiency, note that

A(α)′P(α)+P(α)A(α) =

∑
k∈KN(g+r)

αk
(

∑
k̃∈KN(r)

k̃�k

A′
k̃
Pk−k̃ +Pk−k̃Ak̃

)

whose right hand-side is negative definite whenever the LMIs

(3) are fulfilled. To conclude, note that the LMIs (2) assure

that the Λ-homogeneous matrix P(α) is positive definite.

VI. SYSTEMS WITH TIME-VARYING PARAMETERS

It is assumed now that the parameters αi(t), i = 1, . . . ,m

are time-varying with bounded rates of variation in the form

bi j ≤ α̇i j(t) ≤ bi j, bi j,bi j ∈R, (4)

with bi j, bi j given. This situation adds a supplemental term

concerning the derivative of the Λ-homogeneous Lyapunov

matrix with respect to time, i.e. the following inequality must

be tested

A(α(t))′P(α(t))+P(α(t))A(α(t))

+
m

∑
i=1

Ni

∑
j=1

∂P(α(t))

∂αi j(t)
α̇i j(t) < 0 (5)

for all α(t) ∈ Λ and α̇(t) ∈ Ω = Ω1 × ·· ·×Ωm. As a first

observation, note that the parameters αi(t) are independent

from each other, i = 1, . . . ,m and so do their time-derivatives.

Thus, the sets Ωi, where the parameters α̇i(t) can assume val-

ues, are built independently. For each αi(t), the construction

of Ωi follows from (4), known by the user, and

α̇i1(t)+ α̇i2(t)+ · · ·+ α̇iNi
(t) = 0, (6)

since αi(t) ∈ ΛNi. For any i, the vector (α̇i1(t), . . . , α̇iNi
(t))

thus lies in a polytope, which is constructed from the

constraints (4) and (6).
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Let G(i) denotes the i-th column of matrix G. The sets Ωi,

i = 1, . . . ,m are defined as

Ωi =
{

δ ∈R
Ni : δ =

Mi

∑
ℓ=1

ηiℓH
(ℓ)
i ,

Ni

∑
ℓ=1

Hi(ℓ, j) = 0, j = 1, . . . ,Ni, ηi ∈ ΛMi

}

. (7)

For instance, let

−1≤ α̇11(t)≤ 1, −1≤ α̇12(t)≤ 1, −2≤ α̇13(t)≤ 2 (8)

The extremal solutions of (6) under (8) are {(1,1,−2),
(−1,−1,2),(1,−1,0),(−1,1,0)}. Taking the convex com-

bination of these solutions, one has




1

1

−2



η11 +





−1

−1

2



η12 +





1

−1

0



η13 +





−1

1

0



η14, ηi ∈ Λ4

or





1 −1 1 −1

1 −1 −1 1

−2 2 0 0





︸ ︷︷ ︸

H1







η11

η12

η13

η14







, H1 ∈R
N1×M1

with N1 = 3 (number of parameters in Λ1) and M1 = 4

(number of solutions of (6) under (8)). Note the null sum

of the rows of any column, as defined in (7). The number

M1 is not known a priori, being determined by the number

of extremal solutions. In this example M1 = 4, but it could be

different if distinct bounds were considered in (8). In fact, if

one consider −1 ≤ α̇13(t)≤ 1 in (8), the number of extremal

solutions would be M1 = 6. For more details see [20, 24],

where this model has also been used.

Since α(t) ∈ Λ implies α̇(t) ∈ Ω for all t ≥ 0 and using

the definition of a generic α̇i j(t) belonging to Ωi, inequality

(5) can be rewritten as

A(α)′P(α)+P(α)A(α)

+
m

∑
i=1

Ni

∑
j=1

∂P(α)

∂αi j

Mi

∑
ℓ=1

ηiℓHi( j, ℓ) < 0. (9)

For Λ-homogeneous functions P(α) and A(α) of partial

degrees g = (g1, . . . ,gm) and r = (r1, . . . ,rm) respectively, the

total degree of the first two terms A(α)′P(α)+P(α)A(α) is

of course ḡ = (g1 + r1,g2 + r2, . . . ,gm + rm). Thus, the first

task is to homogenize accordingly the third term in α .

The general expression for the derivative of the Lyapunov

matrix P(α) with respect to the i-th component of the

multi-simplex, i = 1, . . . ,m and then with respect to its j-

th component, j = 1, . . . ,Ni is given by

∂P(α)

∂αi j

= ∑
k∈KN(g)

ki jα
k1
1 · · ·αki1

i1 · · ·α
ki j−1

i j · · ·α
kiNi
iNi

· · ·αkm
m Pk

= ∑
k∈KN(g−ei|m)

αk
(

(k + ei|m ⊗ e j|Ni
)i jPk+ei|m⊗e j|Ni

)

where by definition ei|m is the vector of dimension m with

zero components, except 1 in the i-th position. To fit (on α)

with the partial degrees ḡ, the following homogenization is

necessary:

m

∑
i=1

(αi1 + · · ·+αiNi
)ri+1

Ni

∑
j=1

∂P(α)

∂αi j

=

m

∑
i=1

Ni

∑
j=1

∑
k∈KN(g+r)

αk

(

∑
k̂∈KN(r+ei|m)

k̂�k

×

(ri +1)!

π(k̂i)

(

(k− k̂ + ei|m ⊗ e j|Ni
)i jPk−k̂+ei|m⊗e j|Ni

)
)

(10)

where π(ki) = (ki1!)(ki2!) · · ·(kiNi
!). Now, the third term of

(9) must be homogenized to become multi-affine on η . This

is done as follows

m

∏
p=1
p 6=i

(
ηp1 + · · ·+ηpMp

) Mi

∑
ℓ=1

ηiℓHi( j, ℓ) =

M1

∑
p1=1

· · ·
Mi

∑
pi=1

· · ·
Mm

∑
pm=1

η1p1
· · ·ηipi

· · ·ηmpm Hi( j, pi). (11)

Taking into account (10) and (11), the third term in the

left-hand side of (9) can be equivalently written as

m

∑
i=1

Ni

∑
j=1

∂P(α)

∂αi j

Mi

∑
ℓ=1

ηiℓHi( j, ℓ) =

M1

∑
p1=1

· · ·
Mm

∑
pm=1

η1p1
· · ·ηmpm

(

∑
k∈KN(g+r)

αk

m

∑
i=1

Ni

∑
j=1

∑
k̂∈KN(r+ei|m)

k̂�k

(ri +1)!

π(k̂i)
×

(

(k− k̂ + ei|m ⊗ e j|Ni
)i jPk−k̂+ei|m⊗e j|Ni

)

Hi( j, pi)

)

. (12)

Now, observe that

m

∏
p=1

(
ηp1 + · · ·+ηpMp

)(
A(α)′P(α)+P(α)A(α)

)
=

M1

∑
p1=1

· · ·
Mi

∑
pi=1

· · ·
Mm

∑
pm=1

η1p1
· · ·ηipi

· · ·ηmpm×

(
A(α)′P(α)+P(α)A(α)

)
(13)

and finally, (9) can be tested since all terms have the same

partial degrees on both α and η . Next theorem presents LMI

relaxations of increasing precision for the problem of robust

stability analysis of matrix A(α) with parameters α ∈ Λ,

α̇ ∈ Ω.

Theorem 3: Let Λ be a multi-simplex of dimension N =
(N1, . . . ,Nm). The Λ-homogeneous polynomial matrix A(α)
of partial degrees r = (r1, . . . ,rm) is robustly stable ∀α ∈
Λ, α̇ ∈ Ω if there exists g = (g1, . . . ,gm), k ∈ KN(g) and

matrices Pk ∈ Sn such that (2) and for all (i1, . . . , im) ∈
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{1, . . . ,M1}× · · ·×{1, . . . ,Mm} the following LMIs are ver-

ified

Tk = ∑
k̃∈KN(r)

k̃�k

(
A′

k̃
Pk−k̃ +Pk−k̃Ak̃

)
+Ξk < 0n, ∀k ∈ KN(g+ r)

(14)

where

Ξk =
m

∑
i=1

Ni

∑
j=1

∑
k̂∈KN(r+ei|m)

k̂�k

(ri +1)!

π(k̂i)
×

(

(k− k̂ + ei|m ⊗ e j|Ni
)i jPk−k̂+ei|m⊗e j|Ni

)

Hi( j, pi). (15)

Proof: First note that the left-hand side of (9) can be written

as
M1

∑
i1=1

· · ·
Mm

∑
im=1

η1i1 · · ·ηmim

(

∑
k∈KN(g+r)

αkTk

)

which is negative definite when the constraints (14) are

fulfilled. To conclude the proof note that (2) guarantees that

the Lyapunov matrix P(α) is positive definite.

Remark 1: Since the existence result of Theorem 1 is only

applicable to robust LMIs with time-invariant parameters,

the relaxations of Theorem 3 are only sufficient. However,

less and less conservative evaluations can be obtained as the

degrees of the Λ-homogeneous Lyapunov matrix increase.

If Theorem 3 is used in the case of only time-invariant

parameters, the same results of Theorem 2 are retrieved. In

this case, it is always recommended to use the conditions

of Theorem 2 since the conditions of Theorem 3 must be

tested for all (i1, . . . , im) ∈ {1, . . . ,M1} × · · · × {1, . . . ,Mm}
that, in the case of frozen parameters, always produce the

same (redundant) LMIs.

Remark 2: If the conditions of Theorem 3 are used to

analyze the robust stability of an uncertain system where

nothing is known about the time-variation of its i-th parame-

ter, the degree of the Λ-homogeneous Lyapunov matrix P(α)
associated to this parameter (one of the simplex inside the

multi-simplex) is chosen to be zero. In this case, matrices

Hi can be anything since they are not used in the algorithm

during the construction of the LMIs. On the other hand, the

degrees associated to the other parameters can be freely cho-

sen. Such “decoupling” property between time-varying and

time-invariant parameters of the system is one of the main

advantages of the applications of the results of Theorem 1.

Remark 3: Both Theorems 2 and 3 require that the coef-

ficients of matrix A(α) must be given in the multi-simplex

representation. These coefficients can be easily obtained from

affine or multi-affine models using the Λ-completion opera-

tion. Moreover, in the time-varying case, the conversion of

the time-derivative bounds can be done without introducing

conservativeness.

VII. NUMERICAL EXPERIMENTS

The numerical complexity associated to optimizations

problems involving LMIs can be estimated as a function of

the number V of scalar variables and of the number L of LMI

rows. The experiments presented were performed in a PC

equipped with: Athlon 64 X2 6000+ (3.0 GHz), 2GB RAM

(800 MHz), using SeDuMi [30] and Yalmip [31]. All the

information necessary to implement the conditions of The-

orems 2 and 3 were given in the paper. However, specially

concerning the conditions of Theorem 3, the interested reader

may find difficulties during the implementation, because the

number of combinations (i1, . . . , im) is not known a priori

since m (number of simplexes inside the multi-simplex) is

given by the system under consideration. To facilitate the

task, a generic code has been implemented and is available

for download at http://www.dt.fee.unicamp.br/
∼ricfow/robust.htm. A routine to convert a system

originally in the affine form to the multi-simplex represen-

tation is available as well.

Example 1: Consider the time-invariant system

A(θ) = A0 +θ1A1 +θ2A2, −1 ≤ θi ≤ 1, i = 1,2

[

A0 A1 A2

]
=





−4 2 −2 −5 −3 −13 0 2 2

5 −6 1 −5 0 0 0 0 0

−2 2 −7 10 13 16 0 −1 0



 .

The aim is to test the robust stability of this system using

the results of [7], that handles directly the affine model;

[10] (OP07), that tests the equivalent polytopic model (2m

vertices); and Theorem 2 that deals with the multi-simplex

representation of the system. The minimal degrees necessary

to test positively robust stability, the number V (L) of scalar

variables (LMI rows) and computational times (in seconds)

are ([7]k=3, V = 1422, L = 75, Time = 31.14); ([10]g=4,

V = 210, L = 273, Time = 0.21); (Theorem 2(4,2), V = 90,

L = 117, Time = 0.09). As it can be seen, the conditions of

Theorem 2 provide the best results in terms of the numerical

complexity, achieving a positive evaluation of robust stability

with the partial degrees g = (4,2).
Example 2: Consider the system ẋ(t) = A(θ)x(t) with

A(θ) = A0 +θ1(t)A1 +θ2(t)A2 +θ3A3 and

[

A0 A1 A2 A3

]
=

[

−2 1 2 1 1 1 0 0

−1 −3 0 −1 −1 1 0 −1

]

,

where the parameter θ1(t) is time-varying with bounded

rate of variation, θ2(t) can vary arbitrarily fast (unknown

time-variation) and θ3 is time-invariant. The aim here is to

determine the maximum variation rate γ of the parameter

θ1(t), i.e.|θ̇1| ≤ γmax such that the system is robustly stable.

Table I shown the robust stability analysis results provided

by Theorem 3 using different values for the partial degrees

of the Λ-homogeneous Lyapunov matrix associated to the

parameters θ1(t) and θ3.

It is important to mention that the conditions of Theorem 3

are of increasing precision, yielding less and less conserva-

tive results as the degrees increase. But, undoubtedly, the

most important trend associated to Theorem 3 is its ability

to handle independently the parameters of the system in

terms of allowing different degrees for the Λ-homogeneous

Lyapunov matrix. The last two rows of Table I indicate that

the estimation of the maximum variation rate of parameter

θ1(t) is insensitive to the degree of the Λ-homogeneous

Lyapunov matrix associated to the parameter θ3. If g3 = 1,

the same results are obtained when g1 increases, demanding

less computational effort. To the authors knowledge, this
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TABLE I

ROBUST STABILITY ANALYSIS RESULTS OF EXAMPLE 3 USING

THEOREM 2 WITH DIFFERENT PARTIAL DEGREES g1 AND g3 FOR g2 = 0;

V SCALAR VARIABLES; L LMI ROWS.

T3 (g1,g3) γmax V L Time

(1,1) 2.277 12 80 0.06 s
(2,2) 3.326 27 146 0.06 s
(3,3) 3.970 48 232 0.08 s
(4,4) 4.267 75 338 0.14 s
(5,5) 4.507 108 464 0.20 s
(6,6) 4.650 147 610 0.26 s
(7,7) 4.737 192 776 0.41 s
(8,8) 4.810 243 962 0.52 s

(8,1) 4.810 54 276 0.15 s
(1,8) 2.277 54 276 0.10 s

is the first method to allow such degree of flexibility for

the problem of robust stability analysis of uncertain linear

systems.

VIII. CONCLUSION

Existence results for robust LMIs with parameters ly-

ing into a multi-simplex were presented. As illustrated for

simplicity with robust stability analysis of uncertain linear

systems, this setting allows to take into account in a unified

and flexible way time-varying parameters and time-invariant

parameters, without adding in itself supplementary conser-

vatism.

Future investigations on this topic include the design of

controllers that can take advantage of the “decoupling” effect

between time-invariant and time-varying parameters.
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