
A Randomized Cutting Plane Scheme with Geometric Convergence:
Probabilistic Analysis and SDP Applications

F. DABBENE, P. SHCHERBAKOV, B.T. POLYAK

Abstract— We propose a randomized method for general
convex optimization problems; namely, the minimization of a
linear function over a convex body. The idea is to generate
N random points inside the body, choose the best one and
cut the part of the body defined by the linear constraint.
The method is analyzed under the assumption that a Uniform
Generating Oracle (UGO) is available — an algorithm for
uniform generation of random points in the convex body. The
expected rate of convergence for such method is geometric.
Probabilistic estimates of convergence are explicitly derived:
we estimate the probability that the method converges slower
than the deterministic center-of-gravity algorithm. Since UGO
is unavailable in most applications, a practical implementation
of the method is discussed, based on Hit-and-Run versions of
Markov-chain Monte Carlo algorithms. The crucial notion for
this algorithm is a Boundary Oracle, which is available for
most optimization problems, including LMIs and many other
types of constraints. Numerical results for SDP problems are
presented, which confirm that the randomized approach can be
a competitor to modern deterministic interior-point algorithms.

I. INTRODUCTION

Recent years exhibited the growing interest to randomized
algorithms in control and optimization; e.g., see [18]. There
are numerous reasons for this interest, from philosophical
to computational ones. The present paper continues this line
of research for convex optimization. We consider a convex
minimization problem of the form

min c>x subject to x ∈ X , (1)

where the set X ⊂ Rn is a convex body, i.e., it is full-
dimensional and bounded. The linear cost function is taken
without loss of generality; any convex optimization problem
can be reduced to this form.

In Section II, we start with the description of deterministic
Center-of-Gravity (DCG) method. This method has been
proposed simultaneously by Levin and Newman in 1965 [7],
[11] for a slightly different problem formulation. Its rate
of convergence has been estimated via Grünbaum theorem
[6] and happened to be geometric. We provide another
result based on Radon theorem [15] which also guarantees
geometric convergence. However, despite its very attractive
theoretical behavior, the DCG algorithm turned out to be
not implementable in practice, for a very simple reason: for
a generic convex set, computing the center of gravity is more

This work was supported by a bilateral project funded by Italian CNR
and Russian Academy of Sciences and by a CNR RSTL grant.

F. Dabbene is with IEIIT-CNR, Politecnico di Torino, Italy;
fabrizio.dabbene@polito.it

P. Shcherbakov and B.T. Polyak are with IPU, Moscow, Russia;
(sherba,boris)@ipu.ru

difficult than solving the original optimization problem. That
is why, in Section III we propose a Random Cutting Plane
(RCP) algorithm based on the assumption that it is possible
to generate points uniformly in a convex body; this mech-
anism is referred to as Uniform Generation Oracle (UGO).
We then report a result of [5] that provides an estimate of
the expected rate of convergence of the RCP algorithm.

Section IV represents one of the main contributions of
the paper; namely, for the first time, a probabilistic analysis
of RCP algorithm is provided. In particular, we estimate
the probability that RCP converges slower than DCG and
calculate the number N of points to be generated in RCP to
guarantee a better convergence with high probability.

The main drawback of the RCP is the nonrealistic as-
sumption on the existence of UGO. Our implementation of
the algorithm is based on Hit-and-Run (H&R) versions of
the Monte Carlo method, which are aimed at approximately
uniform generation of points in a body via random walks.
An H&R algorithm has been applied to convex optimization
in [1]; however, the method in [1] differs from the imple-
mentable version of RCP presented in Section V. First, the
problem formulation differs from (1), and it is this difference
that allows us to introduce the concept of best point. Second,
the method proposed in [1] updates at each step an outer
polytope inscribing X , while here we update directly the set
X (in this sense, our method can be considered an interior-
point algorithm). Third, in [1], the authors use a so-called
Separation Oracle, while we exploit Boundary Oracle (see
details below). Results of numerical experiments with the
proposed algorithm for semidefinite programming problems
are described in Section VI.

II. DETERMINISTIC CENTER OF GRAVITY ALGORITHM

For a convex body X , define its center of gravity as
cg(X) .=

∫
X xdx/

∫
X dx. Then, the deterministic cutting

plane method based on recursive cutting through the center
of gravity can be stated as follows, see also [5], [13].

Algorithm 1 DCG Algorithm
Input: X ,
Output: optimum x∗ for (1)

1: k ⇐ 0, Xk ⇐ X
2: xk ⇐ cg(Xk)
3: Xk+1 ⇐

{
x ∈ Xk : c>(x− xk) ≤ 0

}
4: check Stopping Rule; goto 2.

In words, the method works as follows: Let X0 ≡ X , and
let x0 be the center of gravity of X0. Then, proceed by con-

Proceedings of the
47th IEEE Conference on Decision and Control
Cancun, Mexico, Dec. 9-11, 2008

WeB16.1

978-1-4244-3124-3/08/$25.00 ©2008 IEEE 3044

sidering the new set X1 =
{
x ∈ X0 : c>(x− x0) ≤ 0

}⊂X0

obtained by cutting off a portion of X0 using the hyperplane
H0 =

{
x ∈ Rn : c>(x− x0) = 0

}
. For this convex set X1

in turn, compute its center of gravity x1 = cg(X1) and
construct the hyperplane H1 through x1, which defines the
set X2 ⊂ X1, etc. As a result, we obtain a sequence of
embedded sets Xk ⊂Xk−1⊂ · · · ⊂X1⊂X0 and a sequence
of points xk having the property c>xk+1 < c>xk. From a
classical result by Grünbaum [6], it then follows that

vol (Xk+1) ≤ (1− 1/e)vol (Xk), (2)

i.e., at each step the DCG algorithm guarantees that a given
portion of the set is cut out. Besides that, the method
possesses nice convergence properties; specifically, the fol-
lowing estimate for the rate of convergence takes place:

fk+1 − f∗ ≤ n

n + 1
(fk − f∗), (3)

where fk
.= c>xk and f∗ is the optimal value of the cost

function. Relation (3) can be proved using the well-known
Radon theorem [15], and we formulate this result as the
lemma below, see [13], [5] for additional details.

Lemma 1 (Convergence of DCG): The DCG algorithm
yields an α-optimal solution (i.e. such that fk − f∗ ≤ α)
in at most k =

⌈
ln R

α

ln n+1
n

⌉
= O (n ln R/α) steps, where

R
.= f0 − f∗.

However, the method has an essential drawback: its prac-
tical implementation is hindered by the fact that computing
the center of gravity is NP-hard, even for the simple case
when X is a polytope, as recently proved in [14].

III. A RANDOMIZED CUTTING PLANE ALGORITHM

In [5], the following randomized modification of the
DCG scheme was proposed. The method, formally stated

Algorithm 2 RCP Algorithm
Input: X ,
Output: x∗

1: k ⇐ 0, Xk ⇐ X
2: generate Nk uniform samples in Xk,
{x(1), . . . , x(Nk)} = UGO(Xk, Nk),

3: xk ⇐ arg minx∈{x(1),...,x(Nk)} c>x,
4: Xk+1 ⇐

{
x ∈ Xk : c>(x− xk) ≤ 0

}
5: check Stopping Rule; go to 2.

as Algorithm 2, is based on the abstract assumption of the
availability of a mechanism for generating uniform samples
in convex sets.

Assumption 1 (Uniform Generating Oracle): Assume that
a uniform generating oracle (UGO) is available, such that
for any convex set X ∈ Rn, a call to UGO(X , N) returns N
independent random points uniformly distributed in X .

The randomized scheme we propose for computing the
query point at step k is very simple: At step k, we make
recourse to UGO and generate Nk uniform samples in Xk.
The next-step query point is selected as the random sample

providing the minimum to the cost function, see Figure 1.
Clearly, the k-th step of the RCP algorithm will perform
better than a corresponding step of a deterministic method
as long as at least one random point will fall below (in terms
of the cost function) the center of gravity xG of the set Xk.

c

xG
x

(6)

x
(2)

x
(1)

x x
(3)

=
k

x
(5)

c

x
(4)

X
k

X
k+1

Fig. 1. A sketch of the proposed randomized cutting scheme.

Using the technique similar to the one in [1], it was proved
in [5] that the expected convergence of the RCP algorithm
outperforms the classical DCG one.

Lemma 2 (Expected convergence of RCP): The expected
number of steps of the RCP algorithm for computing an α-
optimal solution (i.e. such that fk − f∗ ≤ α) is at most

k =
⌈

n

ln (N + 1)
ln

R

α

⌉
.

Notably, the above convergence rate reduces to the one
of Lemma 1 when N = 1, and improves by a factor of
ln (N + 1) when N > 1.

IV. PROBABILISTIC ANALYSIS OF RCP

We now derive explicit bounds on the number of samples
required to guarantee with arbitrarily high probability a
desired performance of the proposed algorithm. This section
constitutes one of the main novel contributions of the paper.

A. Single step analysis

We first analyze the behavior of a single step of the RCP
algorithm. To this end, consider the situation at a generic
step k and define by xG the center of gravity of the set Xk

and by xk the query point returned by line 3 of Algorithm 2.
Formally, define Worsek as the event of RCP returning at
step k a query point which is worse (i.e. above in terms of
cost-function value) than xG. The probability of this latter
event can be easily bounded in the following way:

P{Worsek} = P{c>xk ≥ c>xG}
= P{c>x(i) ≥ xG, i = 1, . . . , Nk}
= P{c>x(i) ≥ xG}Nk ≤ (1− 1/e)Nk ,

where the last inequality follows from Grünbaum’s theorem
[6] (cf. (2)). Hence, we have the following lemma showing
that, by appropriately selecting the number of samples Nk,
we can guarantee with a prescribed arbitrarily high proba-
bility that the k-th step of RCP algorithm performs better
than the corresponding DCG step.

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 WeB16.1

3045

Lemma 3 (Single step analysis of RCP): Given a proba-
bility level ε > 0, set Nk ≥ 2.2 ln 1

ε . Then, with probability
at least 1− ε, it holds

c>xk ≤ c> cg(Xk). (4)
Proof. The lemma is proved noting that Nk ≥ ln 1

ε / ln 1
1−1/e

implies (1−1/e)Nk ≤ε, and (ln 1
1−1/e)

−1≈2.1802<2.2. ¤
B. Overall analysis of RCP

We derive a specific bound, based on a Bonferroni-like
inequality, on the number of samples required to guarantee
(with high probability) that the RCP algorithm will expose
the same geometric rate of convergence as that of DCG.

Theorem 1 (Behavior of RCP): Given a probability level
ε > 0, choose

Nk ≥ Nk
sum(ε, k) .= 2.2 ln

1
ε

+ (1.1 + 0.505 ln k). (5)

Then, with probability at least (1 − ε), the RCP algorithm
will expose a better or equal rate of convergence than DCG.
Proof. The probability of the algorithm performing worse
than DCG is the probability of the event Worse∞

.=
{at some step k c>xk ≥ c> cg(Xk)}. This probability can
be bounded as P{Worse∞} ≤ P{Worse1∪Worse2∪· · · } =∑∞

k=1 P{Worsek} ≤ ∑∞
k=1(1 − 1/e)Nk . To make this

sum finite and equal to the desired probability level ε, it is
sufficient to select the sequence Nk such that

(1− 1/e)Nk =
k−α

ζ(α)
ε, α > 1, (6)

where ζ(α) is the Riemann zeta function, for which∑∞
k=1 k−α = ζ(α). In fact, in this case we have

∑∞
k=1(1−

1/e)Nk =
∑∞

k=1
k−α

ζ(α)ε = ε. Solving equation (6) with
respect to Nk, we obtain the bound

Nk ≥
ln ζ(α) + α ln k + ln 1

ε

ln 1
1−1/e

.

Choosing, by trial and error, α = 1.1, we get bound (5). ¤
Table I shows the values of bound (5) for given values of

ε and k. Note that the number of required random samples
is indeed very low, even for very small values of ε.

ε
k

0.01 0.005 0.001 0.0005 0.00001

1 12 13 17 18 27
10 13 14 18 19 28

100 14 16 19 21 29
1, 000 15 17 20 22 30

10, 000 16 18 21 23 32

TABLE I
THE VALUES OF dNk

sum(ε, k)e FOR VARIOUS VALUES OF ε AND k.

V. A HIT-AND-RUN IMPLEMENTATION OF RCP
Above, the properties of the RCP algorithm have been an-

alyzed in a very abstract setting, which assumed the existence
of a mechanism for generating uniform random samples
from a set. Although Assumption 1 is rather common in the
computational geometry community, it is quite strong and is
made only for theoretical analysis purposes. We show here
how this assumption can be relaxed.

A. Boundary Oracle and Hit-and-Run

We replace Assumption 1 with the more reasonable one
on the availability of a boundary oracle.

Assumption 2 (Boundary Oracle): Assume that a bound-
ary oracle (BO) is available such that, given a direction
v ∈ Rn and a point z belonging to a bounded convex set
X ∈ Rn, a call to BO(x,X , v) returns the two points z, z
which are the intersection of the 1D line x + λv, λ ∈ R,
with the boundary of X .

For a wide range of problems, e.g., such as LMI con-
strained optimization, a BO can be formulated in closed
form. Boundary oracle is crucial for obtaining implementable
versions of RCP by means of techniques based on random
walks in convex bodies (see [20] for a detailed survey on
these methodologies). A random walk in X starts at a point
in X and moves to a neighboring point chosen according to
a specific randomized rule that depends on the current point
only. Many different techniques have been proposed in the
literature to choose the next point to walk in; one of the
most promising is the Hit-and-Run (H&R) algorithm, which
has been proven to posses the best bounds on the number of
steps needed to draw a random sample.

This algorithm has been proposed by Turchin [19] and
independently later by Smith [17]. Its properties have been
studied in numerous works by Lovász and co-authors (e.g.,
see the survey [20]). The H&R algorithm is recalled next:

Algorithm 3 H&R Algorithm
Input: x0 ∈ X , T
Output: x(i) random point belonging to X

1: z ⇐ x0,
2: for j = 1 to T do
3: generate a uniform random direction v ∈ Rn,
4: {z, z} = BO(X , z, v)
5: generate a uniform point z in the segment [z, z],
6: end for
7: x(i) ⇐ z.

With these premises, the abstract setup of the previous
section can be practically implemented by simply substitut-
ing line 2 of Algorithm 2 with the H&R procedure. This is
summarized in Algorithm 4.

Algorithm 4 RCP Algorithm – H&R implementation
Input: X ,
Output: x∗

1: k ⇐ 0, Xk ⇐ X
2: for j = 1 to Nk do x(j) ⇐ H&R(x(j−1), T); end for,
3: xk ⇐ arg minx∈{x(1),...,x(Nk)} c>x,
4: Xk+1 ⇐

{
x ∈ Xk : c>(x− xk) ≤ 0

}
5: check Stopping Rule; go to 2.

B. Probabilistic analysis of the H&R implementation

In this section we show how the probabilistic analysis of
Section IV can be extended to the H&R implementations.

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 WeB16.1

3046

This analysis is based on a seminal property of H&R, which
was proved in [8]: After a number of steps T (so-called
mixing time) which is polynomial in the dimension n, the
total variation1 between the density PT and the uniform
density P is guaranteed to be bounded by a given constant.
This result was later refined by various authors; we report
here the following lemma rephrased from [9], which provides
a polynomial bound on the mixing time.

Lemma 4 (Mixing rate of H&R): Let X be a convex body
that contains a ball of radius r and is contained in a ball of
radius R. Suppose that the initial distribution is concentrated
at a starting point x0 at a distance d from the boundary of
X , and let PT be the distribution of the current point after
T steps of H&R in X . Then,

‖PT − P‖tv ≤ R

d
e−n−3 r2

CR2 T , (7)

where C is an absolute constant.
Notice that the total number of H&R steps in Algorithm 4

turns out to be T · Nk (that is, at least T H&R steps have
to be performed between the two consecutive samples). This
mixing time is necessary to ensure the total variation bound
of Lemma 4. With this result in mind, the reasonings that
lead to Lemma 3 modify as follows:

PT {Worsek} = PT {c>x(i) ≥ xG, i = 1, . . . , Nk}
from (7) ≤ P{c>x(i) ≥ xG, i = 1, . . . , Nk}

+
R

d
e−n−3 r2

CR2 T

≤
(
P{c>x(i) ≥ xG}

)Nk

+
R

d
e−n−3 r2

CR2 T

≤ (1− 1/e)Nk +
R

d
e−n−3 r2

CR2 T .

This proves the following lemma showing that we can still
guarantee PT {Worsek} ≤ ε with arbitrarily high probability.

Lemma 5 (Single step analysis of RCP with H&R):
Given a probability level ε > 0, choose ε1, ε2 such that
ε1 + ε2 = ε and set

T ≥ Cn3 R2

r2
ln

R

dε1
; Nk ≥ 2.2 ln

1
ε2

. (8)

Then, with probability at least 1− ε, it holds

c>xk ≤ c> cg(Xk). (9)

Remark 1 (Complexity of H&R): Results like Lemma 4
are of great theoretical importance, — they show that H&R
schemes can be implemented in polynomial time. However,
from a practical viewpoint, they are still unsatisfactory.
The main reason is that the constants involved are usually
very large, thus making the method not good in practice.
However, numerical experience shows that H&R usually

1For two probability distributions P1, P2 on the same underlying σ-
algebra on X , their total variation distance is defined as

‖P1 − P2‖tv
.
= sup

A⊆X
|P1(A)− P2(A)|.

performs much better than predicted theoretically. This fact is
acknowledged by many authors, e.g., see [1]. This is also the
main reason that convinced us to keep separate the analysis
of the pure theoretical setup of Section IV. Moreover, we
remark that the quantities d, r,R involved in equation (8)
are not constant but vary at every step of the algorithm.

A reasoning identical to the one leading to Lemma 5
can be employed for extending the analysis of Theorem 1.
However, we prefer not to dwell further on this analysis, and
to dedicate instead some space on different issues related to
the practical implementation of the H&R procedure to the
solution of standard SDP problems.

VI. APPLICATION TO LINEAR MATRIX INEQUALITIES

In this section, we focus our attention at standard semidef-
inite programs (SDP) of the form

min c>x subject to F (x) .= F0 +
n∑

i=1

xiFi ¹ 0, (10)

where c ∈ Rn and Fi ∈ Rm,m, i = 0, . . . , n, are known
symmetric matrices; the notation F ¹ 0 stands for negative
semidefiniteness of the matrix F ; the constraint in (10) is
called a linear matrix inequality (LMI), and the convex set

XLMI
.= {x ∈ Rn : F (x) ¹ 0}

is referred to as the feasible domain of this LMI. To exclude
trivialities, we assume that the set XLMI is nonempty and
bounded.

The optimization problem (10) is known to be one of the
key problems in the theory of LMIs [2]. It has numerous
applications in system theory and control, and at present
there exist efficient solution techniques based on interior-
point methods; e.g., see [10]. For this reason, we exemplify
the use of our method for this widely adopted setup, with
the belief that future versions of the RCP algorithm pre-
sented here will expose better performance than the existing
techniques, especially for problems of very high dimensions.

The first key issue in the subsequent exposition is a
boundary oracle for the set XLMI, which we refer to as
Semidefinite Boundary Oracle (SDBO). This oracle is given
by the following lemma, developed in [12], see also the work
[3] for a similar result.

Lemma 6 (SDBO): Let A ≺ 0 and B = B>. Then, the
minimal and the maximal values of the parameter λ ∈ R
retaining the negative definiteness of the matrix A + λB are
given by

λ =
{

maxλi<0 λi,
−∞, if all λi > 0; λ =

{
minλi>0 λi,
+∞, if all λi < 0;

where λi are the generalized eigenvalues of the pair of
matrices (A,−B), i.e., Aei = −λiBei.

By means of this lemma, the desired endpoints of the
segment [z, z] are computed as z = z + λv and z = z + λv.
In the setup of this paper, assume that z ∈ XLMI, and
v ∈ Rn is a (random) direction. We then have F (z + λv) =
F (z) + λ

(
F (v)− F0

) .= A + λB, and using Lemma 6, the

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 WeB16.1

3047

desired intersection points of the line and the boundary of
XLMI are given by z = z +λv and z = z +λv. To compute
the intersection points with the boundary, the additional
linear condition c>(x− xk) ≤ 0 defining the feasible set at
step k is to be taken into account, which is straightforward to
implement. As seen from the aforesaid, this operation should
be frequently performed in the process of iterations. The
basis of this operation is finding the eigenvalues of matrices,
which is for instance efficiently implemented in MATLAB.
Hence, the boundary oracle for LMIs is accurate and “cheap”
enough for matrices of quite large dimensions, as confirmed
by the numerical simulations discussed in the next section.

A. Implementation issues

Prior to reporting on the results of experiments, we discuss
some of the most important implementation issues, including
modifications of the basic scheme that showed to be crucial
for the method to perform satisfactorily in practice. We
stress that the implemented procedure does differ from
Algorithm 4; it involves certain semi-heuristic tricks and
would require a careful theoretical analysis that we aim to
perform in the subsequent papers.

a) Initialization: To implement the H&R procedure,
we need to find an initial feasible point x0 ∈ XLMI. This
can be done by solving the auxiliary problem

min γ subject to F (x) ¹ γI

that admits the couple {x = 0, γ = max eig
(
F (0)

)} as
initial feasible solution. If the optimal solution {x∗, γ∗} of
this problem is such that γ∗ > 0, then the original problem
(10) is unfeasible, otherwise we take x0 = x∗ as initial
feasible point. Notice also that, for the specific SDP problem,
we can also easily force the initial feasible point to be at a
distance d from the boundary of X .

The procedure above allows to find a good initial point to
pass to Algorithm 4. However, it should be noted that, after
the first step of this algorithm, by construction the H&R
starting point xk lies on the boundary of the new set Xk+1,
and therefore we would have d = 0. There are different
ways to avoid this degeneracy. For instance, the initialization
procedure described in Section 4.1.1 of [4] can be directly
applied to our setup. In our case, we adopted a method based
on boundary points, as better described in item d) below.

b) Number of points: As it follows from Lemma 5,
the number Nk of random points suggested by Theorem 1
has to be enlarged because of the mixing time required
for H&R algorithm; however, for simplicity, in the present
implementation, we decided to lean on Nk ≡ N points at
every iteration. Also, extra points are required to bring the
set XLMI in near-isotropic position, as described next.

c) Isotropization: Note that bound (8) depends explic-
itly on the quantities r and R which define the radii of two
balls respectively inscribed and inscribing the set X . If these
quantities can be assumed to be known at the first steps of
the RCP algorithm, this does not hold true anymore as the
algorithm proceeds. Indeed, at step k, the set Xk is obtained
from the original set X by cutting a portion defined by the

hyperplane Hk, and there is no guarantee that it still contains
a ball of radius r. A well-accepted technique (e.g., see [1]) to
overcome this problem, is to perform an affine transformation
of Xk to bring it in near-isotropic position2.

Isotropization techniques stem from the consideration that,
for a set in near-isotropic position, the diameter of X is less
or equal than n and the ratio R/r is O(

√
n). Hence, in this

case the bound (8) explicitly rewrites as

T ≥ Cn4 ln
n

dε1
.

The procedure for bringing a set in near isotropic position
is quite straightforward: For a general convex set X , let
y(1), . . . , y(M) be random samples from X . Compute the
quantities

ȳ
.=

1
M

M∑

i=1

y(i) and Y
.=

1
M

M∑

i=1

(y(i)− ȳ)(y(i)− ȳ)> (11)

and apply the affine transformation defined by ȳ and Y to
the set X , obtaining the new set

X̃ .=
{

x ∈ Rn : Y
1
2 x + ȳ ∈ X

}
(12)

It was shown by Rudelson [16] that one can bring a set in
near-isotropic position with high probability in O(n log2 n).

d) Heuristics: Various heuristic schemes proved effec-
tive in our simulations. As regards the isotropization step,
we noticed that, as a by-product of H&R algorithm at the
kth iteration we have 2N points on the boundary of the
set Xk (endpoints z, z). The transformation matrix Y in
(11) is composed from these boundary points. Based on
the assumption that the subsequent sets Xk and Xk+1 have
“similar” geometry, we perform isotropization of Xk+1 by
means of this matrix Y obtained at the previous step.

Moreover, those of the boundary points obtained at the
kth step that fall into Xk+1 where used to perform the
initialization phase of item a). More precisely, the initial
point for the H&R algorithm at the (k +1)st step was taken
as the arithmetic mean of these selected points. If the cut is
performed through the “best” H&R point as described above,
then there exist Nb ≥ 1 such points (at least the endpoint
of the chord associated with the “best” H&R point). For the
sake of numerical safety, we performed the cut through the
“second best” point to make sure Nb ≥ 3 so that averaging
yields an interior initial point.

B. Preliminary Numerical Experiments

The method was tested over a range of problems whose
data were generated randomly as described next. Symmetric
matrices Fi were generated so as to guarantee nonemptiness
of XLMI; for simplicity, we chose F0 < 0 in the form

M = 2 rand(m)− 1; F0 = −M ·M> − eye(m),

2A convex set X ∈ Rn is said to be in isotropic position if, given a
uniform random point x ∈ X , it holds E [x] = 0 and E

[
xx>

]
= I , i.e. its

covariance matrix is identity. We say that a convex set X is in near-isotropic
position if cg(X) = 0 and the covariance matrix of the uniform distribution
over X has eigenvalues between 1

2
and 3

2
.

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 WeB16.1

3048

so that x0 = 0 was adopted as the initial point for iterations.
The rest of the matrices Fi, i > 0, were computed as
(a) M = 2 rand(m/2) − 1; (b) M = M + M>; (c)
Fi = blkdiag(M ;−M) in order to guarantee XLMI to
be bounded and to ensure the existence of a finite solution.
Without loss of generality, the vector c in the cost function
was taken as c = (0 0 . . . 0 1). Such data were generated
for dimensions of the Fi matrices as large as m = 100, and
the dimensions of the design vector x as high as n = 1, 000.
The method demonstrated pretty stable performance; as far
as the widely used computer MATLAB-based realizations
of interior-point methods (the solvesdp routine in Se-
DuMi Toolbox) are concerned, it has showed comparable
performance, sometimes exceeding the classical methods in
accuracy. To illustrate, we briefly describe some preliminary
results of simulations.

For moderately sized problems with n = 10, m = 10,
we obtain 7 to 9 exact digits after 45 to 55 iterations with
N = 200 H&R points at each step. In other words, the
observed rate of convergence (fk+1 − f∗)/(fk − f∗) was
approximately 0.65 to 0.7 as compared to the theoretical rate
0.9 for this dimension n = 10 (see (3)). The same accuracy
is typically observed after 30 to 40 steps if N = 500 H&R
points were used.

In the second set of experiments the method was tested on
SDP problems having large dimensions of the design vector,
n = 1, 000 and m = 10. Typically, the method reproduces 7
to 8 exact decimal digits for the function value after 20–
30 iterations (N = 1, 500 points were used). As a rule,
for these high-dimensional problems, the solvesdp routine
exhibits slightly lower accuracy (6 to 7 digits); moreover,
sometimes it yields a formally infeasible point x∗, e.g.,
max eig

(
F (x∗)

) ≈ 2 · 10−7 > 0 was observed.
The third set of experiments was conducted with problems

having so-called worst-case geometry, where the feasible
domain is “pyramid-like.” For such sets, the bound n/(n+1)
on the rate of convergence of the DCG algorithm given
by (3) is known to be attained. In the experiments, the
matrices Fi were chosen in such a way as to yield XLMI =
{x ∈ Rn : ‖x‖1 ≤ 1}, so the minimum function value is
f∗ = −1 and m = 2n by construction. Notably, for such a
geometry, the isotropization procedure described above very
often does not bring XLMI to near-isotropic position, and
is therefore omitted. As a result, in practice we lean on
a much smaller number N of H&R points that would be
needed to correctly restore the Y matrix. Specifically, for
the worst-case geometry problem with n = 10 variables and
quite large dimension m = 1024 of the Fi matrices, using
only N = 40 points yields 6 to 8 exact digits after 75–
85 iterations depending on realization. This means that, in
accordance with the theory developed here, the observed rate
of convergence (approximately 0.8) is usually better than 0.9,
which is given by (3).

VII. CONCLUSIONS

In this paper, we study a novel randomized scheme for
convex optimization. The theoretical behavior of the method

is analyzed in the abstract framework in which a Uniform
Generating Oracle is assumed to be available. A novel
probabilistic analysis is carried out, and our method is shown
to outperform the classical DCG methods. In particular, we
explicitly derive bounds on the number of random samples
N necessary to guaranteed with prescribed high probability
the desired convergence behavior of the algorithm. It turns
out that this number is very small, thus guaranteeing practical
implementability of the proposed scheme. These bounds are
then specialized to the case in which UGO is implemented
using H&R. The second part of the paper is devoted to nu-
merical simulations for the special case of SDP optimization.
To the best of our knowledge, this is the first time that a
practical implementation of the method is discussed in such
detail.

REFERENCES

[1] D. Bertsimas and S. Vempala. Solving convex programs by random
walks. Journal of the ACM, 51(4):540–556, 2004.

[2] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan. Linear Matrix
Inequalities in System and Control Theory. SIAM, Philadelphia, 1994.

[3] G. Calafiore. Random walks for probabilistic robustness. In Conf.
Decison and Control, pages 5316–5321, 2004.

[4] G. Calafiore and F. Dabbene. A probabilistic analytic center cut-
ting plane method for feasibility of uncertain LMIs. Automatica,
43(12):2022–2033, 2006.

[5] F. Dabbene. A randomized cutting plane scheme for convex optimiza-
tion. In Multiconf. on Systems and Control. San Antonio, 2008.

[6] B. Grünbaum. Partitions of mass-distributions and convex bodies by
hyperplanes. Pacific J. Math., 10:1257–1261, 1960.

[7] A.Y. Levin. On an algorithm for the minimization of convex functions
over convex functions. Soviet Math. Doklady, 6:286–290, 1965.

[8] L. Lovász. Hit-and-Run mixes fast. Mathematical Programming,
86:443–461, 1999.

[9] L. Lovász and S. Vempala. Hit-and-Run from a corner. SIAM Journal
on Computing, 35(4):985–1005, 2006.

[10] Y. Nesterov and A.S. Nemirovski. Interior Point Polynomial Algo-
rithms in Convex Programming. SIAM Journal on Applied Mathe-
matics, Philadelphia, 1994.

[11] D.J. Newman. Location of the maximum on unimodal surfaces.
Journal of the ACM, 12(3):395–398, 1965.

[12] B.T. Polyak and P.S. Shcherbakov. The D-decomposition technique
for linear matrix inequalities. Automat. Remote Control, 67(11):1847–
1861, 2006.

[13] B.T. Polyak and P.S. Shcherbakov. A randomized method for
solving semidefinite programs. In Proc. of the 9th IFAC Work-
shop ALCOSP’07, 2007. Available from IPACS Electronic Library
at http://lib.physcon.ru/.

[14] L. Rademacher. Approximating the centroid is hard. In Proc. of the
24th Annual Symposium on Computationa Geometry (SoCG-07), 2007.

[15] J. Radon. Über eine Erweiterung des Begriffs der konvexen Functio-
nen, mit einer Anwendung auf die Theorei der konvexen Körper. S.
B. Akad. Wiss. Wien, 125:241–258, 1916.

[16] M. Rudelson. Random vectors in the isotropic position. J. Funct.
Anal., 164:60–72, 1999.

[17] R.L. Smith. Efficient Monte-Carlo procedures for generating points
uniformly distributed over bounded regions. Operations Research,
32:1296–1308, 1984.

[18] R. Tempo, G. Calafiore, and F. Dabbene. Randomized Algorithms
for Analysis and Control of Uncertain Systems. Communications and
Control Engineering Series. Springer-Verlag, London, 2004.

[19] V.F. Turchin. On the computation of multidimensional integrals by the
Monte-Carlo method. Theory of Probability and Appl., 16(4):720–724,
1971.

[20] S. Vempala. Geometric random walks: a survey. Combinatorial and
Computational Geometry, 52:573–611, 2005.

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 WeB16.1

3049

