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Abstract— We describe a hidden Markov modeling approach
to multiple change-points that has attractive computational and
statistical properties. This approach yields explicit recursive
filters and smoothers for estimating the piecewise constant
parameters. Applications to array-CGH data analysis in genetic
studies of cancer and to on-line detection, estimation and
adaptive control of stochastic systems whose parameters may
undergo occasional changes are given to illustrate the versatility
of the proposed methodology.

I. INTRODUCTION
The problems of change-point detection, estimation and

adaptive control in stochastic systems which may undergo
abrupt changes over time arise in many fields in science and
engineering, including industrial quality control, automated
fault detection in controlled dynamical systems, segmenta-
tion of signals, and computational molecular biology. In this
paper we describe a unified approach to these problems by
using a class of hidden Markov models that have tractable
forward and backward filters. These filters have explicit rep-
resentations, which can be further approximated by parallel
recursive algorithms for on-line implementation.

The filtering approach, via hidden Markov modeling, to
change-point problems dates back to Shiryaev [1,2] who
formulated the problem of optimal sequential detection based
on observations yt that are independent with a common
density function f0 for t < ν and with another common
density function f1 for t ≥ ν , in which f0 and f1 are known
density functions. Assuming a loss of c for each observation
taken after v and a loss of 1 for a false alarm before ν ,
Shiryaev used optimal stopping theory to show that the Bayes
rule (corresponding to the prior geometric distribution on ν)
triggers an alarm as soon as the posterior probability that a
change has occurred exceeds some threshold; he also derived
a continuous-time analog of this result. Shiryaev’s theory
assumes that there is a single change-point and that the
pre- and post-distributions of yt are known. The unobserved
“state” in this theory is the change-time ν and the Bayes
rule can be expressed in terms of the “filter,” which is
the posterior distribution of ν given the current and past
observations y1, . . . ,yt .

To generalize to multiple change-points, one can use more
general jump Markov models, as in [3]. Moreover, to remove
the assumption of known pre- and post-change densities, an
obvious way is to replace { f0, f1} by a parametric family
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{ fθ ,θ ∈ Θ} and ν by a sequence of positive interger-valued
random variables ν1,ν2, . . . with i.i.d. increments. Thus, yt
has conditional density function fθt given θt , in which the
θt are constant between the change-times ν1,ν2, . . . . The
assumption of i.i.d. geometrically distributed inter-arrival
times between change-points is equivalent to i.i.d. Bernoulli
It , 1{θt 6=θt−1} (i.e., whether a parameter change occurs at
time t). To complete the Bayesian specification, we assume
a prior distribution G on θ so that θt has distribution G
whenever a parameter change occurs. This is, therefore, a
hidden Markov model with the following dynamics:

fθ : y1 - y2 . . . - yt - yt+1 - Observations
? ? ? ?

G : θ1 - θ2 . . . - θt - θt+1 - Hidden states
? ? ?

I2 . . . It It+1Bernoulli:
(1)

One such model was considered by Yao [4] who derived
recursive formulas for the Bayes estimates of the means θt
based on y1, . . . ,yn (1 ≤ t ≤ n), in which

yt = θt +σεt , (2)

εt are i.i.d. standard normal random variables, σ is a known
scale parameter, and θt = θt−1 with probability 1− p and
takes on a new normally distributed value with probability
p, i.e., G is normal with mean µ and variance V . These
recursive formulas involve the forward and backward filters
of the hidden Markov model and can be computed by
O(n3) operations. Earlier, Chernoff and Zacks [5] considered
a similar model that assumes a N(µ ,V ) distribution on
the change magnitude θt − θt−1 (rather than on θt as in
[4]) whenever θt 6= θt−1. The computational complexity of
the Bayes estimate of θt (1 ≤ t ≤ n) in the Chernoff-
Zacks model, however, is of exponential order 2n. Note that
Shiryaev’s model is also a special case of the hidden Markov
model (1) with Θ = {0,1} and with 1 as an absorbing state
of the Markov chain {θt} which is initialized at 0.

In Section II we derive recursive filters and smoothers
in the hidden Markov model (1) to estimate the piecewise
constant parameters θt . For the normal mean shift case, our
recursive formulas agree with those of Yao [4] although our
method to derive these formulas is different from his and is
more versatile. A key ingredient in our method is the most
recent change-time Kt up to time t. Our derivation also shows
how the posterior distribution of Kt can be approximated by
a bounded number of parallel recursions, with the bound
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depending on p but not on n. On-line and off-line methods
to estimate p and other hyperparameters are also discussed.
Section III gives an overview of a variety of applications of
the filters and smoothers in Section II, and some concluding
remarks are given in Section IV.

II. A HIDDEN MARKOV MODEL FRAMEWORK FOR
MULTIPLE CHANGE-POINTS

The model (1) provides a general framework for multiple
change-points in complex systems. Suppose observations
y1,y2, . . . are generated from the model fθ with piecewise
constant parameters θt . The prior distribution of θt is given
recursively by θt = (1− It)θt−1 + Itηt , in which ηt are i.i.d.
random variables with common density function g and It
are i.i.d. Bernoulli random variables with success probability
p. We assume that θ1 has density function g, which is
tantamount to initializing the above recursive definition of
θt with It = 1.

A. Recursive Filtering Formulas

Let Yt = (y1, . . . ,yt) and

Kt = max{s ≤ t : Is = 1}, (3)

i.e., Kt is the most recent change-point up to time t. The
conditional density function gi,t of θt given Kt = i and Yt is

gi,t(θ ) ∝ g(θ )
t

∏
s=i

fθ (ys), (4)

in which the constant of proportionality is defined by that
gi,t(θ ) has to integrate (or sum) to 1 over θ . Let pi,t = P(Kt =
i|Yt). Then the posterior density ft|t (·) of θt given Yt can be
expressed as

ft|t (θ ) =
t

∑
i=1

pi,t gi,t(θ ), (5)

where pi,t = p∗i,t
/

∑t
k=i p∗k,t and

p∗i,t =

{
p f (yt |It = 1) if i = t,
(1− p)pi,t−1 f (yt |Yt−1,Kt = i) if i < t,

in which we use f (·|·) to denote conditional densities. Since

f (yt |Yt−1,Kt = i) =
∫

fθ (yt)gi,t−1(θ )dθ ,

we can use (4) to express p∗i,t as

p∗i,t =

{
pπ0,0/πt,t if i = t,
(1− p)pi,t−1πi,t−1/πi,t if i < t, (6)

in which

1/π0,0 =

∫
g(θ )dθ , 1/πi, j =

∫ [ j

∏
k=i

fθ (yk)
]
g(θ )dθ ,

with the integral replaced by summation in the discrete case.

B. Combining Forward and Backward Filters for θt |Yn

To find the posterior density ft|n(·) of θt given Yn for
1 ≤ t < n, we first reverse time and note that Ĩs , In−s+1
are still i.i.d. Bernoulli and that the time-reversed Markov
chain θ̃s , θn−s+1 has the same transition probabilities as the
forward chain θs. In other words, {θs,1≤ s≤ n} is reversible.
Moreover, its stationary distribution has density function g.
Let Yi, j = (yi, . . . ,y j) and K̃t = min{s > t : Is = 1}. Analogous
to the forward filter, the posterior density f (·|Yt+1,n) of θt
given Yt+1,n is given by

f (θ |Yt+1,n) = pg(θ )+(1− p)
n
∑

j=t+1
q j,t+1gt+1, j(θ ), (7)

where q j,t+1 = P(K̃t = j|Yt+1,n) = q∗j,t+1
/

∑n
i= j q∗i,t+1 and

q∗j,s =

{
pπ0,0/πs,s if j = s,
(1− p)q j,s+1πs+1, j/πs, j if j > s. (8)

By Bayes’ theorem, for 1≤ t < n, the posterior density ft|n(·)
of θt given Yn satisfies

ft|n(θ ) ∝ f (θ |Yt) f (θ |Yt+1,n)
/

g(θ ). (9)

Combining (9) with (5) and (7), simple algebra then yields

ft|n(θ ) = ∑
1≤i≤t≤ j≤n

βi jtgi, j(θ ), (10)

where βi jt = β ∗
i jt

/
Pt , Pt = p+ ∑1≤i≤t< j≤n β ∗

i jt , and

β ∗
i jt =

{
ppit if i ≤ t = j,
(1− p)pitq j,t+1πi,t πt+1, j

/
πi, jπ0,0 if i ≤ t < j.

(11)

C. Exponential Family as a Special Case
The preceding formulas are particularly convenient if the

prior density g is chosen from a conjugate family {gα} so
that the posterior density of θ (in the case of no change-
point) given the data also belongs to the family but with
α(Yn) in place of α . For example, for the normal mean shift
model (2), the normal prior distribution of θt at change-times
is a conjugate family. One extension of the normal mean shift
model (2) is the exponential family

fθ (y) = exp{θ T y−ψ(θ )} (12)

with respect to some measure m on Rd . The Bayesian
model assumes a conjugate prior distribution on the natural
parameter space Θ := {θ :

∫
eθ T ydm(y) < ∞}. Specifically,

the prior density gα has the form

gα(θ ) , g(θ ;a0,µ0) = c(a0,µ0)exp
{

a0µT
0 θ −a0ψ(θ )

}
,

(13)
where α = (a0,µ0) and 1/c(a0,µ0) =

∫
Θ exp

{
a0µT

0 θ −
a0ψ(θ )

}
dθ . The posterior density of θ given the observa-

tions y1, . . . ,ym from fθ is g(θ ;am,µm), where

am = a0 +m, µm = (a0µ0 +
m
∑
i=1

yi)
/
(a0 +m); (14)
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see [6], which gives the following explicit formulas for πi, j
in (6) and (8):

π0,0 = c(a0,µ0), πi, j = c(a0 + j− i+1,yi, j),

where ȳi, j = (a0µ0 + ∑ j
k=i yk)/(a0 + j − i + 1) for j ≥ i.

Moreover, the posterior density function gi,t in (5) or (10)
belongs to the above conjugate family.

A bounded complexity mixture (BCMIX) approximation,
with M(p) components, to the mixture (10) of t posterior
densities can be obtained as follows. Let Kt−1(p) denote
the set of indices i for which pi,t−1 is kept at stage t − 1;
thus Kt−1(p)⊃ {t −1, , · · · , t −m(p)}. At stage t, define p∗i,t
as in (8) for i ∈ {t}∪Kt−1(p) and let it be the index not
belonging to {t, t −1, · · · , t −m(p)+1} such that

p∗it ,t = min{p∗j,t : j ∈ Kt−1(p) and j ≤ t −m(p)},

choosing it to be the minimizer farthest from t if the above
set has two or more minimizers. Define Kt(p) = {t} ∪
(Kt−1(p)−{it}) and let

pi,t =
(

p∗i,t
/

∑
j∈Kt(p)

p∗j,t
)
, i ∈ Kt(p).

Similarly, we can obtain a BCMIX approximation to the
backward filter θ t |Yt+1,n, and the BCMIX approximation to
the smoother can be obtained by combining the forward and
backward BCMIX filters via Bayes’ theorem.

D. Stochastic Regression Models
Another far-reaching extension of Yao’s normal mean shift

model (2) is the stochastic regression model

yt = θ T
t xt +σεt , (15)

in which εt are i.i.d. standard normal, xt is an observed
regressor that is determined by the events up to time t −1,
and θt ∈ Rk are piecewise constant parameters. The prior dis-
tribution of θt when a change occurs at time t is N(µ ,V ), and
hence the posterior distribution of θt given Yi, j, (Kt , K̃t) =
(i, j) and (xs, i ≤ s ≤ j) is N(µi, j ,σ2Vi, j), where

Vi, j =
(

V−1 +
j

∑
k=i

xkxT
k

)−1
, µi, j = Vi, j

(
V−1µ +

j

∑
k=i

ykxk
)
.

(16)
Let φµ,V denote the density function of N(µ ,V ) distribution,
i.e., φµ,V (y) = (2π)−k/2|V |−1/2 exp{− 1

2(y−µ)TV−1(y−µ)}.
Then π0,0 = φµ,V (0), πi, j = φµi, j,Vi, j(0), yielding an explicit
mixture of normal densities in (5) or (10). While the number
of components in this normal mixture increases with n, we
can approximate it by a mixture with at most M components,
with M depending on p but not on n, similar to the BCMIX
filters and smoothers in the preceding paragraph. Moreover,
for s < t, Vs,t and µs,t can be computed by standard recursions
that follow from the matrix inversion lemma:

Vt,t = V −VxtxT
t V/(1+ xT

t Vxt),

Vs,t = Vs,t−1 −Vs,t−1xt xT
t Vs,t−1

/
(1+ xT

t Vs,t−1xt) if s < t,
µs,t = µs,t−1 +Vs,t−1xt(yt − xT

t µs,t−1)/(1+ xT
t Vs,t−1xt).

E. On-line and Off-line Estimation of Hyperparameters
The preceding recursive filters and smoothers involve

hyperparameters which include the relative frequency p of
change-points, the parameter α of the prior density gα , and
also the error variance σ 2 in the case of the regression
model (15). They can be estimated on-line by Rissanen’s
[7] accumulated prediction error, and off-line by maximum
likelihood or variants thereof. Let Φ denote the vector of
hyperparameters. For the hidden Markov model (1), the
accumulated prediction error at time t is defined by

APEt(Φ) =
t

∑
i=1

{yi − ŷi|i−1(Φ)}2, (17)

where ŷi|i−1(Φ) is the minimum-variance one-step-ahead
predictor of yi, or equivalently, ŷi|i−1(Φ) = EΦ(yi|Yi−1).
Instead of squared error, one can also use Kullback-Leibler
divergence or other loss functions, depending on the appli-
cations. Details of the implementation are given in [8] and
[9]. For off-line estimation of the hyperparameters, note that
the likelihood function of these hyperparameters is given by
the joint density function of (y1, . . . ,yn), which is

n
∏
t=1

f (yt |Yt−1) ∝
n

∏
t=1

( t
∑
i=1

p∗i,t
)
, (18)

where p∗i,t = p∗i,t(Φ) is given by (6) and the constant of
proportionality does not depend on Φ. In Section III we
describe how the maximum likelihood estimator of Φ or
variants thereof can be computed in a specific application.

III. APPLICATIONS TO DETECTION, SEGMENTATION,
ESTIMATION AND CONTROL

A. Segmentation Models for Array-CGH Data
Array-based comparative genomic hybridization (array-

CGH) has become a widely used method for studying the
genetics of cancer. For a given cell sample, array-CGH
allows quantitative measurement of the average genomic
DNA copy number at thousands of locations linearly ordered
along the chromosomes. Typically, a test genomic DNA
pool (e.g. genomic DNA from tumor cell sample) and
a diploid reference genomic DNA pool are differentially
labeled with dyes. These two dye-labeled samples are mixed
and hybridized to a microarray chip, which is spotted with
genomic targets that map to known locations on a global
scale throughout the genome. The hybridized chip is then
scanned, and the ratio of the test and reference fluorescence
intensities for each genomic target is calculated. The ratio of
the intensities of the dyes is a surrogate for the ratio of the
abundance of the DNA sample labeled with the dyes, and
the log fluorescence ratios yt follow the model (2), in which
εt are assumed to be independent standard normal as in
Yao’s [4] normal mean shift model. However, since the copy
number of a homogeneous sample of normal diploid cells
should be 2 on all autosomal chromosomes, giving a signal
of 0, it is important to include 0 as the baseline state. Similar
assumptions are needed in the fault detection applications in
Section IIIC when the “in-control” state is known. Lai, Xing
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and Zhang [10] therefore assume the following Markovian
dynamics on θt that has the baseline state 0. When the signal
leaves the baseline, it moves to a non-zero state; when the
next jump occurs, the signal may move back to the baseline
or jump to another non-zero state. To describe the dynamics
of θt , we use the transition probability matrix

P =




1− p 1
2 p 1

2 p
c a b
c b a


 . (20)

The matrix P specifies that, at time t, if the state θt is in the
0 (baseline) state, then at time t +1, θt+1 stays in the 0 state
with probability 1− p, or jumps to a nonzero state which
follows N(µ ,V ) with probability p. To allow the possibility
of jumping from a non-zero state to a different non-zero
state, we simply assume that the process can jump from the
baseline state with probability p/2 to either of two nonzero
states that have the same prior distribution N(µ ,V ). If θt 6= 0,
then at time t +1, it can stay in the last state with probability
a, or jump to another nonzero state with probability b, or
jump back to the baseline state with probability c.

The probability vector π̃ = (c/(p + c), 1
2 p/(p +

c), 1
2 p/(p+c)) satisfies π̃P = π̃, and therefore π̃ corresponds

to the stationary distribution associated with P. Note also
that

π̃(x)P(x,y) = π̃(y)P(y,x),

so the three-state Markov chain with transition probability
matrix P and initialized at π̃ is reversible. This implies that
the Markov chain {θt} has a stationary distribution π that
assigns probability c/(p+c) to the baseline value 0 and prob-
ability p/(p + c) to a N(µ ,V ) random variable. Moreover,
under the additional assumption that θ0 is initialized at the
stationary distribution, {θt} is a reversible Markov chain.

In analogy with (3), let Kt = max{s ≤ t : θs = · · · =
θt ,θs−1 6= θs} denote the nearest change-point at a location
less than or equal to t. Define pt = P(θKt = 0|Yt) = P(θt =
0|Yt) and qi,t = P(θKt 6= 0,Kt = i|Yt) for 1 ≤ i ≤ t. Since the
conditional distribution of θt , given Yt and the event that
Kt = i and θKt 6= 0, is N(µi,t ,Vi,t), where µi, j and Vi, j are given
by (16) with xt ≡ 1. it follows that the posterior distribution
of θt given Yt is a mixture of normal distributions and a
point mass at 0:

θt |Yt ∼ pt δ0 +
t

∑
i=1

qi,t N(µi,t ,Vi,t), (21)

where δx denotes the probability distribution that assigns
probability 1 to x. Making use of pt +∑t

i=1 qi,t = 1 and yt =
θt +σεt , it is shown in [10] that the conditional probabilities
pt and qi,t can be determined by the recursions

pt ∝ p∗t := (1− p)pt−1 + cqt−1,

qi,t ∝ q∗i,t :=
{

(ppt−1 +bqt−1)π0,0/πt,t , i = t,
aqi,t−1πi,t−1/πi,t , i < t,

(23)

where qt = ∑t
i=1 qi,t = 1 − pt , π = φµ,V (0) and πi, j =

φµi, j ,Vi, j(0) for i ≤ j. Specifically, pt = p∗t
/[

p∗t + ∑t
i=1 q∗i,t

]

and qi,t = q∗i,t
/[

p∗t +∑t
i=1 q∗i,t

]
.

Since {θt} is a reversible Markov chain, we can reverse
time and obtain a backward filter that is analogous to (21):

θt+1|Yt+1,n ∼ p̃t+1δ0 +
n
∑

j=t+1
q̃ j,t+1N(µt+1, j,Vt+1, j),

in which the weights p̃s, q̃ j,s can be obtained by backward
induction using the time-reversed counterpart of (23):

p̃s ∝ p̃∗s := (1− p)p̃s+1 + cq̃s+1,

q̃ j,s ∝ q̃∗j,s :=
{

(pp̃s+1 +bq̃s+1)π0,0/πs,s j = s,
aq̃ j,s+1πs+1, j/πs, j j > s,

(24)

where q̃s+1 = ∑n
j=s+1 q̃ j,s+1 = 1− p̃s+1. As in (9) and (10),

the forward and backward filters can be combined via Bayes’
theorem to yield

θt |Yn ∼ αt δ0 + ∑
1≤i≤t≤ j≤n

βi jt N(µi j,Vi j), (25)

in which
αt = α∗

t
/

At , βi jt = β ∗
i jt

/
At , At = α∗

t + ∑
1≤i≤t≤ j≤n

β ∗
i jt ,

α∗
t = pt [(1− p)p̃t+1 + cq̃t+1]

/
c, (26)

β ∗
i jt =

{
qi,t(pp̃t+1 +bq̃t+1)

/
p, i ≤ t = j,

aqi,t q̃ j,t+1πi,tπt+1, j/(pπ0,0πi, j), i ≤ t < j.

From (25), it follows that

P(θt = 0|Yn) = αt , E(θt |Yn) = ∑
1≤i≤t≤ j≤n

βi jtzi, j .

Let Ci j be the segment [i, j] in which all the copy numbers
are same and θi 6= θi−1 and θ j 6= θ j+1, one may want to make
inferences on properties of a genomic segment that is not
identified by a segmentation procedure. A fundamental entity
from which these inferences on genomic regions can be
derived is the posterior distribution of the parameter sequence
{θt : 1 ≤ t ≤ n} given Yn, which is an inhomogeneous
Markov chain whose initial distribution is π and whose
transition probabilities are given by

θt |θt−1,Yn ∼ atδ0 +ct1{θt−1 6=0}δθt−1 +
n
∑
j=t

b jtN(µt, j ,Vt, j), (27)

in which at = a∗t /Bt , ct = c∗t /Bt , b jt = b∗jt/Bt and

Bt = a∗t + c∗t 1{θt−1 6=0} +
n
∑
j=t

b∗jt ,

a∗t = φ0,σ 2(yt)
[
(1− p)1{θt−1=0} + c1{θt−1 6=0}

]

·
[
(1− p)p̃t+1 + cq̃t+1

]/
c,

c∗t = aφθt−1,σ 2(yt)
{(

pp̃t+1 +bq̃t+1
)
+

a
n
∑

j=t+1
q̃ j,t+1

φµt+1, j ,Vt+1, j(θt−1)

φµ,v(θt−1)

}/
p,

b∗jt =
[

p1{θt−1=0} +b1{θt−1 6=0}

]
φ0,σ 2(yt)q̃∗j,t

/
p,

using the same notation as that in (26).
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To estimate the hyperparameters Φ = (p,a,b,µ ,V,σ 2),
note that the likelihood function of Φ is given by the joint
density function of (y1, . . . ,yn), which is

f (yt |Yt−1) =
n

∏
t=1

{(
p∗t +

t
∑
i=1

q∗i,t
)
φ0,σ 2(yt)

}
, (28)

in which f (·|·) denotes conditional density function. Maxi-
mizing (28) over Φ yields the maximum likelihood estimate
Φ̂. Since Φ is a 6-dimensional vector and the functions
p∗t (Φ) and q∗i,t(Φ) have to be computed recursively for 1 ≤
t ≤ n, direct maximization of (28) may be computationally
expensive due to the curse of dimensionality. An alternative
approach is to use the EM algorithm which exploits the much
simpler structure of the log likelihood lc(Φ) of the complete
data {(yt ,θt),1 ≤ t ≤ n}:

lc(Φ) = − 1
2 ∑n

t=1

{
(yt−θt)2

σ 2 + log(2πσ 2)
}

− 1
2 ∑n

t=1

{
(θt−µ)2

V + log(2πV)
}

1{06=θt 6=θt−1}

+∑n
t=1

{
[log(1− p)]1{θt=θt−1=0}+(log p)1{θt 6=θt−1=0}

}

+∑n
t=

{
[log(1−b− c)]1{θt=θt−1 6=0} +(logc)1{θt=06=θt−1}

+(logb)1{06=θt 6=θt−1 6=0}

}
. (29)

Since lc(Φ) decomposes into normal and multinomial com-
ponents, the E-step of the EM algorithm involves E

(
(θt −

µ)2|Yn
)
, E

(
(θt − yt)2|Yn

)
and the conditional probabilities

P(θt = 0 = θt−1|Yn) =
(1− p)pt−1αt

(1− p)pt−1 + cqt−1
,

P(θt = 0 6= θt−1|Yn) =
cqt−1αt

(1− p)pt−1 + cqt−1
,

P(θt 6= θt−1 = 0|Yn) = cq̃t αt−1
/
{(1− p)p̃t + cq̃t},

P(0 6= θt 6= θt−1 6= 0|Yn) = (
n
∑
j=t

βt jt)bqt−1
/
{bqt−1 + ppt−1},

together with P(θt = θt−1 6= 0|Yn), which is determined by
the property that those five conditional probability have to
sum up to 1. Moreover, it follows from (29) that the M-step
of the EM algorithm also has closed-from updating formulas.

B. Change-point Models for both Level and Variability
The array-CGH analysis in [10] focuses on BAC arrays,

which use bacterial artificial chromosomes (BAC) as ge-
nomic targets. For other array-CGH platforms such as cDNA
arrays, which measure copy numbers only at transcribed
regions of the genome, one needs to incorporate changes in
both the mean and the variance. In speech signal processing
that uses autoregressive models, both the autoregressive pa-
rameters and the error variance are assumed to be piecewise
constant; see [11] and [12].

To allow changes in both the regression parameters and
the error variance in the stochastic regression model (15),
Lai, Liu and Xing [8] have considered the special case of
autoregressive models of the form

yt = αt +β1,tyt−1 + · · ·+βk,tyt−k +σtεt , t > k, (30)

where the εt are standard normal and θt , (αt ,β1,t , · · · ,
βk,t ,1/(2σ 2

t ))T satisfies θt = (1 − It)θt−1 + It(zT
t ,γt)T , in

which the It are i.i.d. Bernoulli and (zT
t ,γt) are i.i.d. such

that

γt ∼ Gamma(g,1/λ ), zt |γt ∼ Normal(z,V/(2γt)). (31)

Noting that (31) is a conjugate family and letting τt =
(2σ 2

t )−1, [8] derives the follwing posterior distribution of
θt given Yi, j and (Kt , K̃t) = (i, j):

τt ∼ Gamma(gi, j,1/λi, j), zt |τt ∼ Normal(µi, j,Vi. j/(2τt)),

in which µi, j and Vi, j are given by (16), gi, j = g +( j− i +
1)/2, and

λi, j = λ + zTV−1z+
j

∑
t=i

y2
t − zT

i, jV−1
i, j zi, j .

The filter θt |Yt and the smoother θt |Yn are given by (5) and
(10), respectively, with

π0,0 = |V |−1/2λ g/Γ(g), πi, j = |Vi, j|
−1/2λ gi, j

i, j /Γ(gi, j).

Incorporating a baseline state as in Section IIIA is im-
portant for array-CGH analysis. For speech signals and
biological sequence analysis, the underlying Markov chain
in the change-point HMM is more complicated than that
in Section IIIA. These and other issues are currently under
investigation.

C. Detection, Estimation and Control of Change-point ARX
Models

There is an extensive literature on the problem of on-
line detection of abrupt changes in stochastic systems; see
[13],[14]. As pointed out in [14], there is a close connection
between the theories of sequential hypothesis testing and
quick detection of abrupt changes in stochastic systems
subject to prespecified constraints on the false alarm rate
or expected duration to false alarm. By using a change-of-
measure argument and the law of large numbers for log-
likelihood ratio statistics, an asymptotic lower bound for
the detection delay in general stochastic systems subject to
such constraints is derived in [15] and [16], where it is also
shown how this lower bound can be asymptotically attained.
When the pre- and post-change distributions are completely
specified, this lower bound can be asymptotically attained by
a likelihood-based CUSUM or moving average procedure.
When the pre-change distribution is completely specified
but the post-change distribution has unknown parameters,
a window-limited generalized likelihood ratio (GLR) pro-
cedure, of the type introduced by Willsky and Jones [17] but
with a suitably chosen window size, is shown to attain this
lower bound asymptotically. Without assuming the baseline
distribution to be specified, the Bayesian approach would put
prior distributions on the pre- and post-change distributions.
Since the change-time ν is unknown, it would also put a
prior distribution on ν . A geometric prior distribution on ν
would then bring us back to the hidden Markov model (1),
with the obvious modification that θt enters an absorbing
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state at time ν in the classical change-detection framework
that allows only a single change. By choosing p in the filter
θt |Yt appropriately, the false alarm rate can be controlled
at the prescribed level. Moreover, by restricting the number
of components in the posterior mixture (5) for θt |Yt to
K(p) as indicated in the second paragraph of Section IIC,
we can maintain the basic features of the window-limited
GLR/mixture likelihood ratio detection rules in [15]. This is
the basic idea behind the application of the hidden Markov
filters to construct efficient sequential change-point detection
rules in [9].

The idea of using on-line change-point detection methods
to segment the data for recursive estimation and adaptive
control has been considered in the literature; see e.g. [13],
[18] and [19]. A major difficulty of this approach is that
it does not incorporate the uncertainties in the segmen-
tation (i.e., location of the change-points). Moreover, its
performance depends on the choice of the detection rule
and the trade-off between quick detection of change-points
(related to estimation bias) and false alarm rate (related to the
variances of the sequential estimates). For the change point
autoregressive model with exogenous inputs (ARX model)

yt +a1,tyt−1 + · · ·+ak,tyt−k = b1,tut−1 + · · ·+bh,tut−h +σεt ,
(19)

a commonly used approach is to use sliding windows or
forgetting factors to modify the least squares estimate of
θt , (a1,t , . . . ,ak,t ,b1,t , . . . ,bh,t)

T ; see [20, pp. 140, 161].
Assuming the εt to be independent standard normal and θt =
(1− It)θt−1 + Itηt , with independent Bernoulli It and normal
ηt , Chen and Lai [21] propose to use the hidden Markov
model (HMM) filters (see Section IIC) as an alternative to the
sliding-window or forgetting-factor least squares estimates.
For on-line identification and adaptive control, they approxi-
mate the HMM filters by using a relatively small number of
random samples drawn from the posterior distribution, which
are sequentially generated over time by using a combination
of importance sampling and resampling steps. They have
applied these sequential Monte Carlo filters (also called
“particle filters”) to on-line identification of stable open-
loop ARX systems and adaptive control of ARX models
that are unstable in the open loop and have demonstrated the
superiority of the HMM filters and certainty-equivalence con-
trol rules over the sliding-window or forgetting-factor least
squares certainty-equivalence rules and recursive estimators.

Instead of using sequential Monte Carlo filters, [9] uses
mixtures with a bounded number, K = K(p), of components
to approximate the HMM filter (5), which is a mixture of t
components and whose computational complexity therefore
increases to ∞ with t. These BCMIX filters, which are
similar to those in Section IIC, are more tractable, not only
computationally but also analytically, than the HMM filter
(5) and its particle filter approximation. By making use of
this more tractable structure of BCMIX filters, [9] develops
an asymptotic theory of the APE criterion (17) for sequential
determination of p and establishes the asymptotic efficiency
of the corresponding BCMIX filters.

IV. CONCLUSION

We have shown that the hidden Markov model (1) provides
a powerful approach to detection, segmentation, estimation
and control in stochastic systems whose parameters may
undergo occasional changes over time, with unknown change
locations and magnitude. The model provides explicit recur-
sive formulas for filters and smoothers to estimate the piece-
wise constant parameters. It leads to efficient segmentation
schemes and gives confidence assessments of any given seg-
mentation. Moreover, bounded-complexity approximations to
the filters can be used for on-line detection and control.
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