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Abstract— The gene expression response of yeast to various
types of stresses/perturbations shows a common pattern for the
vast majority of genes, characterized by a quick transient peak
followed by a return to the basal level (adaptation). In order to
model this transient and the consequent adaptation, we use the
idea of integral feedback (the integral representing the relative
concentration of gene products). The resulting linear system
with input explain sufficiently well the different time constants
observable in the transient response while, at the same time,
being in agreement with the known experimental degradation
rates measurements.

I. INTRODUCTION

Typically, at the level of gene expression, the response to

a stimulus, or to a change in some environmental condition,

or even to the substrate composition can be decomposed

into a rapid adaptation phase [1], [2], [3], [4], [5] possibly

superimposed to a long term permanent modification of the

gene expression “steady state” (happening, for example, at

the diauxic shift, [6]). We are interested here only in the

first phenomenon, occurring with a typical time constant of

the order of the tens of minutes. For S.cerevisiae, the rapid

adaptation described in [3], [7], [1], [5] consists essentially

of a transient change in the mRNA concentration followed

by a return to the basal pre-stimulus level for almost the

whole population of genes. This adaptation phenomenon

is observed in response to both temporary stimuli (such

as the nutrient somministration of [5]) and to permanent

ones (such as the environmental stresses of [3]). A simple

correlation analysis reveals that the responses to different

types of stimuli have consistent similarities and are strongly

correlated with the Half Life (HL) of the corresponding

genes.

The aim of this paper is to propose a dynamical model for

the genome-wide rapid adaptation of the transient response

to stimuli able to explain the following features:

• robust adaptation to stimuli of various “order” i.e., both

vanishing and persistent stimuli are reabsorbed;

• the rise time of the transient peak is shorter than its de-

cay time (i.e., time needed to return to basal level). This

last is of the same magnitude as the degradation time

constant (HL) of the genes inferred from experimental

data [8], [9], [10];

• the transient response typically does not induce oscilla-

tions (noticeable above the noise level);
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• both the maximal amplitude of the transient peak and

the area under the transient response are roughly propor-

tional to the HL of the genes, while instead the peaking

time (i.e., instant at which a gene has its maximal excur-

sion during the transient) is not significantly correlated

with HL.

Adaptation, intended as the mechanism by means of which

a biological system is able to recover the “best” working level

of a variable in spite of a persistent stimulus, is common to

many biological systems. Examples are numerous: various

signal transduction pathways [11], bacterial chemotaxis [12]

sensory transduction [13]. Following the intuition of [14], a

control-theoretic interpretation of adaptation is in terms of a

“purely” integral feedback loop. In this scheme, the integral

of the displacement from a nominal level (i.e., the error)

of a variable is fed back with negative sign. Adaptation is

achieved as this variable returns to the nominal level (error→

0) in spite of a persistent stimulus (that would otherwise alter
the steady state value, in absence of feedback). In the context

of the present paper, the variable being integrated is the rela-

tive mRNA abundance, and its integral represents the relative

abundance of the corresponding gene product. The cells work

best when both genes and proteins are at a nominal level

and adaptation reflects the attempt to maintain this condition

in spite of external stimuli (not inducing dramatic changes

in the cells functionality). Such a negative feedback, called

“autogenous control”, was introduced more than 30 years ago

[15], [16] to model gene negative autoregulation. Among its

dynamical features, it allows to reduce fluctuations around

the steady state [17] and to decrease the rise time of a

response [18]. As typically protein turnover rates are longer

than their mRNA counterparts [19], in the time scale of

interest changes in mRNA concentration reflect into a change

of equal sign in the concentration of the corresponding

proteins. We assume here that this quantity (the integral

mentioned above) acts on the mRNA transcription rate in

order to reequilibrate the gene expression to the nominal

level of concentration.

The simplest possible model representing adaptation

through integral feedback corresponds for each gene to a

bidimensional linear system with input. The requirements

above can all be satisfied very naturally by choosing the

modes (eigenvalues) of the system and the sign of the input

response. For example, the time constants of the rising and

decay fronts of the transient response yield a fast mode

and a slow mode, and this last must be comparable with

the mRNA turnover rate. As the eigenvalues have different
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time constants, this already excludes the case of damped

oscillations (eigenvalues must be real).

The whole process of “reequilibration” of the gene expres-

sion level to its pre-stimulus value is carried out in a highly

coordinated manner: the pattern of up/down regulated func-

tional categories is substantially faithful in the responses to

different stimuli. Actually we not only can observe a strong

degree of correlation among various stimuli having inhibitory

effects (such as thermal, oxidative, osmotic stresses), but

also anticorrelation between these and the stimuli having

excitatory effects (such as the nutrient inputs of [5]). Overall

this common pattern of expression reflects the values of HL

assignable to the various functional categories and also the

chain of events constituting the gene expression program of

a cell: in an axis going from downregulation to upregulation

for inhibitory stimuli (vice versa for activatory) we find

“transcription” categories followed by “protein synthesis”,

“metabolism” and “protein degradation”.

II. MODEL CONSTRUCTION

All experiments we analyze consist of two-channel mi-

croarrays in which the mRNA abundance during the transient

is hybridized against a basal pre-stimulus mRNA abundance

thereby obtaining as measurement only a relative mRNA

concentration for each gene. Returning to the pre-existing

steady state corresponds to a value approaching 1 (or 0 if a
log scale is considered as in Fig. 1).

As can be seen from Fig. 1, in each of the 5 time series

of [3] considered, we observed that almost 90% of the genes

have settled within an interval [− log2(1.5), log2(1.5)] from
the basal level (0 in the log scale considered) at the end of

each transient (percentages go up to 95% if we consider an
interval of [−1, 1]), while during the transient only ∼ 50%
of the genes remain inside the interval [−1, 1] on each time
series. Hence we can assume that the system undergoes a

transient excursion in response to each stimulus, excursion

which is reabsorbed in a time scale of the order of the tens

of minutes.

The models for the transcriptional kinetics often describe

the changes in mRNA concentration in terms of an acti-

vator/repressor transcription factor. Let mi be the mRNA

concentration relative to the basal level mi =
[mRNA]redi

[mRNA]green
i

where the “red” and “green” channels are conventionally

associated to the stimulus response and the basal mRNA

level for the i-th gene. Letting δi be the degradation rate,

then
dmi

dt
= −δimi + fi (1)

where the function fi describing the transcription rate is

typically zero-order in mi and can obey various types of

dependence from the transcription factor(s) Ai, i.e., fi(Ai)
can be linear, Michaelis-Menten or of Hill type [20], [21],

[22], [5], [2], [23]. Applying any of these formulæ requires

the knowledge of the transcription factor Ai acting on each

gene. Even if this information is partially available for

S.cerevisiae, predicting the kinetics of the transient response

from them is troublesome for a number of reasons:
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Fig. 1. Five time series from [3] showing the “step response” to different
environmental stresses are shown (from left to right: heat shock, heat shock,
hydrogen peroxide, sulfhydryl oxidizing agent, hyper-osmotic shock). For
visualization purposes, the 5 series are shown sequentially one after the
other. The time axis is in minutes, the relative mRNA abundance is in log2

basis. In the 8 panels, the 5153 genes are ordered according to the respective
HL (increasing from left to right, from top to bottom). In all 5 responses
the trend followed during the transient is highly correlated, i.e. genes with
similar HL behave similarly in the different step responses. In particular,
genes with short HL tend to be downregulated while genes with larger HL
upregulated.

• little is known on how the mRNA abundance influences

dynamically the concentration of the corresponding

gene product, even less on how and when the syn-

thetized proteins are available for acting as transcription

factors and thereby influencing the transcription (feed-

back mechanism);

• in the literature, the kinetic models mentioned above

are mostly used for describing variations in the steady

state following a perturbation, not for describing the

dynamics itself;

• in terms of gene expression alone, the correlation be-

tween transcription factors and target genes is insignif-

icant for the time series considered;

• the map transcription factors - target genes, though in-

complete, is already combinatorially complex. In addi-

tion, its activation is known to be condition specific [24],

and the sign of the interactions (activator/repressor) is

often unavailable.

On top of all these complications, modeling the effect of

an external stimulus u on the transcriptional regulation means
expressing Ai as a function of u. As nothing is known about
this further functional dependence Ai = Ai(u), we decided
to include in the model of the transcription rate fi only a

basal (constant) term plus a term linear in the stimulus u, of
the form of a zero order kinetics in mi:

dmi

dt
= −δimi + ci + biu. (2)

The parameter ci corresponds to the basal rate of transcrip-
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tion in absence of external stimuli (u = 0). Therefore,
since for the unperturbed steady state it must be m̄i =
ci/δi = 1, we have ci = δi. The parameter bi instead carries

information about the activator/inhibitor effect of u on the
mRNA concentration. When u is a persistent stimulus, e.g.
u(t) = 1, t > 0, then in (2) the steady state value is modified
to mi = (ci + biu)/δi = 1 + biu/δi 6= 1, i.e., the system
(2) is not adapted to step-like inputs u and cannot recover
its pre-stimulus mRNA level.

An increase in the transcription rate of the i-th gene

induces an increase in the total quantity of mRNA produced

over time

pi(t)−p̄i = r

∫ t

0

(mi(τ)−m̄i)dτ = r

∫ t

0

(mi(τ)−1)dτ (3)

where, as above, m̄i = 1 is the pre-stimulus relative mRNA
abundance, r is a rate constant (representing for example
the ribosome density, and assumed to be the same for all

genes) and p̄i is an integration constant (representing the

basal level of protein synthesis, see below). Differentiating

this expression,
dpi

dt
= r(mi − 1),

we see that pi, up to a degradation term (at least of the

same order of the HL if not slower, see [19]), describes

the concentration of the corresponding gene product relative

to the basal level, hereafter fixed as p̄i = 1. As the
transcriptional perturbation propagates through the protein

synthesis process with a time delay (e.g. diffusion-mediated,

or due to the crossing of the nuclear envelope barrier), the

influence of the protein degradation term on the dynamics

becomes negligible for the time horizon of interest here.

Expanding on the concept of autogenous control, the main

assumption we make in this paper is that an increase of the

abundance of a certain protein well above (resp. below) the

normal “working” level disfavors (resp. favors) the transcrip-

tion of the corresponding gene. On the model this can be

translated into an extra term exerting a negative feedback on

mi. Since this feedback effect acts in correspondence of a

displacement from the basal level (i.e., for pi 6= 1), we obtain
the system of two paired equations:

dmi

dt
= −δi(mi − 1) − ai(pi − 1) + biu

dpi

dt
= r(mi − 1)

(4)

As can be seen from (3), the second equation in (4) represents

an integral term which, when fed back with negative sign,

has the effect of achieving perfect adaptation in mi, allowing

the mRNA abundance to return to its basal level in spite of a

persistent stimulus u. The model predicts that the equilibrium
is reached for pi corresponding to p̃i = 1 + b/a. In order
to have p̃i > 0, the parameters must therefore satisfy the
consistency condition bi > −ai. De facto, the amplitude

of pi depends on the rate constant r. A value of r can be
estimated from the data. Consider the time series of gene

expression and compute (by numerical integration) the area

under each expression profile using a formula like (3). For

a gene experiencing no perturbation mi(t) = m̄i = 1,
hence pi(t) = p̄i = 1 for all t. For a downregulated
gene mi(t) < m̄i, implying pi(t) − p̄i < 0. As pi(t) is
a relative concentration, we require pi(t) > 0 for all t.
This condition gives an upper bound for the value of r.

Call µ = max
∣

∣

∣

∫ t

0
(mi(τ) − 1)dτ

∣

∣

∣
for all genes for which

∫ t

0
(mi(τ) − 1)dτ < 0 (“dowregulated”). Then pi(t) > 0

is satisfied provided 1 − rµ > 0 i.e., r < 1/µ. For all
time series considered, a choice of r = 0.01 (motivated by
the experimental data rather than by the dynamical model

chosen) is sufficient to have biologically consistent values of

p̃i for the range of ai, bi required by the fitting procedure.

As the model misses a degradation term in pi, the protein

concentration changes in response to the persistent stimulus

from p̄i to p̃i without ever returning to the basal level.

III. MODEL IDENTIFICATION AND ANALYSIS

To simplify calculations, it is convenient to change vari-

ables shifting the steady state (basal level) to the origin.

Letting xi =

[

mi − 1
pi − 1

]

, Ai =

[

−δi −ai

r 0

]

, and Bi =

[

bi

0

]

,

then for each gene we have the linear system (with input)

ẋi = Aixi + Biu (5)

whose solution is

xi(t) = eAitxi(0) +

∫ t

0

eAi(t−τ)Biu(τ)dτ. (6)

Since tr(Ai) = −δi < 0 and det(Ai) = rai > 0, the system
is always stable and its eigenvalues are:

si,1,2 = −
δi

2
±

γi

2

where γi =
√

δ2
i − 4rai. A visual inspection of the time

series shows that for the vast majority of genes the large

excursion corresponding to the transient is damped without

inducing oscillatory behavior (at least above what can be

considered measurement noise). Hence in the model fitting

we can assume:

1) the two eigenvalues are real, i.e., δ2
i − 4rai > 0;

2) the time constant of the fastest eigenvalue must be

shorter than that of the “free degradation” given by

the HL alone.

The two conditions are compatible with each other and with

the model structure. In order to agree also with the available

HL measures, we shall assume the following:

si,1 < si,2 ∼ −
ln(2)

HLi

< 0.

For example if we choose si,2 = −
ln(2)
HLi
, then we obtain the

following conditions:
{

ai = −si,2(δi + si,2)/r > 0

δi > −2si,2 > 0
(7)
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Fig. 2. Time response of the system in (5) to a step-like input, when bi < 0
for the gene GCD2/YGR083C (subunit of the translation initiation factor
eIF2B). Since the two modes have different real parts (si,1 = −0.11 <
si,2 = −0.04 implies that esi,1t decays faster than esi,2t, see top left plot),
their difference typically shows a profile like that reproduced in the middle
left plot. The sign of bi then decides whether the gene is classified as up- or
down-regulated by the stimuli (still middle plot). The area under the mi(t)
time course, shown in the bottom left plot is monotonically growing. For
the gene considered here, the experimental and reconstructed profiles are
shown in the top right panel (blue and red respectively, both in log

2
scale).

If we look at the entire category of cytoplasmic transcription initiation, all
profiles and their model-based reconstructions are shown in the middle and
bottom plots of the right column.

where δi is the free parameter (together with bi) for the data

fitting. While the fastest mode si,1 is the one dominating the

rising front of the transient response, in the setting in which

HL are computed (“pure” degradation, with transcription

blocked i.e., ci = 0 in (2) and ai = 0) only the slowest
mode si,2 matters.

In correspondence of a persistent stimulus, u(t) =
1 for t > 0, the system (6) can be solved explicitly. Since
at t = 0 the system is at rest (i.e., in the basal state
xi(0) = [0 0]T for all i, corresponding to mi(0) = 1 and
pi(0) = 1), only the forced evolution (second term in (6))
matters and we obtain:

xi(t) =

[

mi(t) − 1
pi(t) − 1

]

=
bi

γi

[

esi,2t − esi,1t

r
(

e
si,2t

−1
si,2

− e
si,1t

−1
si,1

)

]

. (8)

Notice that as t → ∞ from the second equation of (8) we

obtain that pi(t) > 0 if rbi (1/si,1 − 1/si,2) /γi > −1, i.e.,
for bi > −ai as mentioned above.

The first equation of (8) can be used to fit the parameters in

the dynamical model (5). For each gene, this corresponds to

identify the values of δi and bi that optimize the fit of mi(t)
to the experimental time series. With these parameters, (5) is

completely determined. The second equation of (8) can then

be used to compare the area predicted by the model with the

area computed from the experimental data.

A typical time course for mi(t) is shown in Fig. 2 for a
stress-inhibited gene. The difference in the two eigenvalues

si,1 and si,2 induces a transient response as shown in the

left column of Fig. 2. In particular, since si,1 < si,2, from

the first equation of (8) we have a faster rising front (due to

si,1) followed by a decay to the pre-stimulus level which

resembles a typical first order degradation. Although the

experimental condition is different from the mRNA turnover

fitting experiments of [8], [9], [10] (where transcription

is blocked), the time constants are indeed similar, thereby

justifying our choice of si,2.

In the case of real eigenvalues, the lack of oscillatory

behavior implies that pi(t) is typically monotonic, as can
be checked by a direct numerical integration of the mi(t)
profiles using (3). Hence for each response the area measured

under the mi(t) profile corresponds to pi(tend). To reduce
the effect of measurement noise, it is convenient to lump

together genes whose products form a protein complex (PC).

In fact these genes are known to have similar dynamics

[10], observation largely confirmed by the time series under

study. Sorting the PC complexes by the corresponding areas

under the mi(t), see Fig. 3, is enlightening also from
a biological point of view: the downregulated categories

(negative areas in the log scale of Fig. 3) are essentially

all involved into transcriptional and translational processes,

while in the most upregulated categories are the respiratory

chain complexes and the protein degradation machinery.

Notice that, coherently, also the ribosomes biogenesis is

very different between the cytoplasmic and mitochondrial

compartments. For the PC complexes shown in Fig. 3, the

comparison between numerically computed areas and model-

based estimated areas (pi) is shown in Fig. 5 (values are

averaged over all genes forming the complex).

From Fig. 4, the fastest mode of Ai (dominating the rising

front of the transient) is often much higher than the slowest

mode (dominating the decaying front): si,1 ≪ si,2 < 0. This
last mode by assumption is chosen as the degradation rate

constant. Since the mean HL is ≈ 25 ± 15 min, in the time
horizon of the 5 series (tend = 80, 60, 160, 90, 120 min for
the 5 time courses), the transient has sufficient time to decay

back at almost basal level for most genes. Therefore from

(8) we can write the following relation:

pi(tend) − 1 ≃
bir

γi

(

1

si,1
−

1

si,2

)

≃ −
bir

γisi,2
=

bir

γi

HLi

This expression provides an explanation in terms of the

model (5) of the roughly direct proportionality observed

between area (computed from the data) and the values of

HL, shown in Fig. 5 for the PC of Fig. 3. Notice on the

same Fig. 5 the tight relationship between the amplitude (i.e.,

the signed peak in mi) and the area (computed either via

the model or from the data). From (8), model-based area

and amplitude share the same gene-specific multiplicative

constant bi/γi.

For all 5 responses, the time at which the transient gene

expression peaks, tpeak, is approximately 25 min. If tpeak ∼
25min, then esi,1tpeak < 0.2 for 87% of the genes (while
esi,2tpeak < 0.2 for only 7%) meaning that indeed the transient
response declines due to the exhaustion of the fast mode.
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IV. COMPARING DIFFERENT INPUT RESPONSES

For the 5 time series of Fig. 1, the similarities are much

more consistent than the stimulus-specific differences. This

can be deduced from the sign concordances of the bi fitting.

In Fig. 4 (bottom left panel) more than 50% of the 5153

genes have unanimous sign assignements in the 5 series

(∼ 80% have 4 sign concordances out of the 5 possible).

These percentages increase considerably if we disregard low-

variance genes. If the 5 time series are compared with 4

others from [7] also representing responses to prolonged

stimuli (exposure to high Ca2+ and Na2+ and combinations

of these with the immunosuppressive drug FK506) the pat-

tern of up/down regulation is very similar. For the same PC

as above the comparison of average areas is shown in Fig. 6,

upper left. In [5] instead, the yeast culture is fed with pulses

of glucose of different magnitude. In this case the sign of

the responses is inverted for most genes, as can be seen in

the two remaining scatter plots of Fig. 6.

V. CONCLUSIONS

Yeast reacts to a change of environmental conditions by

means of a highly coordinated response which is faster than

it would be expected from the “natural” degradation time

constant. In this paper we propose a model able to explain

this quick response by means of a feedback mechanism

aiming at adapting the system to the new condition. From

a dynamical point of view, this can be formulated in terms

of a second mode, faster than degradation, which dominates

the transient excursion but which, being quickly exhausted,

is not observable on standard turnover experimental curves.
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Fig. 5. Comparison between the area under the mRNA response measured
on the data, area as obtained from the model (i.e., pi(tend)), HL and maximal
signed amplitude of the mRNA abundance, for the PC complexes of Fig. 3
(values are obtained averaging over all genes forming a complex and over
the 5 time series). The high agreement between area (i.e., log

2
(pi(tend)))

and the sign of the peak of mRNA during the transient (shown also in log
2

scale) is a confirm that most transient excursions are not oscillatory.
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Fig. 3. List of significant PC and corresponding areas computed directly from the data for the 5 time series of Fig. 1. The solid markers represent the
values in the 5 experiments. As can be seen, for most of the neatly up or down-regulated categories, the 5 values have identical signs. The color scale
instead represents the value of HL associated to the protein complex: blue means short HL (minimum HL is 6 min) and red long HL (> 40 min).
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Fig. 6. Comparison of the average area for the time series of [3] (labeled
“gasch”), [5] (’ronen”) and [7] (“yoshimoto”) for the PC complexes shown
in Fig. 3. While “gasch” and “yoshimoto” are inhibitory stimuli (stresses),
“ronen” are activatory pulses of nutrient. Hence the antidiagonal pattern in
the areas shown in the middle and bottom plot.
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