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Abstract— We motivate the problem of designing a subset
of the edge weights in a graph, to shape the spectrum of
an associated linear time-invariant dynamics. We address a
canonical design problem of this form by applying time-scale
assignment methods, and give graph-theoretic characterizations
of the designed dynamics.

I. INTRODUCTION

Controller design for the purpose of time-scale assignment

is a cornerstone of classical and modern control theory. In

such controllers, high and/or low gains of various scales

are used to assign the eigenvalues of a linear time-invariant

(LTI) plant along one or more asymptotic time scales, e.g.

[1], [2]. Time-scale assignment has proved critical for a

family of stabilization and performance-design tasks. In

particular, multiple time-scales are fundamentally needed for

disturbance rejection (e.g. [3]), and further permit systematic

solution of such varied problems as stabilization/regulation

under actuator saturation (e.g. [4]), loop transfer recovery

(e.g. [2]), and decentralized controller design [5], among

others. The ability to assign eigenvalues along desired time-

scales is fundamentally related to the linear-system structure,

i.e. to the zero dynamics and infinite-zero structure of the

plant. As designs for large-scale systems and networks are

increasingly needed, however, it is becoming more and more

important that time-scale assignment capabilities be related

to the topological (graph) structure of the system. To clarify

this connection, the zero- and infinite-zero- structure—and

hence the time-scale design properties—must be character-

ized in terms of the topological structure.

In a complementary direction, the common presence of

multiple time-scale dynamics in existing large-scale in-

fratructure networks has been explained, and the time-scale

structure has been related to the topological structure of the

network (e.g., [6]). This characterization—which originated

in the electric power systems community under the heading

of slow coherency and was further generalized through the

definition of synchrony [6]—is based on the premise that

large-scale networks naturally have groups of components

that are strongly connected to each other but only weakly

tied to the remainder of the network. The special topological

structure yields 1) slow dynamics that are global but coherent

or synchronic within each tightly-connected group, and 2)

fast dynamics that are localized to individual groups. This

recognition of the typical time-scale structure of networks
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is valuable for a family of infrastructure-network analyses,

including for model reduction and partitioning (e.g., [6]).

However, the graph structure-based time-scale characteriza-

tions are only for existing networks, and the idea of designing

desirable time scales by exploiting the graph structure has not

been addressed. Such design is of significant interest, because

it can permit shaping of the network dynamics, including

specifically the modification of existing coherency structures.

The purpose of this this work is to marry the efforts on

time-scale assignment with the graph-structural characteriza-

tion of time-scales in large-scale network analysis. That is,

we motivate the problem of designing time-scales in large

scale systems by exploiting their topological structure, and

in turn initiate research in this direction by addressing a

canonical design problem of wide interest. Precisely, we

identify several controller design and graph-edge design

problems in networks, for which time-scale designs that

exploit the network’s topology are needed. The problems

that we identify originate from such diverse fields as virus-

spreading control, drug design, traffic flow management,

and sensor networking. We then fully address the time-

scale design for an example problem motivated by these

applications, namely that of designing some edge weights

in a graph (while others remain fixed) to shape a dynamics

defined by the associated Laplacian matrix (see [7] for

background on the Laplacian matrix and its spectrum).

Specifically, viewing this partial graph design problem as

a (decentralized) controller design problem, we characterize

the infinite-zero structure and finite-zero dynamics of the

plant in terms of the topologies of the fixed and designable

graph edges. In turn, we propose a high-gain methodology

for the partial graph design, and characterize the spectrum

upon design in terms of the graph topologies. We thus tie the

performance of time scale-based designs to the topological

structure, and (in a complementary direction) characterize

the network dynamics over a range of edge-weight values.

In that we are obtaining designs for networks that exploit

their graph structure, our efforts here contribute to the

nascent research on high-performance network design [5],

[8]–[10], [12]. These studies are focused on designing net-

work controllers or connections (edges) to optimize dynamic

measures, often using optimization machinery along with

algebraic graph-theory notions. These design problems are

complex, and only the simplest cases have been addressed—

e.g., designing all the transition probabilities in a Markov

chain to achieve fast mixing, or selecting static controllers

for a network of autonomous agents with single-integrator

dynamics [8], [9]. Our efforts here expose that time-scale

designs can be used for a much wider class of design prob-
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lems, in particular ones where the network has a complex

existing structure and only some local features (whether

edge properties or local controllers) can be altered. For these

partial design problems, the dynamics from the point of the

designable features exhibit a rich structure that is deeply tied

to the existing network topology; a graph-based approach to

time-scale design is critical for shaping these dynamics.

The remainder of the paper is organized as follows. In

Section II, we motivate partial graph design problems in

several applications. In Section III, we address a canonical

partial graph design problem, and also present an example

illustrating our design. We omit all proofs in the interest of

space, please see the extended document [16] for them.

II. MOTIVATION

We motivate the partial graph design problem, and hence

the time-scale assignment methodology that exploits topo-

logical structure, from several application domains. Be-

cause of the limited space, we only discuss the design in

vechile/sensor networking in detail. Please find the discus-

siond on epidemic spread control, multi-target drug design,

and power network design in [16].

Recently, the development of distributed

algorithms/controllers for autonomous vehicle coordination

and sensor networking applications has been of wide

interest in the controls community (e.g., [11]). Such

controller/algorithms have been developed for many tasks

(including formation and distributed partitioning), but these

various tools have in common that they permit highly-limited

agents to coordinate by exploiting network interactions.

Although many network tasks have been studied, however,

design of high-performance controllers/algorithms (that

achieve fast settling, and robustness to disturbances and

variations) is in its early stages (e.g. [8], [9]). These

few efforts have pursued designing the whole network

topology, or local controllers at all network nodes, to

optimize a performance measure (e.g., a settling rate or

condition number) [9], [10], [12]. Building on these, we

have demonstrated that pole placement can be achieved

using multiple-delay controls at all network nodes [5].

In many cases, only partial design of the network in-

teractions and controllers is possible. For instance, only a

few nodes in a large-scale mobile sensor network may be

amenable to modification, due to limitations in resources

or access. Similarly, sensor networks that are operated by

multiple players perhaps only can be updated in parts, only

newly-added sensors/vehicles may be amenable to modifica-

tion, or only certain communication links may admit higher

bandwidth/fidelity. In these cases, design of a subset of the

network edges (specifically, protocol strengths or weights)

and nodes (specifically, controller gains) is of critical interest.

This is precisely the partial graph design problem.

In a complementary direction, we often need to charac-

terize the dynamics of autonomous-vehicle teams or sensor-

network algorithms upon perturbation of network parameters,

due to e.g. communication failures or environmental varia-

tion. Such characterizations also require us to study network

dynamics as edge weights or controller gains are varied, and

so partial graph design informs the analysis.

A wide variety of agent, network, and controller models

are used in sensor networking and autonomous vehicle

control applications, and so a range of partial graph design

problems can be posed. Here, let us abstractly introduce only

one canonical design problem, which for instance is repre-

sentative of consensus-algorithm and velocity-coordination

design, e.g. [9], [11]. Specifically, let us consider the dy-

namics ẋ = −Lx, where x represents the agents’ states

(e.g., velocities, opinions), and L is the Laplacian matrix

associated with a weighted graph Γ that has vertex set V

and edge set E, and weight kij > 0 for each {i, j} ∈ E.

Let the edge set E consist of a subset Ef with edges having

fixed weights and a subset Ed = E − Ef with edges whose

weights can be designed. The design problem of interest is

to select the weights kij for {i, j} ∈ Ed, so as to shape the

dynamics ẋ = −Lx (in particular, to decrease the settling

time of the dynamic response while limiting the impact of

initial-condition- and external- disturbances).

III. PARTIAL GRAPH DESIGN: CANONICAL EXAMPLE

The various design problems introduced in Section II and

[16] have a common aim: we seek to design the strengths

of some interconnections in a network, or else decentralized

controllers at some network nodes, to shape the network’s

dynamics. Furthermore, we aim for designs and design

characterizations phrased in terms of the network’s structure.

To this end, we here pursue a canonical partial network

design problem, specifically the problem of designing a

subset of the edges’ weights in a graph to shape the dynamics

defined from an associated Laplacian matrix. We introduce

the design problem in Section IIIA and reformulate it as

a decentralized controller design problem in Section IIIB.

From the reformulation, we take two steps: 1) we relate the

linear system structure (finite- and infinite-zero structure) of

the open-loop plant to the network’s topology, in particular

a fixed-edge graph (i.e., comprising edges that cannot be

designed) and a designable-edge graph (comprising edges

whose weights can be selected) (Section IIIC); 2) by using

the time-scale-based design methodology [1], [2], we address

the partial network design problem from a controller design

viewpoint (Section IIID) and so characterize the closed-

loop spectrum. In this way, we both obtain and characterize

designs in terms of the network’s topology. Finally, we give

an example (Section IIIE).

A. Formulation

We focus on designing the weights of a subset of the edges

in a graph, to shape the spectrum of an associated Laplacian

matrix and hence to shape dynamics defined thereof. This

design problem for Laplacians is directly applicable to two of

the applications in Section II, namely the sensor networking

and electric power applications. We stress, however, that the

methodologies for this particular design problem naturally

can be adapted to the various other controller and network-
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interconnection design problems posed in the introduction

including one with asymmetric topologies.

Precisely, we consider a weighted and undirected graph

Γ with n vertices, labeled 1, . . . , n. We specify the edges

in the graph through two disjoint sets each containing pairs

of distinct vertices, which we term the fixed edge set Ef

and the designable edge set Ed. Specifically, for each pair

of vertices {i, j} ∈ Ef , the graph Γ has an edge between

vertex i and j with fixed weight kij > 0. Meanwhile, for

each pair {i, j} ∈ Ed, the graph has an edge between vertex

i and vertex j with weight kij that can be set to a desired

nonnegative value. For pairs {i, j} that are neither in Ed or

Ef , we shall say that there is not an edge between vertex i

and vertex j, and for convenience we set the weight kij to

0. We also find it convenient to label and order the edges

in Ed with the positive integers 1, . . . , |Ed|, and refer to the

weight of the edge m ∈ {1, . . . , |Ed|} as km.

We aim to design the edge weights kij for {i, j} ∈ Ed, so

as to shape a dynamics defined from the weighted Laplacian

matrix associated with the graph Γ (e.g.! [7]). Let us recall

that the Laplacian matrix associated with the graph Γ, which

we denote as L(Γ), is defined as follows: [L(Γ)] is an n×n

matrix with entries given by [L(Γ)]ij = [L(Γ)]ji = −kij for

all i �= j, and [L(Γ)]ii = −
∑

j �=i[L(Γ)]ij for all i. Our goal

is to design the edge weights kij ∈ Ed, to shape the spectrum

of L(Γ) (i.e., to assign its eigenvalues and eigenvectors),

or equivalently to shape the dynamics of such differential

equations as ẋ = Lx, ẋ = −Lx, or ẍ = −Lx.

We refer to the above design problem in its entirety as the

partial graph design problem. For convenience, we refer

to the graph Γ in the case where the designable edge weights

are set to zero as the fixed-edge graph, and use the notation

ΓF for it. We use the notation L(ΓF ) for the corresponding

Laplacian. We also form a designable-edge graph ΓD by

removing the fixed edges from Γ; we define the Laplacian

matrix L(ΓD) for the designable graph in the standard way.

B. Reformulation as a Decentralized Controller Design

We aim to set the designable edge weights in graph Γ to

shape the dynamics of ẋ = L(Γ)x, or in other words assign

the spectrum of L(Γ). The task of shaping the dynamics

can be reformulated as a linear static decentralized controller

design problem. Through designing the controller’s gains, we

in turn are able to assign the spectrum of L(Γ).
To present the reformulation, we find it convenient to use

the notation q
j
i for the n-component vector with ith entry

equal to 1, jth entry equal to −1, and remaining entries

null. In this notation, the Laplacian L(Γ) can be rewrit-

ten as L(Γ) =
∑

{i,j}∈E kijq
j

i
q

j

i

T
=

∑
{i,j}∈Ef

kijq
j

i
q

j

i

T
+

∑
{i,j}∈Ed

kijq
j

i
q

j

i

T
.

To clarify that the design of L(Γ) is a decentralized con-

troller design problem, let us define the following matrices:

• We let A =
[∑

{i,j}∈Ef
kijq

j
iq

j
i

T
]
.

• For each edge m = 1, . . . , |Ed| in the designable edge

set, let Bm equal q
j
i , where {i, j} are the two ends of

the edge. Also, we let Cm = BT
m.

• Recall that we denote the weight of edge m in the

designable-edge graph by km.

In this notation, we immediately recover the following ex-

pression for L(Γ): L(Γ) = A +
∑|Ed|

m=1 BmkmCm. Noting

that the weights km are the parameters in L(Γ) amenable

to design, we see that the partial graph design problem is

the following decentralized controller design problem: a de-

centralized LTI plant with state matrix A has |Ed| channels,

where channel m has observation matrix Cm and actuation

matrix Bm; static nonnegative linear feedback gains km for

all m such that m ∈ {1, ..., |Ed|} must be developed at

the |Ed| channels, to shape the dynamics ẋ = L(Γ)x, or

equivalently the spectrum of L(Γ).
For convenience, let us stack each channel’s observations

and inputs into matrices, as follows: B
△
=

[
B1 . . . B|Ed|

]
,

and C
△
=

[
C1 . . . C|Ed|

]T
. In this notation, the

decentralized system’s closed-loop dynamics can be written

as ẋ = Ax+BKCx, where K is an |Ed|×|Ed| diagonal ma-

trix whose diagonal entries are the designable edge weights.

Thus, we see that the partial graph design problem can be

viewed as an |Ed| channel static decentralized controller

design for the plant (C, A, B), for the purpose of spectrum

assignment. In the remainder of this section, we obtain and

characterize solutions to this design problem, that are based

on the topology of the fixed- and designable- edge graphs.

C. Topological Characterization of the Plant Dynamics

Time-scale assignment for LTI plants requires characteri-

zating the linear-system-structure, i.e. the infinite-zero- and

finite-zero dynamics of the plant. The special coordinate

basis (SCB) for linear systems provides a representation

of the linear system structure that allows time-scale design

[13]. Thus, here we obtain the SCB for the formulated plant

model, as a step toward time-scale assignment through partial

graph design. We note that the SCB was developed for

centralized control; however, this work and also [5] indicate

that the SCB permits decentralized controller design also.

The special structure of the partial graph design problem

permits us to characterize the linear system structure of the

plant (C, A, B) in terms of the graph topology. We begin

with a preliminary remark on the plant’s open-loop poles:

Remark: The open-loop poles of the plant (C, A, B) are

the eigenvalues of the matrix L(ΓF ).
Next, we present several results that together specify the

finite- and infinite-zero dynamics of the plant (C, A, B) in

terms of the fixed- and designable- edge graph topologies.

For convenience, we do so (Theorems 1−3) in the case where

the designable graph ΓD is is a z-forest, i.e. a collection of

z trees or connected acyclic graphs. From the perspective of

obtaining the linear system structure, we can limit ourselves

to the case where the designable graph is acyclic WLOG,

since cyclic designable graphs yield redundant observation

and input, i.e. the matrices B and C are not full rank.

In particular, one can always view the control as using a

subset of observations and inputs and hence define the finite-

and infinite- zero dynamics thereof, while the redundant
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observations and inputs are simply considered unused. Thus,

the results that we obtain for the linear-system structure for

the z-forest case trivially translate to the general case, and so

we focus on the z-forest case for notational simplicity. It is

worth making one further observation, however: redundancy

in B and C is of no value to design in the centralized setting,

hence the centralized infinite-zero and finite-zero structure

decomposition always ignores this case. Interestingly, how-

ever, the use of non-tree designs fundamentally affects other

aspects of performance in the decentralized setting. We thus

give a brief discussion of the cyclic designable graph design

in Section IIID. As an aside, we note that acyclic designable

graphs appear in many applications, e.g. in design of a single

interaction (edge), or in designing interconnections between

newly added nodes and existing ones.

In characterizing the finite- and infinite-zero dynamics, let

us first specify the dimensions of each, and so clarify that

the plant has a uniform-rank structure (see e.g. [14]):

Theorem 1: When ΓD is a z-forest with |Ed| edges, the

plant (C, A, B) is square-invertible and uniform-rank-1, with

finite- invariant zero dynamics of dimension n − |Ed|.

The uniform-rank-1 structure of the plant immediately

permits us, through simple transformation of the standard

representation for uniform-rank system, to phrase the dy-

namics of the plant (C, A, B) as follows:

ẏ = P1y + Caxa + Qu (1)

ẋa = Aaxa + Bay,

where xa ∈ Rn−m represents the state of the plant’s

finite-invariant zero dynamics, and the matrices P1, Ca, Q,

Aa, and Ba are obtained through the state transformation.

Next, we focus on characterizing the parameters of the SCB

representation in terms of the fixed- and designable- edge

graphs’ topologies, to permit high-gain design and design

characterization in terms of the graph topology.

Our characterization of the infinite-zero and finite-zero

dynamics is in two steps: first (Theorem 2), we define a

state vector for the finite-zero dynamics, and so specify the

finite- and infinite-zero dynamics formally in terms of the

plant model (C, A, B) (but in a form that facilitates connec-

tion with the graph topology). Next (Theorem 3), we give

an explicit graph-theoretic construction of the state matrix

associated with the finite-zero dynamics. Before presenting

these results, we require some further notations.

—We call xi the state variable associated with vertex i.

—We find it convenient to partition the vertices based on the

graph ΓD. In particular, we partition the vertex set in such a

way that two vertices are in the same partition if and only if

there is a path between them in ΓD. Notice that the groups of

vertices that form connected subgraphs in ΓD, as well as the

remaining isolated vertices, are the partitions. In total, there

are n − |Ed| partitions, which we label S1, . . . , Sn−|Ed|.

—We define the superstate xi associated with each partition

i = 1, . . . , n − |Ed|, as xi = 1
|Si|

∑
j∈Si

xi. We notice that

a vector containing the super-states can be computed as a

linear combination of the state vector x, say as Ĉx.

We are now ready to specify a state for the zero dynamics,

and hence obtain the SCB representation formally in terms

of the plant model.

Theorem 2: The superstates xi, i = 1, . . . , n − |Ed|,
together form a state for the zero dynamics of the plant.

In these coordinates, the SCB representation of the plant is

ẏ = CA

[
C

Ĉ

]−1
[

y

xa

]
+ CBu (2)

ẋa = ĈA

[
C

Ĉ

]−1
[

y

xa

]
.

While Theorem 2 formally specifies the SCB of the plant,

the representation is not explicitly connected to the fixed-

and designable- graphs’ topologies. In fact, all the param-

eter matrices in the SCB representation can be described

explicitly in terms of the graph topologies. In the interest

of space, we only characterize the state matrix of the zero

dynamics, which is of critical importance in the high-gain

design, in this way. We first require a bit further notation:

Consider two distinct partitions Si and Sj , where i, j ∈
1, . . . , n − |Ed|. We use the notation k(Si, Sj) for the sum

of the (fixed-graph) edge weights between partitions i and j,

i.e. k(Si, Sj) =
∑

l∈Si,m∈Sj
klm. We refer to k(Si, Sj) as

the aggregate weight between partitions i and j.

We are now ready to present the structural result:

Theorem 3: Consider the partial edge design problem

when the designable-edge graph is a z-forest, and consider

the state matrix of the zero dynamics Aa in (1). The entry

at row i and column j of Aa is given by
k(Si,Sj)

|Si|
, for i �= j.

The diagonal entries are the negative of the sum of the off-

diagonal entries, i.e. they make the row sums zero.

Let us make a couple observations about the structural

result given in Theorem 3. First, we note that the state matrix

of the zero dynamics is a Laplacian matrix with each row i

inversely scaled by the number of vertices in partition i. More

specifically, the zero dynamics is defined by a Laplacian

matrix of a graph with the aggregate weights specifying

the edge values, together with a diagonal scaling matrix.

Precisely, let us define the zero graph.ΓZ as a weighted

and undirected graph with n − |Ed| vertices, with the edge

between vertex i and vertex j having weight k(Si, Sj). We

refer to the Laplacian of the graph (defined in the standard

way) as L(ΓZ). Further, let us define the size-scaling matrix

D as an |Ed| × |Ed| diagonal matrix with entries given by

|Si|. In this notation, the state matrix of the zero dynamics is

given by D−1L(ΓZ). From this expression, we see that the

plant (C, A, B) has at least one zero at the origin, with the

number at the origin given by the number of components

in the graph ΓZ . It is easy to check that the zeros at

the origin are both input- and output- decoupling zeros.

Meanwhile, the remaining zeros are strictly positive, and are

transmission zeros. Since the zeros are the eigenvalues of a

scaled Laplacian matrix, algebraic graph theory tools can be

brought to bear to characterize the zeros (e.g. [7]).

D. Time-Scale Design

A high-gain controller architecture permits systematic

assignment of the closed-loop poles of an LTI plant along
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asymptotic time scales, see the literature on asymptotic

time-scale and eigenstructure assignment, or ATEA, de-

sign [2]. Specifically, given a plant’s infinite-zero structure

(which is clarified by the SCB), one can specify a family

of high-gain controllers that allow placement of certain

eigenvalues at one or more desirable fast time scales, while

the remaining slow eigenvalues approach the finite invariant

zeros of the plant. These multiple time-scale designs are

widely used, including for design of stabilizating controllers

[1], almost-disturbance-decoupling [3], and (as we have

recently clarified) decentralized controller design [5]. As a

further refinement, high-and-low-gain methods can be used

for e.g. stabilization under saturation [4].

High-gain and high-and-low-gain methods are apt for the

partial graph design problem. Specifically, in the various ap-

plications, large or small edge weights—which correspond to

high- and low- gains in the controller design reformulation—

are often naturally assigned: e.g., algorithm weights can

be set to desired large or small values, or the rates of

chemical reactions can be drastically changed in the context

of drug design. For the complementary analysis tasks (e.g.,

characterization of settling rates over a range of uncertain

weights), the design methods are also valuable because they

specify the dynamics of the network over the range of

possible parameter values and identify the extremes.

Here, we give a first set of results concerning high-gain

approaches for the partial graph design problem1. Our focus

here is on designing the initial-condition response of the

plant and in particular the closed-loop spectrum, and also

characterizing these designs in terms of the graph topology.

We present our results in two steps, first specifying the

high-gain design and its spectrum, and second discussing

the spectrum over the range of possible edge weights by

using the results from the design. Finally, we mention several

generalizations and connections.

Let us begin by specifying and characterizing the high-

gain design. Because of the special uniform-rank-1 structure

of the equivalent controller design problem (as indicated in

the SCB representation of the plant), we immediately recover

from the ATEA design literature that identically scaling up

all decentralized controller gains (equivalently, all designable

edge weights) achieves a two-time-scale design. Specifically,

we apply the following parameterized design: for each edge

{i, j} ∈ Ed, we choose the edge weight as kij = αk̂ij where

each nominal edge weight k̂ij can be any fixed positive

value, and the parameter α (0 < α < ∞) provides an

identical scaling to each weight. We use the notation K(α)
for a family of edge designs of this form, and call these a

high-gain edge design.

The following theorem specifies the two-time-scale struc-

ture resulting from use of a high-gain edge design:

Theorem 4: The spectrum of L(Γ) upon application of a

high-gain edge design K(α) with arbitrary nominal edge

weights is as follows: for α → ∞, L(Γ) has 1) |Ed|

1We note that the results in this section hold for arbitrary designable-edge
graphs, not only forests.

eigenvalues that approach +∞, and in particular are within

O(1) of the non-zero eigenvalues of L(ΓD); and 2) n−|Ed|
eigenvalues that approach (i.e., are within O( 1

α
) of) the

n − |Ed| eigenvalues of D−1L(ΓZ).
This theorem clarifies that any high-gain edge design drives

|Ed| (fast) eigenvalues of L(Γ) arbitrarily far right in the

complex plane, while moving the other (slow) eigenvalues

toward those of the scaled zero graph (which are the in

fact the zeros of the plant model (C, A, B)). The result

follows immediately from consideration of the ATEA design

[2] together with the SCB representation from Section IIIC.

When a high-gain edge-design is used, we can also char-

acterize the eigenvectors of L(Γ). Briefly, we find the follow-

ing, for sufficiently large α. 1) The eigenvectors associated

with the slow eigenvalues have (approximately) identical

entries corresponding to vertices in the same partition; these

entries are matched with the entries of the eigenvector of

D−1L(ΓZ). 2) The eigenvectors associated with the fast

eigenvalues are each concentrated in the vertices correspond-

ing to a single connected subgraph in ΓD.

We stress that the above characterizations of the graph

design hold for any high-gain edge design, i.e. regardless of

the choice of the nominal edge weights. Let us briefly discuss

how one can choose among possible nominal designs. In

doing so, first let us note a fundamental difference between

centralized and decentralized high-gain feedback: a central-

ized static output feedback can be used to place the |Ed| fast

eigenvalues at arbitrary locations, while in the decentralized

setting the fast eigenvalues (i.e., the eigenvalues of L(ΓD))
cannot be assigned arbitrarily. In fact, the problem of assign-

ing the eigenvalues of L(ΓD) is that of designing all the edge

weights in a specified graph to place the eigenvalues of the

associated Laplacian at desirable locations, see the previous

works [8], [15] for numerical/analytical solutions to this

problem. It is worth noting that our capability for assigning

the fast eigenvalues is highly dependent on whether or not

ΓD is a tree, demonstrating that the (decentralized) partial

graph design problem depends intricately on the structure of

ΓD even though the linear system structure does not.

Next, we note that the high-gain design also provides

insight into the Laplacian’s spectrum, over a range of pos-

sible designable edge weights. Such insight is valuable for

the complementary task of evaluating a network’s dynamics,

when some of the interconnection strengths are subject to

variation. To this end, we show in the following theorem

that the eigenvalues of L(Γ) are bounded by those of the

fixed-edge graph and zero-graph Laplacians.

Theorem 5: Consider a partial graph design problem.

Denote the eigenvalues of L(ΓF ) as 0 = λ̂0 ≤ λ̂1 ≤ . . . ≤

λ̂n−1, denote the eigenvalues of D−1L(ΓZ) as 0 = λ0 ≤
λ1 ≤ . . . ≤ λ|Ed|−1, and denote the eigenvalues of L(Γ)
by 0 = λ0 ≤ λ1 ≤ . . . ≤ λn−1. For any assignment of

nonnegative edge weights in the designable graph, we have

λi ≥ λ̂i, i = 0, . . . , n−1 and λi ≤ λi, i = 0, 1, . . . , |Ed|−1.

In other words, the ith eigenvalue of the graph Laplacian is

between the eigenvalues of the fixed-edge graph’s Laplacain

and the scaled zero graph’s Laplacian. The result follows

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 TuB06.3

815



from Theorem 4 along with the property that a Laplacian’s

eigenvalues increase monotonically with the edge weights.

We have thus developed and characterized the performance

of high-gain partial-graph designs. The fundamental contri-

bution of this design methodology is two-fold: 1) it shows

how a network’s topology can be exploited to assign an

associated dynamic’s spectrum along time scales, and 2)

it characterizes the performance of the design explicitly in

terms of the network’s graph topology.

Let us conclude our discussion of the high-gain design,

by remarking on several generalizations and connections:

1) The canonical problem studied here provides a simple

illustration of the time-scale design strategy, but the strategy

applies to other problems. We especially stress that asym-

metric partial graph designs can also be addressed.

2) High-gain design can break existing slow-coherency

structure (time-scale separation) only when edges between

two subnetworks that were initially weakly linked can be

designed (and hence the nodes become part of the same

partition in our terminology). Our methodology clarifies that

such a design not only eliminates slow eigenvalues associated

with the coherency structure, but also loses the disturbance-

localization properties that result from coherency.

3) Analogous results can be obtained for low-gain designs.

E. An Illustrative Example

We study a 30-node graph (Figure 1). The fixed-edge

graph in this graph (identified by the thin blue lines) has edge

weights inversely proportional to the length of the line in the

plot. The fixed-edge graph has three completely decoupled

subgraphs (A,B,and C), and subgraph A itself is composed

of two weakly-coupled subgraphs (A1, A2). The designable

graph (marked by the thick red lines) combines A and B

into a single graph, and reduces weak coupling between the

subgraphs A1 and A2. We are concerned with assigning the

spectrum of the graph’s Laplacian.

Now let us apply the time-scale design. From Theorem 1,

the equivalent plant for this example has a zero dynamics of

dimension R25×25. 23 state variables in the zero dynamics

are identical to the state variables of the open-loop plant,

while the other two state variables are the averages of the

state variables in its partition, e.g., one state variable is the

average of the states of vertices 8, 19, 22 and 26. The state

matrix of the zero dynamics can be easily characterized in

terms of the graph topologies using Theorem 3.

The above structural decomposition provides us with

insights into the spectrum of the Laplacian matrix upon

high-gain design. The spectrum (or, equivalently, associated

dynamics) obtained through modifying these edge weights

is constrained by the inherent structure of the zero graph. In

this example, as we scale up the weights in the designable

edge graph from nominal values, 5 eigenvalues of L(Γ)
move towards ∞. The other 25 increase monotonically, and

approach but can never surpass the zeros, which are in

fact the eigenvalues of the scaled zero-graph’s Laplacian.

From the zero graph, we infer that: 1) one eigenvalue moves

from zero to a non-zero value, 2) the original slow-coherent
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Fig. 1. a) 30-node graph: thin blue lines specify the fixed graph, while
the thick red lines specify the designable graph. b) the 5 smallest non-
zero eigenvalues of the graph Laplacian as we scale the strengths of the
designable communication links.

behavior is eliminated/reduced since the zero graph has

no edge-cutset of size 1, and 3) many larger eigenvalues

change little since they are specified by strongly-connected

subgraphs in the fixed-edge graph that are also present in the

zero graph. A plot of the 5 smallest non-zero eigenvalues of

the Laplacian as we scale the strengths of the 5 designable

edges verifies these observations (Figure 1).
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