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Abstract— A distributed double integrator discrete time
consensus protocol is presented along with stability analysis.
The protocol will achieve consensus when the communication
topology contains at least a directed spanning tree. Average
consensus is achieved when the communication topology is
strongly connected and balanced, where average consensus
for double integrator systems is discussed. For second order
systems average consensus occurs when the information states
tend toward the average of the current information states
not their initial values. Lastly, perturbation to the consensus
protocol is addressed. Using a designed perturbation input, an
algorithm is presented that accurately tracks the center of a
vehicle formation in a decentralized manner.

I. INTRODUCTION

Distributed systems consist of autonomous agents attempt-

ing to perform tasks. In order to accomplish any task in

an efficient manner there must be some commonly known

information. This information is called information states. In

most cases, these states are unknown and must be learned,

and consensus is one method for each node to learn the

information state. In consensus algorithms the agents come

into agreement concerning the information state which can

take on any value so long as the agents are in accord on that

value.

Much work has taken place for first order dynamic

consensus [1]–[4], including for discrete time consensus

updates [4]–[6]. Discrete time stability analysis is important

when communication events take place asynchronously. If

the agents communicate fast enough consensus can be ap-

proximated by continuous time models. For second order

information states, the stability of continuous time consensus

has recently been addressed [7]–[10].

Consensus theory has been applied in the control literature

to formation control and stability: see [11]–[13] for first order

examples and [7], [14]–[16] for second order examples. In

general the formation is designed around some reference

point and consensus is used to hold the agents in a formation

about this reference point. Here rather than specifically

controlling the vehicle formations we are simply trying to

have each agent come into consensus about some information

state. For example, in Section V, we propose an algorithm

that accurately tracks the center of the agents’ configuration.
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In this paper we will present a distributed discrete time

double integrator consensus protocol. This work is similar

to [7], [10], [14] except here we use discrete time models

and extensively use matrix spectral analysis. The paper is

organized as follows. In Section II we present the discrete

time second order distributed consensus protocol. The spec-

trum of the transition matrix is presented in Section III.

The stability of the consensus protocol is discussed from a

geometric viewpoint in Section IV using the spectral analysis

of Section III. External inputs are considered in Section IV-

E. Some examples are presented in Section V; where an

algorithm is shown that accurately tracks the center of a

vehicle formation. In Section VI some conclusions will be

drawn and further research questions are presented.

II. SECOND ORDER DISCRETE TIME CONSENSUS

We consider a network of n distinct agents. At any discrete

time instant k the interaction topology of the network can be

described by the directed graph Gn[k] , (Nn, En[k]) where

Nn = {1, . . . , n} and En ⊆ Nn × Nn are respectively the

node set and edge set. The adjacency matrix associated with

Gn[k] is given by An[k] ∈ R
n×n, and the ijth element of

Aij [k] = 1 if there is an edge in the graph connecting i
to j otherwise Aij [k] = 0. From the adjacency matrix we

can construct the nonsymmetrical Laplacian matrix Ln[k] ∈
R

n×n with ijth element given by

Lij [k] =

{

−Aij [k] if i 6= j,
∑n

j=1,j 6=i Aij [k] if i = j .
(1)

The Laplacian matrix has at least one zero eigenvalue with

an associated eigenvector 1n, and all nonzero eigenvalues

are in the open right half plane. Also, Ln[k] has exactly

one zero eigenvalue if and only if the directed graph Gn[k]
has a directed spanning tree [4]. Furthermore, if the graph

Gn[k] is balanced, then ωℓ = 1n is the left eigenvector of

the Laplacian matrix that associates with the zero eigenvalue,

i.e., 1T
nLn[k] = 0 [2].

Each agent in the network has an estimate of the double

integrator information state ξi[k+1] = ξi[k]+τkζi[k], ζi[k+
1] = ζi[k] + τkui[k] for i = 1, . . . , n. Since, τk > 0 is

analogous to a sampling interval, in the following we will

refer to it as such. We will use the distributed consensus

algorithm (cf. [10])

ui[k] = −
n
∑

j=1

Aij [k] [(ξi − ξj) + γt(ζi − ζj)] (2)
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where we drop the time index k when it is clear from the

context. The resulting discrete time update becomes
[

ξ[k]
ζ[k]

]

= Ψ[k] ⊗ Im

[

ξ[k − 1]
ζ[k − 1]

]

(3)

where,

Ψ[k] , I2n + τkΘ[k] , (4)

Θ[k] ,

[

0n×n In

−Ln[k] −γkLn[k]

]

, (5)

and γk > 0. Each local update in the discrete protocol (3)

is

ξi[k + 1] = ξi[k] + τk+1ζi[k] (6)

ζi[k + 1] = ζi[k] − τk+1

n
∑

j=1

Aij [k + 1]

·
(

(ξi[k] − ξj [k]) + γk(ζi[k] − ζj [k])
)

(7)

which shows that (3) is a distributed protocol since local

updates are only a function of neighboring agents. In this

paper we endeavor to prove that consensus is achieved using

the input (2).

III. SPECTRUM OF Ψ[k]

We will now solve for the eigenvalues and the right and

left (generalized) eigenvectors [17] of Ψ in terms of the

eigenvalues and eigenvectors of −Ln. Before proceeding we

define three different sets of eigenvalues and eigenvectors.

First, the matrix −Ln has eigenvalues λi with corresponding

right and left eigenvectors given by wr,i and wℓ,i for i =
1, . . . , n. Examining the relationship between Ψ and Θ in

(4) we notice that

ρi = τkθi + 1 , (8)

where ρi and θi are the ith eigenvalue for Ψ and Θ
respectively, and the eigenvectors for Ψ are the same as

those of Θ. From this fact, denote the ith right and left

(generalized) eigenvectors of these matrices respectively by

mi and vi for i = 1, . . . , 2n.

Normally, the left eigenvectors and left generalized eigen-

vectors of a matrix are found by taking the inverse of a matrix

M which has columns consisting of the right (generalized)

eigenvectors. The rows of the result V = M−1 are then

the left (generalized) eigenvectors. In this paper, we need

to know at least the left eigenvector and left generalized

eigenvector associated with the eigenvalue θ = 0. We

will only present the derivation of the left (generalized)

eigenvectors.

It is assumed that the graph Gn contains a directed

spanning tree which according to the properties of the Lapla-

cian matrix given at the beginning of Sec. II, ensures that

λ1 = 0 is a simple eigenvalue of −Ln with corresponding

right eigenvector wr,1 = 1n. We proceed by finding the

right eigenvectors and right generalized eigenvectors of Θ.

Then we find the eigenvalues and left eigenvectors and left

generalized eigenvectors of Θ.

A. Right Eigenvectors

The relationship between the eigenvalues of Θ and the

Laplacian matrix L is λj = θ2
i /(1 + θiγ) for i = 2j − 1, 2j

and j = 1, . . . , n (cf. (13)). The right eigenvectors of Θ
corresponding to eigenvalues θi 6= 0 are given by

mi =
[

wT
r,j θiw

T
r,j

]T
(9)

for i = 2j − 1, 2j and j = 2, . . . , n.1 The right eigenvec-

tor and generalized right eigenvector corresponding to the

eigenvalues θ1 = θ2 = 0 are given respectively by

m1 =

[

1n

0n

]

and m2 =

[

0n

1n

]

. (10)

If there is a repeated eigenvalue λj = λi 6= 0, then the

generalized eigenvector needs to be found.

B. Left Eigenvectors and Corresponding Eigenvalues

In order to solve for the left eigenvectors and correspond-

ing eigenvalues of Θ sub-divide vi as vi =
[

vT
i,a vT

i,b

]T

.

vi and θi can be found by solving the characteristic equation

(ΘT−θiI2n)vi = 02n. Multiplying out this equation in terms

of vi,a and vi,b yields the two matrix equations

−LT
nvi,b = θivi,a and, (11)

vi,a − γLT
nvi,b = θivi,b . (12)

Manipulating (11) and (12) for one equation in terms of only

vi,b yields

−LT
nvi,b =

θ2
i

(1 + θiγ)
vi,b , (13)

which is simply the left eigenvector equation for the negative

of the Laplacian with λj = θ2
i /(1 + θiγ).

Thus for any λj with corresponding left eigenvector wℓ,j ,

Θ has two eigenvalues, θ2j−1 and θ2j , that are the two

solutions to the equation

θ± =
1

2

(

γλj ±
√

γ2λ2
j + 4λj

)

, (14)

and vi,b = σiwℓ,j for i = 2j − 1, 2j with any scale factor

σi. Plugging the resulting θi,b and vi,b back into (11) gives

σiλjwℓ,j = θivi,a for i = 2j − 1, 2j . (15)

When λj 6= 0

vi = σi

[

λj

θi
wℓ,j

wℓ,j

]

for i = 2j − 1, 2j . (16)

However when λj = 0 this will not work. In which case we

use (12) which gives vi,a = 0n for i = 1, 2.

The geometric multiplicity of the zero eigenvalue is one.

Also, the algebraic multiplicity of the zero eigenvalue for Θ
is two (i.e., θ1 = θ2 = 0). This is because there are two

solutions to (14) for the simple eigenvalue λ1 = 0 because

of the assumption that the graph Gn have a directed spanning

1This assumes there are no repeated eigenvalues λi for −Ln. If there
are repeated eigenvalues with geometric multiplicity less than the algebraic
multiplicity then generalized eigenvectors must be found. See the derivation
of the left generalized eigenvectors in III-B for how this is done.
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tree. Such a scenario requires the second eigenvector associ-

ated with the zero eigenvalue to be a generalized eigenvector

[17].

Let θ1 = θ2 = 0 and v2 = σ2[0
T
n wT

ℓ,1]
T where wℓ,1

is associated with the eigenvalue λ1 = 0. The generalized

eigenvector v1 is found by solving

(ΘT − θ2I2n)v1 = v2 , (17)

which after some algebra becomes v1 = σ1

[

wT
ℓ,1 αwT

ℓ,1

]T

where the unknown scalar α is chosen to be α = 0.

This choice for α is motivated from two rationale: it is

simple, and it maintains orthogonality relations with the

right (generalized) eigenvectors which turns out to be helpful

subsequently.

The indexing for v1 and v2 may seem obtuse; there is

a reasonable explanation. The left eigenvectors are normally

found by taking the inverse of the matrix whose columns are

the right eigenvectors, which causes vT
j mi = 0 for i 6= j

and vT
j mj = 1. The indexing for v1 and v2 was chosen to

maintain this relationship. Lastly, so that orthonormality is

preserved, we set

σi = (vT
i mi)

−1 . (18)

If by chance, there is another repeated eigenvalue λj 6= 0
then the same process can be repeated to find the appropriate

generalized left eigenvectors. We refrain from this exercise

since it is not pertinent to the results of this paper.

IV. STABILITY ANALYSIS

Using the eigenvalues and (generalized) eigenvectors

found in the previous section, we write a similarity trans-

formation for the matrix Ψ = MJV where:

M , [ m1 · · · m2n ] , (19)

V , M−1 = [ v1 · · · v2n ]
T

, (20)

and J is in Jordan normal form with diagonal elements

ρi for i = 1, . . . , 2n. To facilitate our investigation of

average consensus, the matrices M, V, and J are partitioned

into two invariant sets. One partition is associated with the

eigenvalues ρ1 = ρ2 = 1; these eigenvalues correspond to the

Laplacian eigenvector wr,1. The other partition is associated

with all other eigenvalues. These partitions are written as

M =
[

M1 M2

]

, V =
[

V T
1 V T

2

]T

, and

J =

[

J1 02×2

02n−2×2n−2 J2

]

(21)

where M1 = [m1m2], M2 = [m3 · · ·m2n], V1 = [vT
1 vT

2 ]T ,

V2 = [vT
3 · · ·vT

2n]T ,

J1 =

[

1 τ
0 1

]

, (22)

and J2 is the Jordan matrix comprising all the Jordan blocks

from eigenvalues ρi for i = 3, . . . , n. With these definitions

we can rewrite the matrix Ψ = M1J1V1 + M2J2V2.

Let Φ[k, k − j] be the transition matrix,

Φ[k, k − j] , (Ψ[k]Ψ[k − 1] · · ·Ψ[k − j + 1]) ⊗ Im . (23)

The transition matrix propagates the information states from

time k − j to k. By looking at the transition matrix we

will be able to determine if consensus is achieved. Also,

define the set P [k] = {ρi[k]|ρi[k] 6= 1, i = 1, . . . , 2n}, e.g.,

P [k] contains all eigenvalues of Ψ[k] that are not one, where

the eigenvalues ρi[k] of Ψ[k] were defined in (8). This set

contains the eigenvalues in the partition M2J2V2.

A. Constant Communication Topology

Let Ψ[k] be constant e.g., Ψ[k] = Ψ, with τ = tk − tk−1

for all k ≥ 1. The transition matrix becomes

Φ[k, 0] = MJkV ⊗ Im (24)

= (M1J
k
1 V1 + M2J

k
2 V2) ⊗ Im . (25)

To see this fact, note that V = M−1. Thus (MJV)2 =
MJ2V.

By definition, the set P contains the eigenvalues of

M2J2V2. Because, all the elements of P have a modulus

less than one the matrix M2J2V2 is (discrete-time) stable. 2

From this fact it can be seen that Φ[k, 0] → M1J
k
1 V1⊗Im as

k → ∞, which allows us to show that consensus is achieved

in the following Lemma.

Lemma 1. (cf. [10]) Assuming the graph Gn has a directed

spanning tree and all elements of the set P have a modulus

less than one, then the consensus protocol given in (3) will

achieve consensus asymptotically.

Proof. With the given assumptions, xk+1 = M2J2V2xk is

asymptotically stable which says Φ[k, 0] → M1J
k
1 V1 ⊗ Im

asymptotically as k → ∞. Since,

M1J
k
1 V1 =

[

1nwT
ℓ,1 kτ1nwT

ℓ,1

0n,n 1nwT
ℓ,1

]

(26)

we can see that ξ[k] → (1nwT
ℓ,1 ⊗ Im)ξ[0] + kτ(1nwT

ℓ,1 ⊗
Im)ζ[0] and ζ[k] → (1nwT

ℓ,1 ⊗ Im)ζ[0] as k gets large.

Consequently, ‖ξi[k] − ξj [k]‖ → 0 and ‖ζi[k] − ζj [k]‖ → 0
for all i, j and k → ∞, meaning consensus is achieved at

the rate of decay of M2J
k
2 V2.

Notice, that the final consensus value is a weighted aver-

age, with the weighting coming from the eigenvector wℓ,1

of the Laplacian −Ln.

B. Switching Communication Topologies

In the case of switching communication topologies we will

need to state a few Lemmas in order to prove consensus.

Lemma 2. Let the one step transition matrices associated

with the directed graphs Gn[k] and Gn[j] be respectively Ψ[k]
and Ψ[j]. When both graphs Gn[k] and Gn[j] are strongly

2A continuously evolving matrix is stable if the real part of all its
eigenvalues is negative. A matrix is stable in discrete time if the modulus
of all its eigenvalues is less than one.
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connected and balanced the matrix partitions of Ψ[k] and

Ψ[j] have the following properties

V1[k]M1[j] = I2 (27)

V1[k]M2[j] = 02×(2n−2) (28)

V2[k]M1[j] = 0(2n−2)×2 . (29)

Corollary 1. When both directed graphs Gn[k] and Gn[j]
contain a directed spanning tree but are not strongly con-

nected and balanced, the matrix partitions of Ψ[k] and Ψ[j]
will have properties (27) and (28) but not (29).

Let Θ[k] come from the bounded and closed set {Θσ|σ ∈
S} where S is the index set for all possible matrices Θσ.

Given some σ let

θσ,min , argmin
θi,σ 6=0

{

−
2Re(θi,σ)

|θi,σ|2

}

(30)

where θi,σ are the eigenvalues of Θσ. Let sk ∈ S denote the

switching signal for the sampling interval τk; consequently,

we can think of sk as choosing the active graph configuration

and matrix Ψ[k]. The number of sequential time intervals

over which sk does not change is called the dwell time and

is denoted by κ [18]. With these definitions we write the

following Lemma.

Lemma 3. 3 Fix the number of agents n. Let the scalar gain

γσ in Θσ be bounded by two finite positive constants γLB

and γUB such that

0 < γLB ≤ γk ≤ γUB < ∞ . (31)

Also, suppose the sampling interval τσ (used to define Ψσ

from Θσ) is bounded by finite positive constants τLB and

τUB such that

0 < τLB ≤ τσ ≤ τUB < −
2Re(θσ,min)

|θσ,min|2
. (32)

Under these assumptions the set of all possible matrix

partitions {M2,σJ2,σV2,σ|σ ∈ S} is closed and bounded;

furthermore, all matrices in this set are stable. Let aσ and χσ

be any finite, nonnegative and positive number, respectively,

for which

‖M2,σJk
2,σV2,σ‖ ≤ eaσ−χσk, k = 0, 1, 2, . . . . (33)

Suppose also that some nonnegative integer κ0 exists such

that κ0 > supσ∈S

{

aσ

χσ

}

. Then for any admissible switching

signal s : [0,∞) → S with a dwell time no smaller

than κ0, the transition matrix of M2,σJ2,σV2,σ satisfies

‖Φ2[k, k0]‖ ≤ ea−χ(k−k0), ∀ k ≥ k0 ≥ 0, where a =

supσ∈S {aσ}, χ = infσ∈S

{

χσ − aσ

κ0

}

, and Φ2[k, k0] =

M2[k]J2[k]V2[k] · · ·M2[k0]J2[k0]V2[k0].

Proof of Lemma 3. To see that all matrices M2,σJ2,σV2,σ in

{M2,σJ2,σV2,σ|σ ∈ S} are stable note that if τσ satisfies (32)

then we know 1 > |ρi,σ| = |τσθi,σ + 1| which becomes

τσ < −
2Re(θi,σ)

|θi,σ|2
, ∀ i = 3, . . . , 2n , (34)

3This Lemma and its proof are motivated from Lemma 2 in [18]

where ρi,σ are the eigenvalues of the matrix Ψσ formed from

Θσ. Thus the matrix M2,σJ2,σV2,σ is stable and (33) holds.

Fixing n along with (31) imply the set {Θσ|σ ∈
S} is closed and bounded; this fact combined with the

bound in (32) implies that the set {Ψσ|σ ∈ S} is also

closed and bounded. Thus the set of all matrix partitions

{M2,σJ2,σV2,σ|σ ∈ S} is closed and bounded.

The rest of the proof parallels the proof of Lemma 2 in

[18] using discrete time steps rather than continuous.

Notice that the time between communication events must

be bounded from above according to (32); this ensures that

the matrix Ψ[k] is stable. This Lemma says the switching

signal sk must dwell long enough on the values of S so that

the transition matrix Φ2 can drop far enough in value (i.e.,

at least κ0 time steps). We can now state our first Lemma

about switching consensus.

Lemma 4. If the graphs Gn[k] are strongly connected

and balanced, Θ[k] is stable in the continuous time sense

(i.e., Re(θi[k]) ≤ 0 for all i = 1, . . . , 2n). If τk satisfies

(32) and the dwell time κ of every graph Gn satisfies

κ > supσ∈S

{

aσ

χσ

}

, then protocol (3) achieves consensus

asymptotically.

Proof of Lemma 4. Assume that all graphs Gn[k] k =
1, . . . ,∞ are strongly connected and balanced. As a result

of Lemma 2 the information state transition matrix becomes

Φ[k, 0] = (M1[k] (J1[k] · · · J1[0])V1[0] + Φ2[k, 0]) ⊗ Im .
(35)

There were three assumptions in the proposition: 1) Θ[k]
is stable, 2) τk satisfies (32), and 3) the dwell time of

every graph Gn satisfies κ > supσ∈S

{

aσ

χσ

}

. Under these

assumptions we know the transition matrix Φ2[k, 0] in (35)

is stable because of Lemma 3.

The term M1[k] (J1[k] · · ·J1[0])V1[0] in (35) can be writ-

ten in the form of (26) by replacing kτ in the upper right

hand quadrant by
∑k

j=0 τj . As a consequence of this and the

fact that Φ2[k, 0] defines an asymptotically stable system, the

protocol (3) achieves consensus asymptotically.

We can also state a proof in the case of graphs which

contain a directed spanning tree.

Lemma 5. If the directed graphs Gn[k] contain a directed

spanning tree, Θ[k] is stable in the continuous time sense

(i.e., Re(θi[k]) ≤ 0 for all i = 1, . . . , 2n), τk satisfies (32)

for all k = 1, . . . ,∞, and κ satisfies κ > supσ∈S

{

aσ

χσ

}

,

then protocol (3) achieves consensus asymptotically.

Proof. Assume that all graphs Gn[k] k = 1, . . . ,∞ contain

a directed spanning tree. As a result of Corollary 1 the

information state transition matrix becomes

Φ[k, 0] =

(

M1

∑

k=0

Γk + Φ2[k, 0]

)

⊗ Im (36)
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where Φ2[k, 0] is asymptotically stable as was shown in the

proof of 4. After some algebra is can be verified that each

block quadrant of, M1

∑

k=0 Γk has the form

M1

∑

k=0

Γk =

[

1nqa 1nqd

1nqb 1nqc

]

. (37)

Following the logic in the proof of Lemma 1 consensus is

achieved asymptotically.

C. Average Consensus

Looking at the constant matrix Ψ and switching matrices

Ψ[k] that are all strongly connected and balanced graphs

(Lemma 1 with strongly connected and balanced graph and

Lemma 4), we can see that a type of average consensus is

achieved. This is because wℓ,1 = 1n in (26) when the graphs

are strongly connected and balanced graphs.

In this situation the information state derivatives will all

tend toward the average of the initial ζi, for i = 1, . . . , n, e.g.,

ζi[k] →
∑n

i=1 ζi[0]. The information states at each node,

however, tend toward the average of the initial states plus a

scaling of the average information state derivatives, ξi[k] →
∑n

i=1 ξi[0] +
∑k

j=0 τk

∑n

i=1 ζi[0].
This is not exactly average consensus as it is understood

for information states with first order dynamics, yet it has

desirable properties. The information state derivatives ζi[k]
tend to the average of their initial values, while the informa-

tion state ξi[k] tend to the average of information states at

the current time, namely

ξi[k] →
n
∑

i=0

ξi[k] =

n
∑

i=0



ξi[0] + ζi[k]

k
∑

j=0

τj



 . (38)

Notice also that any value of τ such that

−2Re(θj)/|θj|2 > τ > 0 for all j = 3, . . . , 2n will

reach consensus.

D. Eigenvalue properties

All of the consensus proofs rely on the fact that |ρi| < 1
for all ρi ∈ P ; a necessary condition for |ρi| < 1 is that τ
satisfies (32) which implies Θ is stable, e.g., Re(θi) < 0. To

ensure that the eigenvalues of Θ have negative real parts the

variable γ must be bounded by

γ > max
i=2,...,n

√

√

√

√

2

|λi| cos
[

tan−1 Im(λi)
−Re(λi)

] (39)

(see [10]). Looking back to (32), we can see that if the

sampling interval τ becomes too large then it is possible that

no such γ exists as can be seen in Figure 1. This plot varies

γ for some network topology −L. Two different values of τ
are plotted and for the larger of the two τ = .8 there is no

γ that exists to ensure Ψ is stable.

At present, we have been unable to find a technique for

bounding γ given a graph Gn[k] and sampling interval τk

where the graph has at least a directed spanning tree and the

sampling interval is such that stability is feasible.

0.8 1 1.2 1.4 1.6
0.6

1

1.4

1.8

 

 

τ = .5
τ = .8

γ

m
a
x
|ρ
|

Fig. 1. Here γ is varied for two different sampling intervals τ = .5 and .8
seconds. If τ is too long there is no γ ensuring asymptotic consensus since
at least one eigenvalue ρi ∈ P has a modulus greater than one.

E. External Stability

The consensus protocol (3) can be extended to include

bounded perturbations w[k]
[

ξ[k]
ζ[k]

]

= Ψ[k] ⊗ Im

[

ξ[k − 1]
ζ[k − 1]

]

+ w[k] . (40)

In all the previously mentioned scenarios the zero state solu-

tion is exponentially stable (since asymptotic and exponential

stability are synonymous in discrete time [19]). Because

of this, we know that (40) is bounded-input bounded-state

stable. Thus given a bounded input the agents will achieve

consensus within some bound ‖ξi[k]−ξj [k]‖ ≤ c as k → ∞
for some finite scalar c. In Section V, a known (bounded)

input w[k] is employed to accurately track the center of the

agents’ configuration.

V. SIMULATIONS

The five communication topologies used are shown in

Fig. 2 with the exception of Graph 5 which does not

contain a spanning tree. It can be derived from Graph 4 by

disconnecting Nodes 3 and 4.

1

2 3

4 5

Graph 1 1

2 3

4 5

Graph 2

1

2 3

4 5

Graph 3

1

2 3

4 5

Graph 4

Fig. 2. The four of the five graphs used for the simulations. Graph 5 is
formed by removing both links between Nodes 3 and 4 in Graph 4.

The first two examples use a constant sampling interval

τ = .5 seconds and run for fifty iterations. They employ

scalar second order dynamic systems as in (3). In the first

example Graph 5 was used 100% of the time. The results

are shown in Fig. 3. Notice this system really is two separate

systems where each system individually achieves consensus.

The second example involves switching between two

graphs (Graph 1 33% of the time and Graph 2 uses the

remaining time). In Fig. 4 it can be verified that the nodes

achieve consensus. Notice that the “average” consensus (the

black line in the figure) is not achieved because Graphs 1

and 2 are not strongly balanced, cf. Section IV-C.
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Fig. 3. Unconnected graph. ξ is on the left and ζ is on the right. The black
line with the marks is the true average state (see (38)). The other lines are
each nodes’ conjecture of the information state or its derivative.

0 20 40

0

20

40

Time (s)

0 20 40
−10

−5

0

5

10

Time (s)

ξ[
k
]

ζ
[k

]

Fig. 4. Switching between Graphs 1 and 2, each containing a directed
spanning tree. The black line with the marks is the true average state.
The other lines are each nodes’ conjecture of the information state or its
derivative.

The last simulation proceeds for 100 seconds with τ = .5.

Graph 4 is utilized 66% of the time with Graph 3 using the

remaining time. A two dimensional information state ξ[k] is

utilized that is the center of the formation. Each node travels

at constant velocity of 1 m/s and at every time step each

nodes’ heading randomly changes uniformly from [−π
4 , π

4 ].
Initially, each node’s information state is its own position.

Each node also can measure its velocity ẋi[k]; at time k = 0
the term ζi[0] = ẋi[0]. The input is given by the change in

heading. Denoting a nodes’ velocity at time k by the vector

vi[k] = [vx,i[k]vy,i[k]]T , the perturbation term for the infor-

mation state is written as w[k] =
[

0T
mnδvT

1 [k] · · · δvT
n [k]

]T

where δvT
i [k] = vi[k] − vi[k − 1]. Using this algorithm the

nodes are able to accurately track the center in a distributed

fashion. In Fig. 5 we have plotted the x axis information.
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Fig. 5. Tracking the center of the agents using a perturbation term. Here ξ
and ζ are respectively the x position and velocity of the center. The black
line is the true average state.

VI. CONCLUSIONS

In this paper we have presented the discrete time second

order distributed consensus protocol (3). Under certain as-

sumptions this protocol has been shown to achieve asymp-

totic consensus for switching networks that all contain a

directed spanning tree; Furthermore, (when the conditions

are met) for strongly connected and balanced networks,

(3) achieves average consensus asymptotically. Double

integrator average consensus differs from first order average

consensus in that the nodes’ information states converge to

the average of their states at the current time rather than the

initial time.

Perturbation inputs have been addressed in Section IV-

E. In Section V, an algorithm was shown where a known

input can be used to accurately track the center of a vehicle

formation given that each vehicle knows its own position and

velocity.

Lastly, there is a need to increase the time between

communication intervals. As it stands (3) must have a

communication interval that is bounded above as (32). This is

very restrictive. Work is needed so that this communication

interval can be increased. Perhaps changing the consensus

update by decoupling the information state dynamics from

the consensus dynamics is necessary.
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