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Abstract— Some results are given for a continuous time
long run growth optimal portfolio that has proportional costs
consisting of the sum of a fixed proportional cost and a cost that
is proportional to the volume of each transaction. An obligatory
portfolio diversification is given that requires at least a small
portion of the wealth be invested in each asset. It is assumed
that the price of each asset is obtained from a Lévy noise
stochastic equation whose coefficients depend on an unknown
parameter from a compact set. It is shown that the optimal
cost is a continuous function of the unknown parameter.

I. INTRODUCTION

To investigate the continuity of the optimal cost, it is first
necessary to formulate the portfolio optimization problem and
to verify some properties of the solution. Assume that on a
given complete probability space (Ω ,F ,P), there are given
three independent processes: a d-dimensional standard Brow-
nian motion (B(t)), a d-dimensional compensated Poisson
random measure Ñ(dt,du) and a time homogeneous Markov
process (z(t)) with values in a finite space D and transition
matrix Pt at time t. There are also d assets with the ith asset
price Si(t) at time t. It is assumed that the evolution of Si(t)
is of the form

δi(t) = δi(0)eXθ0
i (t) (I.1)

where Xi(0) = 0 and Xθ 0
(t) = (X1(t), . . . ,Xd(t)) is a solution

to the following Lévy stochastic differential equation:

dXθ 0
(t) = α(z(t),θ 0)dt +σ(z(t),θ 0)dB(t)

+
∫
Rn

γ(z(t),θ 0,u) Ñ(dt,du) . (I.2)

θ 0 is a parameter that belongs to a compact space Θ . We
assume that α , σ , and γ are continuous bounded functions
of θ , and

sup
θ

∫
R

γ
2
ik(z,θ ,u)νk(du) < ∞

for i,k = 1,2, . . . ,d with νk being the Lévy measure corre-
sponding to Ñ(dt,du). While the solution of (I.2) depends
on θ 0, sometimes for notational simplicity this dependence
is suppressed.

In what follows, let πi(t) be the portion of our wealth
process invested in the ith asset. Let eX(t) =

(
eX1(t), . . . ,eXd(t)

)
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and for π,ζ ∈ [0,∞)d ,

π �ζ = (π1ζ1,π2ζ2, . . . ,πdζd)

and
g(ζ ) =

(
ζ1

∑ζi
,

ζ2

∑ζi
, . . . ,

ζd

∑ζi

)
.

If the portfolio strategy is not changed in the time interval
[0,T ], the portions of the wealth invested in the assets at time
T are of the form

π(T ) = g
(

π(0)� eX(T )
)

. (I.3)

By the form of (I.2), it is clear that the pair (π(t),z(t)) is a
Markov process with transition operator Πt .

It is assumed that
(A1) The solution to (I.2) with the initial condition X(0) = x

has a continuous density for each fixed z(t) = z with
respect to the Lebesgue measure ld at time t > 0 – i.e.,
for a Borel set A⊂Rd ,

PXz {X z(t) ∈ A}=
∫

A
Pz(x,x′) ld(dx′) (I.4)

where X z(t) is a solution to (I.2) with z(t) ≡ z, and
Pz(x,x′) is a continuous function of x and x′.

Sufficient conditions for (A1) can be found in [1], [8], [10],
[13].

Since (z(t)) is a finite state continuous time, time homo-
geneous Markov process, its evolution can be described in
the following form:

τ1 = inf{s≥ 0: z(s) 6= z(0)}
τn+1 = inf{s≥ 0: z(s+ τn) 6= z(τn}

for z(0) = z

Pz{τ1 ≤ t}=
∫ t

0
n(z,s)ds

Pz{Pz(τn){t0
n+1 ≤ t}}= Ez

{∫ t

0
n(z(τn),s)ds

}
Pz{z(τ1) = z′}= P(z,z′) .

(I.5)
The following continuity property will be crucial in further

investigations:
Proposition 1: Under (A1), the operator Πt is continuous

in variation norm for (π,z) ∈ Sδ ×D – i.e., for (π(n),z)→
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(π,z)∈ Sδ×D, and (π(n),n≥ 1) is a sequence in Sδ , it follows
that

sup
A∈B(S×D)

∣∣Πt(π(n),z,A)−Πt(π,z,A)
∣∣→ 0 (I.6)

as n→ ∞, with

S = {v = (v1, . . . ,vd),vi ≥ 0,∑vi = 1}
and
Sδ = {v ∈ S,vi ≥ δ , i = 1,2, . . . ,d}

for 0 < δ < 1/d.
This result is verified in [7].

Using the same arguments as in the proof of Proposition
1, there is

Corollary 1: If the transition density pθ
t (x,x′,z,z′) for

(Xθ (t)),(z(t)) depends in a continuous way on θ , x, and
x′, then for (θn,π(n))→ (θ ,π) ∈Θ ×Sδ and z ∈ D,

sup
A∈B(S×D)

∣∣∣Π θn
t

(
π(n),z,A)−Π

θ
t (π,z,A)

)∣∣∣→ 0 . (I.7)

Having shown the properties of the uncontrolled process
π(t), consider the control problem. Assume that proportional
transaction costs are a sum of a fixed proportional managing
cost and a cost proportional to the volume of transactions.
Let ζ

−
i , i = 1,2, . . . ,d denote the amount of wealth process

invested in the ith asset. Clearly, W− = ∑
d
i=1 ζ

−
i is the wealth

before a possible transaction. To change the portfolio to
(ζ1,ζ2, . . . ,ζd) requires paying immediately transaction costs
of the form

kW−+
d

∑
i=1

c1
i (ζi−ζ

−
i )+ + c2

i (ζi−ζ
−
i )− (I.8)

with k > 0 corresponding to a fixed managing cost. Short
selling or short borrowing are not allowed and assume that
the portfolio is self-financing. Therefore, the wealth W after
the transaction is equal to

W−− ksW−−
d

∑
i=1

c1
i (ζi−ζ

−
i )+ + c2

i (ζi−ζ
−
i )− . (I.9)

Let π
−
i = ζ

−
i /W− and πi = ζi/W be respectively the portion

of wealth invested in the ith asset before and after transaction.
From (I.9), it follows that

1− k−
d

∑
i=1

c1
i

(
πi

W
W−
−π

−
i

)+

+ c2
i

(
πi

W
W−
−π

−
i

)
=

W
W−

or
c
(

π
W

W−
−π

−
)

+
W

W−
= 1 ,

with

c(v) = k +
d

∑
i=1

(
c1

i v+
i + c2

i v−i
)

.

In what follows, assume that 0 < c1
i ,c

2
i < 1− k.

It appears that starting from portfolio (π−1 ,π−2 , . . . ,π−d ) the
portfolio (π1,π2, . . . ,πd) is available. Naturally it follows that
(see Lemma 1 of [14], or [15])

Lemma 1: There is a unique continuous function e : S×

S→ (0,1− k] such that for π−,π ∈ S,

c(πe(π−,π)−π
−)+ e(π−,π) = 1 . (I.10)

The function e is bounded away from zero and

e(π,π ′)e(π ′,π ′′) < e(π,π ′′) ,

which means that it is not profitable to make two instantaneous
portfolio changes. The wealth process W− after the change
of portfolio from π− to π is diminished to e(π−,π)W− = W .

Denote by W−(t), W (t), π−(t), π(t), the wealth process
before and after transaction or the portfolio before and after
transaction at time t respectively. The purpose is to maximize
the following long run wealth growth rate:

yθ 0
((π(t)) = liminf

T→∞

1
T

Eπz{lnW (T )} . (I.11)

Since k > 0, the strategy is of impulsive form – i.e. it
is a sequence V = (τn,π

n) consisting of transaction times
(stopping times τn for n = 1,2, . . .) and portfolios πn which
are chosen at time τn. Thus

W (t) = W (τn)
d

∑
i=1

πi(τn)eXi(t)−Xi(τn) (I.12)

π(t) = g
(

π(τn)� eX(t)−X(τn)
)

(I.13)

for τn < t < τn+1, and

W (τn) = e(π(τ−n ),πn)W−(τn) . (I.14)

Additionally the portfolio π(t) is not allowed to be too close
to the boundary of the simplex S. An obligatory diversification
of the portfolio is introduced. Let 0 < δ < δ ′ < 1/d, and

S0
δ

= {v ∈ S : vi > δ for i = 1,2, . . . ,d} .

As soon as the portfolio (π(t)) enters the set S \ S0
δ
, it is

changed by choosing a new portfolio from the set Sδ ′ . Both
parameters δ and δ ′ are assumed to be fixed in the paper.
The following remark justifies the use of obligatory portfolio
diversification:

Remark 1: Assume that there is a unique invariant measure
µθ 0

for Markov process (z(t)). Under the assumptions, the
law of large numbers for the martingale∫ t

0
σ(z(s),θ)dB(s)+

∫ t

0

∫
Rd

γ(z(s),θ ,u) Ñ(ds,du)

is applicable and therefore

lim
t→∞

1
t

Xi(t) = lim
t→∞

1
t

∫ t

0
αi(z(s),θ 0)ds

= ∑
z′∈D

αi(z′,θ 0)µ
θ 0

(z′) = rθ 0

i P a.e.

Consequently, Xi(t) is of order trθ 0

i . If rθ 0

i > rθ 0

j , for j 6= i,
then provided that πi(0) > 0 and the portfolio is not changed,

πi(t) =
πi(0)eXi(t)

∑ j π j(0)eX j(t)
→ 1 P a.e.

as t→ ∞, while π j(t)→ 0 for j 6= i as t→ ∞ P a.e.
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In other words, assuming that the rθ 0

i are not the same for
i = 1,2, . . . ,d, the process π(t) in the limit converges to the
boundary of S, provided that π(0) > 0. As a consequence,

liminf
T→∞

1
T

E [lnW (t)] = max
i=1,2,...,d

rθ 0

i .

This is the value of the wealth process that can be guaranteed
over the long run. It may happen however that it is more
profitable to change the portfolio regularly than just wait for
the guaranteed value.

The portfolios from the boundary of S are unacceptable
from a risk sensitivity point of view. To eliminate risk, a
portfolio is diversified. Therefore, in the paper an obligatory
diversification is considered.

A model with fixed proportional transaction costs (k >
0,c ≡ 0) was studied by Morton and Pliska in [12]. A
simple one asset Black Scholes model with fixed proportional
plus proportional transaction costs was considered in [9],
and the control was restricted to a diversification boundary
and the choice of a new portfolio when this boundary was
reached. In the paper [14], general discrete and continuous
time models with an obligatory diversification were studied.
For a continuous time model, a certain transaction delay was
introduced, which played an important role in the proofs.
This paper generalizes [14] in various directions. A more
specific asset growth model based on Lévy noise is considered.
As in [14], the vanishing discount approach is used. To
obtain continuity results time discretization is used. The
main result, existence of the smooth solutions to the ergodic
Bellman equation is obtained by the continuity properties of
the transaction operator and finiteness of the space D. This
result is complemented by continuity properties of the optimal
value, which allows to use adaptive control algorithms.

II. DISCOUNTED GROWTH OPTIMAL PORTFOLIO

The transition operator Πt of the Markov process
(π(t),z(t)) has a nice continuity property (see Proposition
1). To use this property for a continuous time model, time
discretization is considered. Let

σ = inf{s≥ 0: π(s) ∈ S\S0
δ
}

and

σn = inf{2−ns,s = 0,1,2, . . . ,π(2−ns) ∈ S\S0
δ
} ,

i.e. σ and σn are first exit times of S0
δ

for a continuous time
or discrete time 2−ns Markov processes (π(t)),(π(2−ns))
respectively. Clearly, σn ≥ σ . Assume furthermore that

(A2) supz∈D sup
π∈S0

δ

Eπ2{σ}< ∞

(A3) supz∈D sup
π∈S0

δ

Eπ2{σn−σ}→ 0 as n→ ∞.
(A4) there is T > 0 and ∆ < 1 such that

sup
z,z′∈D

sup
A⊂D

∣∣PT (z,A)−PT (z′,A)
∣∣= ∆ < 1 .

Remark 2: It is clear in view of Remark 1 that if rθ 0

i are not
the same for all i, then σ < ∞ P a.e. The fact that Eπz{σ}< ∞

follows mainly from non-degeneracy of the diffusion term

in the equation for (π(t)). The assumption (A3) is typical in
diffusion approximations (see the assumption A22 in [11]) and
as was justified in [11] it holds for uniformly elliptic diffusion
terms. Applying Ito’s formula to the function fi(x1, . . . ,xd) =
(πieXi)/(∑π jeX j), a stochastic differential equation for πi(t)
is obtained. The Brownian motion coefficient (row) is in the
form

ri(t) = (ri(t)− (πi(t))2)σi(z(t),θ 0)

−
d

∑
j 6=i

πi(t)π j(t)σ j(z(t),θ 0)

= πi(t)
d

∑
j=1

π̃
i
j(t)σ j(z(t),θ 0)

(II.1)

with π̃ i
i (t) = 1− πi(t) and π̃ i

j(t) = −π j(t) for i 6= j. The
matrix r(t)rT (r) is not uniformly elliptic. It is, however,
uniformly elliptic on the subspace orthogonal to the vector
1= (1,1, . . . ,1).
Consider now the so-called discounted cost functional

Jβθ 0

π2 (V ) = Eπ2

{
∞

∑
i=1

e−βτi
[
ln
(

π(τi−1)eX(τi)−X(τi−1)
)

+ lne(π−(τi),π(τi))
]}

. (II.2)

Let
wβθ 0

(π,z) = sup
V

Jβθ 0

πz (V ) . (II.3)

Theorem 1: Under (A1)–(A3), wβθ 0
is a bounded function

continuous on S0
δ

and S\S0
δ

and is the unique solution to the
following Bellman equation:

wβθ 0
(π,z) = sup

τ

Eπz

{
e−βτ∧σ

[
ln(πeX(τ∧σ))

+ Mwβθ 0
(π(τ ∧σ),z(τ ∧σ))

]}
, (II.4)

with

Mw(π,z) = sup
π1∈S

δ ′

[
lne(π,π1)+w(π1,z)

]
. (II.5)

This result is verified in [7].
We now rewrite the Bellman equation (II.4) in terms of a

bounded (by Proposition 3 of [7]) function hβθ 0
. Thus

hβθ 0
(π,z) = sup

τ

Eπz

{
e−βτ∧σ

[
ln
(

πeX(τ∧σ)
)

+Mhβθ 0
(π(τ ∧σ),z(τ ∧σ))

]
− inf

π ′∈Sz′∈D
wβθ 0

(π ′,z′)(1− e−βτ∧σ )
}

. (II.6)

An important property for the growth optimal portfolio is the
following result whose proof is given in [7].

Theorem 2: Under (A1)–(A4) there exist a constant λ θ 0

and a continuous bounded function wθ 0
such that

wθ0(π,z) = sup
τ

Eπz

{
ln
(

πeX(τ∧σ)
)
−λ

θ 0
(τ ∧σ)

+Mwθ0(π(τ ∧σ),z(τ ∧σ))
}

. (II.7)
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Moreover,
λ

θ0 = sup
V

Jθ 0
(V ) , (II.8)

i.e., λ θ0 is the optimal value of the cost functional (I.11) and
the strategy V̂ = (τ̂n, π̂

n) such that

τ̂ = inf
{

s≥ 0: wθ0(π(s),z(s)) = Mwθ0(π(s),z(s))
}

.

(II.9)
τ̂1 = τ̂

τ̂n+1 = τ̂n + τ̂ ◦θτn

(II.10)

and
π̂

n = π̂(π−(τ̂n,z(τ̂n))

where π̂ : S×D→ Sδ ′ is a Borel function such that

Mwθ0(π,z) = lne(π, π̂(π,z))+wθ0(π̂(π,z),z)

is optimal.
Proof: Note that

inf
K′∈Sz′∈D

βwβθ 0
(π ′,z′)

is bounded so that there is a constant λ θ 0
and a sequence

βn ↓ 0 such that

inf
π ′∈Sz′∈D

βnwβθ 0
(π ′,z′)→ λ

θ 0

as n→ ∞. Furthermore, by (A2),

Eπz

{
1
βn

(
1− e−βnτ∧σ

)}
→ Eπz {τ ∧σ}

as n → ∞, and the limit is uniform in τ , π , and z. By
Proposition 3 of [7], the functions hβθ 0

are bounded. There-
fore, Mhβθ 0

(π,z) is uniformly continuous in π ∈ D (use the
continuity of e). One can therefore choose a subsequence of
βn, for simplicity again denoted by βn, such that

Mhβnθ 0
(π,z)→ hθ 0

(π,z) (II.11)

uniformly, where hθ 0
(π,z) is a continuous function of π .

Therefore, by (II.6), there is a continuous function wθ 0
such

that
sup
π∈S

sup
z∈D

∣∣∣hβnθ 0
(π,z)−wθ 0

(π,z)
∣∣∣→ 0

as n→ ∞. From (II.11), it follows that

Mhβnθ 0
(π,z)→Mwθ 0

(π,z)

uniformly in π ∈ S, z ∈ D.
Finally, wθ0 is a solution to (II.7). Equality (II.8) and the

form of optimal strategy V̂ follows from standard arguments.

III. CONTINUITY OF THE OPTIMAL COST

In this section the dependence of optimal values of the
cost functional (I.11) on the parameter θ ∈Θ is studied. The
solution to the equation (I.2) with the parameter θ will be
now denoted by Xθ . By continuity of the parameters with
respect to θ and Doob’s inequality (see 1.42 of [16]), it

follows that for each T > 0, whenever θn→ θ ,

E
{

sup
s≤T

∣∣∣Xθn(s)−Xθ (s)
∣∣∣}→ 0 (III.1)

as n→ ∞. Denote by πθ (t) the process π(t) corresponding
to the growth rate (Xθ (t)). Let

σ
θ = inf

{
s≥ 0: π

θ (s) ∈ S\S0
δ

}
.

Assume that

(A5) σθn → σθ P a.e. whenever θn→ θ .

In view of Remark 2 and Lemma 3 of [7] the above
convergence is natural for the uniformly elliptic diffusion
term in (I.2). By Corollary 1, there is the convergence (in
variation norm) of the transition operators Π θn to Π θ for
θn→ θ . Therefore, repeating the arguments of section 2, it
follows that the value function wβθ corresponding to the
discounted cost functional (II.2) is a continuous function of
θ . Define the function

hβθ (π,z) = wβθ (π,z)− inf
π ′∈Sz′∈D

wβ (π ′,z′) .

As was already pointed out in Proposition 3 of [7], hβθ

is a function uniformly bounded in β and θ . There is the
following continuity result:

Theorem 3: Given (A1)–(A5), the optimal values λ θ of the
cost functional Jθ are continuous functions of the parameter
θ , namely λ θn → λ θ whenever θn→ θ .

Proof: For each θ , by Theorem 2, there is a constant
λ θ (optimal value of Jθ ) and a continuous function wθ such
that

wθ (π,z) = sup
τ

Eπz

{
ln
(

πeXθ (τ∧σθ )
)
−λ

θ (τ ∧σ
θ )

+Mwθ (π(τ ∧σ
θ ),z(τ ∧σ

θ ),z(τ ∧σ
θ ))
}

. (III.2)

Since hβθ was bounded, the function wθ is also bounded
in θ ∈ Θ . By the assumption, λ θ is also bounded. Let
θn→ θ . Choosing a suitable subsequence hk, λ

θhk → λ and
Mwθhk (π,z)→ hθ (π,z) uniformly. Therefore, using (III.1),
(A5), and (A2), it follows that

wθnk (π,z)→ wθ (π,z) = sup
τ

Eπz

{
ln
(

πeXθ (τ∧σθ )
)

−λ (τ ∧σ
θ )+hθ (π(τ ∧σ

θ ),z(τ ∧σ
θ ))
}

.

Therefore, also Mwθnk (π,z)→Mwθ (π,z), and

wθ (π,z) = sup
τ

Eπz

{
ln
(

πeXθ (τ∧σθ )
)

−λ (τ ∧σ
θ )+Mwθ (π(τ ∧σ

θ ),z(τ ∧σ
θ ))
}

. (III.3)

By the uniqueness of λ , since from (III.3) it is clear that λ =
λ θ , from any sequence λ θn there is a subsequence converging
to λ θ . This means that λ θn → λ θ which is the claim of
Theorem 3.

Remark 3: The continuity property shown in Theorem 3
is fundamental to use an adaptive control approach to the
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model – i.e., consider that θ 0 is unknown and using either a
Bayesian (see [5] or [4]) or parametric approach (see [6] or
[2], [3]). In both approaches, either a finite class of nearly
optimal controls (see [6] and [5]) or occupation measures
techniques were used.
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