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Abstract— We consider Discrete Event Systems involving
tasks with real-time constraints and seek to control processing
times so as to minimize a cost function subject to each task
meeting its own constraint. It has been shown that the off-line
version of this problem can be efficiently solved by the Critical
Task Decomposition Algorithm [9]. The on-line version has been
dealt with to date using worst-case analysis so as to bypass the
complexity of random effects. This approach, however, does not
make use of probability distributions and results in an overly
conservative solution. In this paper, we develop a new on-line
algorithm without relying on worst-case analysis, in which a
“best solution in probability” can be efficiently obtained by
estimating the probability distribution of the off-line optimal
control. We introduce a condition termed “non-singularity”
under which the best solution in probability leads to the on-line
optimal control. Numerical examples are included to illustrate
our results and show substantial performance improvements
over worst-case analysis.
Keywords: on-line optimal control, discrete event system, real-
time constraints

I. INTRODUCTION

A large class of Discrete Event Systems (DES) involves

the control of resources allocated to tasks according to

certain operating specifications (e.g., tasks may have real-

time constraints associated with them). The basic modeling

block for such DES is a single-server queueing system

operating on a first-come-first-served basis, whose dynamics

are given by the well-known max-plus equation

xi = max(xi−1, ai) + si(ui) (1)

where ai is the arrival time of task i, xi is its completion

time, and si(ui) is its service time which may be controllable

through ui. Examples arise in manufacturing systems, where

the operating speed of a machine can be controlled to trade

off between energy costs and requirements on timely job

completion [12]; in computer systems, where the CPU speed

can be controlled to ensure that certain tasks meet specified

execution deadlines [2],[6]; and in wireless networks where

severe battery limitations call for new techniques aimed

at maximizing the lifetime of such a network [3],[10]. A

particularly interesting class of problems arises when such

The authors’ work is supported in part by NSF under Grants DMI-
0330171 and EFRI-0735974, by AFOSR under grants FA9550-04-1-0133
and FA9550-04-1-0208, and by DOE under grant DE-FG52-06NA27490.

systems are subject to real-time constraints, i.e., xi ≤ di for

each task i with a given “deadline” di. In order to meet such

constraints, one typically has to incur a higher cost associated

with control ui. Thus, in a broader context, we are interested

in studying optimization problems of the form

min
u1,...,uN

∑N

i=1
θi(ui)

s.t. xi = max(xi−1, ai) + si(ui), i = 1, ..., N ; (2)

xi ≤ di, smin,i ≤ si(ui) ≤ smax,i, i = 1, ..., N.

where smin,i, smax,i > 0 are the lower and upper bound

on the service time of task i respectively and θi(ui) is

a given cost function. Such problems have been studied

for preemptive tasks [1],[13], nonpreemptive periodic tasks

[4],[5] , and nonpreemptive aperiodic tasks [3] ,[10],[9]. The

latter case is of particular interest in wireless communications

where nonpreemptive scheduling is necessary to execute

aperiodic packet transmission tasks which also happen to be

highly energy-intensive; in such cases, the cost function in

(2) represents the energy required for a packet transmission.

One of the key challenges in dealing with (2) is to develop

computationally efficient solution approaches that can be

used in real-time settings and can be implemented in wireless

devices with very limited computational power.

In general, this is a hard nonlinear optimization problem,

complicated by the inequality constraints xi ≤ di and the

nondifferentiable max operator involved. Nonetheless, it was

shown in [9] that when θi(ui) is convex and differentiable

the solution to such problems is characterized by attractive

structural properties leading to a highly efficient algorithm

termed Critical Task Decomposition Algorithm (CTDA) [9]

and Generalized CTDA [10]. The CTDA does not require

any numerical optimization problem solver, but only needs

to identify a set of “critical” tasks. The efficiency of the

CTDA is crucial for applications where small, inexpensive

devices are required to perform on-line computations with

minimal on-board resources.

The on-line version of problem (2) arises when arrival

times of tasks and task characteristics (e.g., their deadlines

and sizes) are random and not known in advance. One way

to bypass the complexity of such random effects is by using

worst-case analysis (as in [9], [11]). However, there are
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several disadvantages of a worst-case analysis approach: (i)

the probability distribution information cannot be utilized;

(ii) the decisions made based on worst-case analysis are too

conservative, especially when the time horizon is very short

(available future information is limited); (iii) only arrival

times of tasks are assumed to be uncertain. If other task

information is also uncertain, such as their deadlines and

sizes, worst-case analysis will become more complicated and

conservative; (iv) it fails when the release time jitter [6] is

hard or impossible to estimate in advance (e.g., when inter-

arrival time probability distributions have infinite support as

in the common exponential distribution case).

In this paper, we develop a new optimal control approach

to solve the on-line problem without relying on worst-

case analysis. In this approach, all task information may be

uncertain and real-time constraints are imposed so that the

probability that xi ≤ di in (2) is greater than a prespecified

value. Since this probability cannot be analytically calculated

when task characteristics are all random, this is a hard

stochastic optimization problem. It is necessary to invoke

simulation-based methods to estimate various quantities of

interest, which renders highly questionable the feasibility

of a realistic on-line algorithm. In fact, we show that a

typical such approach is of complexity O(IMN2) where

N is the number of tasks involved, M is the number

of sample paths simulated for estimation purposes, and I
is the number of iterations required for the optimization

algorithm to converge. We introduce a condition termed non-

singularity, under which the solution to the on-line problem

is obtained in O(MN + M log M) complexity, leading to a

much faster process amenable to on-line control.

In Section II, we formulate the on-line optimization

problem. In Section III, we study the feasible control set

for this problem, whose determination is complicated by

the probabilistic real-time constraints. In Section IV, we

introduce the non-singularity condition and its ramifications,

leading to an algorithm for deriving a complete solution of

the problem referred to as the “best solution in probability”.

Simulation results are given in Section V illustrating the on-

line capability of the proposed approach and we close with

conclusions presented in Section VI.

II. ON-LINE PROBLEM FORMULATION

In what follows, we concentrate on the control ui being the

processing rate and set ui = 1/τi where τi is the processing

time per operation in a task. If a task consists of µi operations

(i.e., the size of the task), then we have si(ui) = µiτi and

θi(ui) = µiθi(τi). Then, the off-line problem (2) becomes:

min
τ1,...,τN

∑N

i=1
µiθi(τi)

s.t. xi = max(xi−1, ai) + µiτi, i = 1, ..., N ;

xi ≤ di, τmin ≤ τi ≤ τmax, i = 1, ..., N.

(3)

where θi(τi) is assumed to be monotonically decreasing

and convex in τi and τmin and τmax are the minimal and

maximal processing time per operation respectively. This off-

line problem is deterministic because all task information ai,

di and µi, is assumed to be known. Thus, open-loop control

is as good as closed-loop control for this case and we can

obtain an optimal control for all tasks off line.

However, in practice, arrival times may be unknown. In

fact, usually ai and di cannot be known until task i arrives

and µi cannot be acquired until task i completes. Only their

probability distribution can be assumed known or estimated

in advance from past history. Due to these uncertainties,

closed-loop control is preferable, which necessitates an on-

line optimization approach. In this manner, we have the

opportunity to observe new information and update controls

by solving on-line problems at a set of decision points.

Generally, decision points can be arbitrarily selected and

could be task departure times, arrival times or instants when

some other specific events occur. From a practical standpoint,

updating controls upon each arrival time can be problematic

when arrivals are bursty, in which case it is even possible

that the calculation of new controls takes longer than an

inter-arrival time and this can lead to unstable behavior. In

this paper, we choose task start times, i.e., max(xk−1, ak),
k = 1, 2, . . ., to be these decision points.

Assume the current decision time is max(xk−1, ak) and

the related on-line control is τk. The objective of the on-line

problem is to minimize the expected cost of the current task

k and all future incoming tasks, that is

min
τk

E
{

µkθk(τk) + L(τk,Sk)
}

(4)

where µkθk(τk) is the cost of the current task k and

Sk is a state vector defined to include all determin-

istic task information available at the current decision

time. For example, assume there are Q tasks in queue

and the arrival times ak, ..., ak+Q−1 and the deadlines

dk, ..., dk+Q−1 can be observed. Then, the state vector is

Sk = [ak, . . . , ak+Q−1, dk, . . . , dk+Q−1]
T . Thus, L(τk,Sk)

is the optimal cost of all future incoming tasks under control

τk when the state is Sk. If the number of incoming tasks

is infinite, then L(τk,Sk) cannot be obtained and it is

necessary to approximate it by the optimal cost of the next

N (sufficiently large) tasks, denoted by L̂(τk,Sk). We will

give a precise definition of L̂(τk,Sk) in Section IV.

In formulating the on-line problem, we also need to con-

sider the effect of the control τk on the real-time constraints.

A larger τk may result in a lower expected cost, but it may

also cause a higher probability of violating the deadlines

of some future tasks. To establish a guarantee for real-time

constraints, we need to set up an acceptable lower bound

p on the probability of satisfying all constraints. In other

words, we need to quantify how likely is the existence of

some τi ∈ [τmin, τmax] for i > k such that xi ≤ di for

i ≥ k when the control τk is applied. Note that since τmin is

the minimum processing time per operation, it follows that

departure times xi for i > k are minimized when τi = τmin.

Therefore, the event [there exists τi ∈ [τmin, τmax] such that

xi ≤ di for i ≥ k] is equivalent to the event [xi ≤ di for

i ≥ k when τi = τmin]. The former obviously implies the

latter by the previous observation and the latter implies the
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former by selecting τi = τmin for all i > k. Based on the

discussion above, let

J(τk,Sk) = µkθk(τk) + L̂
(

τk,Sk

)

(5)

and we define the on-line problem as follows:

min
τk

E
{

J(τk,Sk)
}

s.t. xk = max(ak, xk−1) + µkτk; (6)

xi = max(ai, xi−1) + µiτmin, i = k + 1, ..., k + N ;

P [xi ≤ di,∀ i = k, . . . , k + N ] ≥ p.

where the last two constraints capture the requirement

P [there exists τi ∈ [τmin, τmax] such that xi ≤ di for

i ≥ k] ≥ p as explained above.

It should be noted that the optimal solution of problem (6)

depends only on the state Sk when all stochastic processes

(describing arrival times, deadlines, and task sizes) are sta-

tionary and corresponding probability distributions can be

accurately obtained in advance. If the state space is finite, it

is possible to compute the optimal solution of problem (6)

for each state off line. We allow, however, the state space

to be infinite because ai and di are generally real-valued

variables. Even if we can discretize the state space, observe

that it still grows exponentially when more information is

observed. Moreover, if probability distributions are not a

priori available, they need to be estimated based on observed

data, hence an on-line algorithm is necessary. Finally, we

should mention that in the remainder of this paper we assume

that problem (6) is feasible, i.e., the last constraint is satisfied.

If that is not the case, our analysis is still valid but only

after an admission control problem is first solved, where

the objective is to ensure that as many tasks as possible

meet their deadlines by rejecting some tasks; this problem is

treated in [8].

III. FEASIBLE CONTROL SET

Before solving the on-line problem (6), we need to identify

the feasible control set for τk. The difficulty in doing so

comes from the last constraint where P [xi ≤ di,∀ i =
k, ..., k + N ] is a function of the control τk since xi for

i = k, . . . , k + N only depends on τk. For convenience,

let F (τk) denote this probability when τk is selected. We

establish a property of F (τk) in Lemma 1 below based on

the following auxiliary problem:

maxτk
τk

s.t. xk = max(xk−1, ak) + µkτk ≤ dk; (7)

xi = max(xi−1, ai) + µiτmin ≤ di, i ∈ [k + 1, k + N ].

The optimal solution of this problem is denoted by τ̄k and

can be interpreted as the exact feasible upper bound of τk

for a problem when all ai, di and µi are known. In fact, if

there are Q tasks in queue at the kth decision time (generally

Q ≤ N ), only information on these tasks is known. All

remaining ai, di and µi for i > k + Q are random, so

τ̄k is also a random variable. Strictly speaking, we should

write τ̄k(Sk) but omit this dependence for simplicity. In the

following lemma, we show that F (τk) is the complementary

cumulative distribution function of τ̄k. (The proofs in this

paper are omitted; the full proofs can be found in [7].)

Lemma 1: F (τk) = P [τ̄k ≥ τk].
Let F−1(·) denote the inverse function of F (·) and

τp
k = sup

τ

{

τ : τ = F−1(p)
}

(8)

Lemma 1 implies that the probabilistic constraint P [xi ≤
di,∀ i = k, ..., k + N ] ≥ p in the on-line problem (6) is

equivalent to the constraint τk ≤ τp
k . Therefore, the feasible

control set becomes

τmin ≤ τk ≤ min(τmax, τ
p
k ). (9)

To determine τp
k through (8) for any given p, we need F (τk).

However, F (τk) is unknown and cannot be derived in closed

form. One way to estimate it is through a Monte Carlo

simulation method as follows. Suppose a sample path is

generated based on tasks indexed by i = k + 1, . . . , k + N
with arrivals ai, deadlines di, and number of operations

µi. Given this information, (7) becomes a deterministic

optimization problem. Note that, given the state Sk for

Q tasks already in queue, only data for N − Q future

tasks need to be randomly generated; in addition, these

data can be generated a priori when probability distributions

are available, thus substantially reducing the burden of this

process during on-line execution. Now, suppose there are M
sample paths generated this way indexed by j = 1, . . . ,M
and let τ̄ j

k be the solution of (7) in the jth sample path. Let

Zj(τk) = 1[τk ≥ τ̄ j
k ], where 1[·] is an indicator function.

Then, F (τk) can be estimated by F̂M (τk) =
∑ M

j=1
Zj(τk)

M
. Let

τ̂p
k,M = supτ

{

τ : τ = F̂−1
M (p)

}

, where F̂−1
M (·) is the inverse

function of F̂M (·). By the strong law of large numbers,

F̂M (τp
k ) converges to F (τp

k ) = p w.p.1 as M → ∞, as

long as the M sample pathes are independently generated.

Combining this with τ̂p
k,M = F̂−1

M (p) and τp
k = F−1(p), we

also conclude that τ̂p
k,M converges to τp

k w.p.1 as M → ∞.

Moreover, we can show that this convergence is such that

τ̂p
k,M approaches τp

k exponentially fast as M increases.

Lemma 2: For any ǫ > 0, there always exists C > 0 such

that P
[

|τp
k − τ̂p

k,M | ≥ ǫ
]

≤ 2e−CM .

Thus, we may use τ̂p
k,M as an estimate of τp

k in (9) so

as to specify the feasible set of the on-line problem. To do

so, however, we need an efficient solution of (7) which will

provide us with τ̄ j
k , j = 1, . . . ,M , and hence F̂M (τk). This

is accomplished through the simple algorithm in Table I in

O(N) complexity. Note that in Step 1), if dl−µlτmin ≥ dl−1,

then τk is independent of all tasks after task l and the solution

involves only tasks prior to l.

TABLE I. SOLUTION OF THE PROBLEM (7)

1) Find the first task l such that dl −µlτmin ≥ dl−1 beginning from
l = k + 1. If there is no such l, then set l = k + N ;

2) τk = dl −
∑l

i=2
µiτmin − max(ak, xk−1).

Once we obtain the M exact feasible upper bounds

τ̄1
k , ..., τ̄M

k , we sort them as τ̄
(1)
k ≤ · · · ≤ τ̄

(M)
k and F̂M (τk)
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is obtained as illustrated in Fig. 1 and τ̂p
k,M is immediately

derived through F̂−1
M (p). In summary, τ̂p

k,M , and hence an

estimate of the feasible control set in (9), is obtained through

the algorithm in Table II in O(MN +M log M) complexity.
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Fig. 1. An example of F̂M (τk) and τ
p

k,M

TABLE II. DETERMINING τ̂
p

k,M

1) Randomly generate M sample paths;

2) Obtain τ̄
j

k
by applying the algorithm in Table I for j = 1, ..., M ;

3) Sort τ̄1

k
, ..., τ̄M

k
to derive FM (τk) and then τ

p

k,M
= F−1

M
(p).

IV. BEST SOLUTION IN PROBABILITY

In this section, we provide a solution of the on-line

problem (6) under a condition we term “non-singularity”. To

do so, we first need to define L̂(τk,Sk) in (5). As already

mentioned, L̂(τk,Sk) is the optimal cost of the next N tasks

under the control τk and the state Sk, which can be obtained

from the solution of the problem

L̂(τk,Sk) := min
τk+1,...,τk+N

∑k+N

i=k+1
µiθi(τi) (10)

s.t. xi = max(ai, xi−1) + µiτi, i = k, . . . , k + N ;

τmin ≤ τi ≤ τmax, xi ≤ di, i = k, . . . , k + N.

for any sample path specified by ai, di and µi, i = k, ..., k+
N . We note that this is of the same form as the off-line

problem (2) and could be solved very efficiently through the

CTDA [9] mentioned earlier if all ai, di and µi were known.

Clearly, a closed-form expression for E{J(τk,Sk)} in (6)

cannot be derived and has to be estimated. If we proceed via

Monte Carlo simulation, there are three notable difficulties:

(i) it is costly to evaluate L̂(τk,Sk) for each τk. Assume we

randomly generate M sample paths (i.e., realizations of ai,

di and µi, i = k, ..., k +N ) and solve problem (10) for each

sample path. Since problem (10) can be solved in O(N2)
by using the CTDA [9], the complexity of this process is

O(MN2); (ii) both dE
(

J(τk,Sk)
)

/dτk and dJ(τk,Sk)/dτk

are hard to compute because J(τk,Sk) involves L̂(τk,Sk)
that has no closed form. Only finite differences can be

obtained, which costs two time-consuming evaluations; (iii)

it may take many iterations to converge to the optimal

solution of (6). Assuming the total number of iterations is

I , the total complexity of solving the on-line problem is

O(IMN2) where I , M and N are usually very large. Such

huge complexity is not suitable for on-line control.

In the following, we will bypass much of this complexity

by developing an efficient algorithm based on the condition

defined below.

Non-singularity Condition (NSC):

P [J(τ ′

k,Sk) ≤ J(τ ′′

k ,Sk)] ≥ 0.5

=⇒ E [J(τ ′

k,Sk)] ≤ E [J(τ ′′

k ,Sk)]

The interpretation here is that if some control action τ ′

k is

more likely better than τ ′′

k (in the sense of resulting in lower

cost), then the expected cost under τ ′

k will be lower than

the one under τ ′′

k . This is consistent with common sense in

that any action A more likely better than B should result

in A’s expected performance being better than B’s. Only

“singularities” such as J(τ ′

k) ≫ J(τ ′′

k ) with an unusually low

probability for some (τ ′

k, τ ′′

k ) can affect the corresponding

expectations so that this condition may be violated. It is

straightforward to verify this NSC for several common cases;

for example, consider minx E(x−Y )2, where Y is a uniform

random variable over [a, b]. The optimal solution (a + b)/2
satisfies the NSC. Based on the NSC, we define the “Best

Solution in Probability” below:

Definition 1: τ∗

k is the Best Solution in Probability(BSIP)

if and only if τ∗

k satisfies, for all τk ∈ [τmin, min(τmax, τ
p
k )],

P [J(τ∗

k ,Sk) ≤ J(τk,Sk)] ≥ 0.5
A natural question that arises is whether it is possible for

a better solution τ ′

k 6= τ∗

k to exist such that, for all τk ∈
[τmin, min(τmax, τ

p
k )],

P [J(τ ′

k,Sk) ≤ J(τk,Sk)] ≥ q, for some q > 0.5. (11)

The lemma below shows that any such τ ′

k coincides with τ∗

k .

Lemma 3: If τ ′

k satisfies (11), then τ ′

k = τ∗

k .

Based on Lemma 3, we can define the BSIP as the one sat-

isfying (16). Moreover, if there exists a BSIP τ∗

k , then based

on the NSC, it satisfies E {J(τ∗

k ,Sk)} ≤ E {J(τk,Sk)} for

all τk ∈ [τmin, min(τmax, τ
p
k )], that is, τ∗

k is also the optimal

solution of the on-line problem (6). In the following, we will

prove the existence of the BSIP using a construction method.

Then, an algorithm is developed to determine the BSIP in

O(MN) complexity. To begin with, we exploit a property

of L̂(τk,Sk) based on the convexity of θi(τi).
Lemma 4: L̂(τk,Sk) is convex with respect to τk.

Next, recalling (5) and (10), we consider another auxil-

iary problem: minτk
J(τk,Sk), whose optimal solution is

denoted by τ̃k. The domain of the function L̂(τk,Sk) is

[τmin, min(τmax, τ̄k)], in which τ̄k is a random variable and

its value depends on the related sample path. Thus, τ̄k may

be less than τp
k , that is, a feasible solution of the on-line

problem (6) may not guarantee all the real-time constraints

in L̂(τk,Sk) for some specific sample path. In order to derive

E{J(τk,Sk)} for any τk such that τk > τ̄k for some sample

paths, we have to assign an appropriate value to J(τk,Sk)
when τk > τ̄k. The common way is to set J(τk,Sk) =
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J(τ̄k,Sk)+α(τk) ·1[τk > τ̄k], where α(τk) > 0 is a penalty

function for τk > τ̄k, monotonically non-decreasing in τk,

which ensures J(τk,Sk) > J(τ̄k,Sk) for all τk > τ̄k. Thus,

we have τ̃k ≤ τ̄k. As seen next, our approach is based

on obtaining τ∗

k not by computing E{J(τk,Sk)} but rather

τ̃k and its cumulative distribution function. Since τ̃k ≤ τ̄k,

an advantage of this approach is that we need not concern

ourselves with the penalty α(τk), thus saving the effort of

specifying an appropriate such function. We can obtain τ̃k

by solving the problem below

min
τk,...,τk+N

{

∑k+N

i=k
µiθi(τi)

}

(12)

s.t. xi = max(ai, xi−1) + µiτi, i = k, . . . , k + N ;

τmin ≤ τi ≤ τmax, xi ≤ di, i = k, . . . , k + N.

where τ̃k is the optimal solution of (12) for task k. Problem

(12) can be regarded as an off-line problem like (3) with ai,

di and µi, i = k, ..., k+N , the given arrival times, deadlines

and number of operations. This can be efficiently solved by

the CTDA [9]. Moreover, since only the optimal solution

for task k is needed, we can obtain τ̃k in O(N) complexity

without solving the whole problem (12) [9]. Since ai, di and

µi are random, τ̃k is also a random variable. As in the case of

the auxiliary problem (7), strictly speaking, we should write

τ̃k(Sk) but omit this dependence for simplicity.

The solution τ̃k has the following properties which are

easily established as a corollary of Lemma 4:

Corollary 1: Assume τmin ≤ τ ′

k < τ ′′

k ≤ τmax. Then,

τ̃k ≤ τ ′

k =⇒ J(τ ′

k,Sk) ≤ J(τ ′′

k ,Sk);

τ̃k ≥ τ ′′

k =⇒ J(τ ′′

k ,Sk) ≤ J(τ ′

k,Sk).
By Corollary 1, we can obtain an additional property of τ̃k.

Lemma 5: Assume τmin ≤ τ ′

k < τ ′′

k ≤ τmax. Then,

P [J(τ ′

k,Sk) ≤ J(τ ′′

k ,Sk)] ≥ P [τ̃k ≤ τ ′

k];

P [J(τ ′

k,Sk) ≥ J(τ ′′

k ,Sk)] ≥ P [τ̃k ≥ τ ′′

k ].
Define G(τk) = P [τ̃k ≤ τk] and τh

k = supτ

{

τ : τ =
G−1(0.5)

}

, where G−1(·) is the inverse function of G(·).
Using Lemma 5, we can establish the following result.

Theorem 1: For any τk ∈ [τmin, τmax],

P
[

J(τh
k ,Sk) ≤ J(τk,Sk)

]

≥ 0.5 (13)

Based on Theorem 1, we can obtain τh
k through the

cumulative distribution function of τ̃k, G(τk). Although τh
k

satisfies (13), it still may not be the BSIP since the feasible

control set in (9) also requires that τk ≤ τp
k . Theorem 2

below provides the complete final solution.

Theorem 2: The BSIP τ∗

k satisfies τ∗

k = min(τh
k , τp

k ).
This result provides the BSIP in terms of τh

k and τp
k . Just as

τp
k in the previous section had to be estimated by estimating

F (τk), similarly we need to estimate τh
k by estimating G(τk)

which is not available in closed form. Once again, we can

resort to a Monte Carlo simulation method, in which we

generate M sample paths where a sample path is generated

based on tasks indexed by i = k, . . . , k+N with arrivals ai,

deadlines di, and number of operations µi. As in the estima-

tion of F (τk) in the previous section, given the state Sk for

Q tasks already in queue, only data for N − Q future tasks

are needed and could in fact be available from prior off-line

generation. Suppose there are M sample paths indexed by

j = 1, . . . ,M and let τ̃ j
k denote the solution of minimizing

J(τk) in the jth sample path. Then, set Zj(τk) = 1[τ̃ j
k ≤ τk]

and G(τk) can be estimated by ĜM (τk) =
∑ M

j=1
Zj(τk)

M
. Let

τ̂h
k,M = supτ

{

τ : τ = Ĝ−1
M (0.5)

}

. Based on the strong

law of large number, ĜM (τh
k ) converges to G(τh

k ) w.p.1

as M → +∞. Combining this with τ̂h
k,M = Ĝ−1

M (0.5)

and τh
k = G−1(0.5), τ̂h

k,M also converges to τh
k w.p.1 as

M → +∞. Furthermore, using the Chernoff bound and an

argument similar to that in Lemma 2, we can show that τ̂h
k,M

approaches τh
k exponentially fast as M increases, that is,

Lemma 6: For any ǫ > 0, there always exists C > 0 such

that P
[

|τh
k − τ̂h

k,M | ≥ ǫ
]

≤ 2e−CM .

The analysis above leads to the algorithm in Table III

through which we can obtain the estimate τ̂h
k,M of τh

k . In Step

2), we only solve M off-line problems (for each sample path)

without any iterative process which a traditional stochastic

programming method would require, hence having to solve

IM off-line problems where I is the number of iterations.

Each such problem can be very efficiently solved in O(N)
complexity using the CTDA [9]. Note that CTDA’s worst

case complexity is in fact O(N2), but the problem at hand

involves solving for τk only, i.e., the first task and not all

k, . . . , k + N tasks, which reduces to O(N). In Step 3),

we obtain ĜM (τk) by sorting τ̃1
k , . . . , τ̃M

k similar to Fig. 1.

Deriving τ̂h
k,M is accomplished in O(MN +M log M) com-

plexity, which is clearly a vast improvement over O(IMN2).
Finally, combining Tables II and III we can obtain an

estimate of the BSIP τ∗

k as min(τ̂p
k,M , τ̂h

k,M ). Of course,

it remains an open problem whether the NSC is satisfied

in this particular problem. If so, the BSIP is an estimate

of the optimal solution of the on-line problem (6) which

we have seen converges to the true solution exponentially

fast. Otherwise, the BSIP is a sub-optimal solution which

we expect to be quite close to optimal.

TABLE III. DETERMINING τ̂h
k,M

1) Randomly generate M sample paths;

2) Obtain τ
j

k
minimizing J(τk,Sk) in the jth sample path by applying

CTDA for j = 1, ..., M ;

3) Sorting τ̃1

k
, ..., τ̃M

k
to derive ĜM (τk) and then τ̂h

k,M
= Ĝ−1

M
(0.5).

V. SIMULATION RESULTS

In this section, we compare the performance of our on-

line algorithm to the method based on worst-case analysis, in

which τmin = 1, τmax = 10, the arrival time ai is uniformly

distributed in some release jitter interval [a−

i , a−

i + 4], the

deadline di is uniformly distributed in [ai + 20, ai + 40],
µi is a random integer uniformly distributed in {1, . . . , 5}
and θ(τi) = 1/(τi − 0.5)2. We select p = 1, i.e., all tasks

are required to meet their deadlines. A total of 1600 tasks

are processed and we always look ahead N = 100 tasks

at each decision point. All information on tasks that arrived
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before the current decision time is available, while only a

probability distribution is known for future tasks. In the

worst-case analysis, the probability distribution is not utilized

and we set ai, di and µi for all future tasks as the earliest

arrival time a−

i , the tightest deadline a−

i +20 and largest size

5 respectively to guarantee the real-time constraints. Then,

the control for the current task k is obtained by solving an

off-line problem with a−

i , a−

i + 20 and 5 as the values of

arrival times, deadlines and sizes respectively for all tasks

arriving after the decision time.

Define the following three costs: (i) C∗(i) is the sum

of the optimal costs from task 1 to task i for the ideal

model, i.e., when all ai, di and µi are known in advance,

(ii) Cw(i) is the sum of costs from task 1 to task i by

applying worst-case analysis, and (iii) Cb(i) is the sum of

costs from task 1 to task i by applying our on-line algorithm

where we choose M = 500. Based on these costs, we can

define two relative performance ratios: λb(i) = Cb(i)−C∗(i)
C∗(i)

and λw(i) = Cw(i)−C∗(i)
C∗(i) . The comparison results are shown

in Figs. 2 and 3. Observe that the relative ratio of the worst-

case analysis method converges to λw(1600) = 2.06 and the

one of our on-line algorithm to λb(1600) = 0.13, an order

of magnitude better. In particular, the solution obtained by

our on-line algorithm has a 13% larger cost than the ideal

optimal cost, while the worst-case analysis method results

in a much more conservative solution, whose cost is 206%
larger than the ideal cost.
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VI. CONCLUSIONS

We have revisited the on-line version of optimization prob-

lems encountered in discrete event systems processing tasks

with hard real-time constraints. In this case, arrival times of

tasks and their deadlines and sizes are unknown in advance.

Rather than a worst-case analysis (pursued elsewhere), we

make use of probability distributions, which generally leads

to less conservative solutions. We propose a condition termed

“non-singularity condition” (NSC) based on which we obtain

an algorithm that provides a “best solution in probability”.

This solution estimates the on-line optimal control (and

converges to it exponentially fast) if the non-singularity

condition holds and otherwise provides suboptimal solutions.

Empirical results to date indicate significant performance

improvements over worst-case analysis.

Future work is aiming at studying the validity and range

of the NSC, that is, identifying the kinds of problem that

satisfy it. Another natural direction is to develop an efficient

way to improve the best solution in probability when the

NSC is not satisfied. Moreover, we assume that information

on probability distributions for task arrivals, deadlines, and

sizes is known beforehand. However, in some applications

only rough information of this type may be available. We

plan to incorporate a learning algorithm to estimate these

probability distributions based on past history and study their

convergence properties when stationarity applies.
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