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Abstract— We study Balanced Truncation for stochastic dif-
ferential equations. In doing so, we adopt ideas from large
deviations theory and discuss notions of controllability and
obervability for dissipative Hamiltonian systems with degener-
ate noise term, also known as Langevin equations. For partially-
observed Langevin equations, we illustrate model reduction by
balanced truncation with an example from molecular dynamics
and discuss aspects of structure-preservation.

I. INTRODUCTION

Balanced Truncation is a rational and well established tool

to reduce the dimension of a controlled linear differential

equations [1]. Other, data-based approaches involve best-

approximations by means of Proper Orthogonal Decomposi-

tion or Principal Component Analysis. Latter, in particular, is

very popular in molecular dynamics as it is believed that the

modes of highest variance carry important information, and

indicate, e.g., conformational changes in a molecule [2]. The

governing equations of molecular dynamics often take the

form of stochastic differential equations that have the form

of controlled systems, in which the smooth control variables

have been replaced by suitable noise processes.

A class of stochastic differential equations that is of

specific interest, e.g., in molecular dynamics, is given by

hypoelliptic diffusion processes. Hypoelliptic diffusions en-

tail certain dissipative Hamiltonian systems in which the

white noise acts only on the momenta and which models

dissipative dynamics in a heat bath. A representative of this

class is the stochastic Langevin equation for which we study

Balanced Truncation. For this purpose we employ a large

deviations principle that allows for relating the sample paths

of the white noise process to a smooth control variable under

certain circumstances. This connection is not new indeed,

and a variety of large deviations problems boil down to

control arguments. A prominent example is, e.g., the Support

Theorem of Stroock and Varadhan [3]; see also [4], [5].

We do not claim originality for the use of a large devia-

tions principle in Section III for studying controllability of

stochastic differential equations, nor do we claim complete

mathematical rigour. However, our analysis reveals interest-

ing relations between Balanced Truncation and empirical

state-space decomposition methods such as the Principal

Component Analysis which may have useful algorithmic

implications; see Section IV. Furthermore, applying Bal-

anced Truncation to stochastic differential equations brings

up interesting mathematical questions, for example, if the

negligible components are noisy and ought to be considered

as a probability distribution rather than a point-wise process.
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Another intriguing aspect that is related to structure-

preservation is taken up in Section IV: On the one hand it

has been shown recently [6] that Balanced Truncation applied

to linear port-controlled dissipative Hamiltonian system pre-

serves stability plus the Hamiltonian structure. On the other

hand it is well known that, in the limit of small masses or

high friction (dissipation), the Langevin process converges

to a purely diffusive, inertia-less motion (“diffusive limit”)

that is described by a genuine first-order equation for the

configurations. We discuss, when it may be advisable to relax

structure-preservation in favour of physical considerations.
The article concludes in Section V with an example from

molecular dynamics.

II. STOCHASTIC LANGEVIN EQUATION

A frequently used model for dissipative Newtonian dy-

namics in a heat bath is the stochastic Langevin equation

Mq̈(t) + γq̇(t) + ∇V (q(t)) = ξ(t) , (1)

where q ∈ Q ⊆ R
n, and ξ(t) ∈ R

n denotes a Gaussian

white noise process with covariance matrix

Eξ(t)ξ(t)T ∝ γ ,

that is chosen so as to balance the energy dissipation due to

the viscous friction. Here and in the following we shall use

the symbol E(·) to denote the expectation of a (measurable)

stochastic process over all its possible realizations. Both

mass and friction matrices M,γ ∈ R
n×n are symmetric and

positive definite.
Equation (1) is an instance of a dissipative Hamiltonian

system that is driven by noise. Omitting the free variable t
in what follows, we shall consider systems of the form1

ẋ = (J −D(x))∇H(x) + S(x)Ẇ , (2)

where x ∈ P, P = Q×R
n, H is the system’s Hamiltonian,

and W denotes standard Brownian motion in R
n. The matrix

J = −JT is the canonical skew-symmetric matrix

J =

(

0 1

−1 0

)

,

and

D =

(

0 0

0 γ

)

, S =

(

0

σ

)

.

with σ, γ being invertible n × n matrices. Note that the

noise acts only on the generalized momentum variables

1Strictly speaking, the notation Ẇ (t) does not make sense as the paths of
the Brownian motion W (t) are nowhere differentiable. However we use this
notation for the sake of convenience and point out that the second equation
has to be understood in the integral sense; see, e.g., [7].
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(xn+1, . . . , x2n). This entails that the usual Itô-Stratonovich

dichotomy for stochastic differential equations vanishes, such

that (2) behaves as an ordinary differential equation under

point transformations [8]. From now on we call (2) a

Langevin equation with (1) appearing as a special case.
If γ = γT > 0 the system is stable, i.e., for all

stable critical points e ∈ P of the energy function H , the

eigenvalues of (J −D(e))∇2H(e) lie in the open left half

complex plane (cf. [9]). An important entity associated with

(2) is its infinitesimal generator

L =
1

2
SST : ∇2 + (J −D)∇H · ∇ (3)

that generates the semigroup of solutions, where A : B =
tr(ATB) denotes the matrix inner product. If all coefficients

in (3) are sufficiently smooth, then the operator L satisfies

Hörmander’s condition, i.e., L is hypoelliptic [10]. As a

consequence, (2) has an ergodic invariant measure dρ with

full topological support that is obtained as the solution of

the stationary adjoint equation L∗ρ = 0. If moreover friction

and noise coefficients satisfy the relation

2γ = σσT ,

then the solution of (2) is ergodic with respect to the

Boltzmann measure dρ ∝ exp(−H), i.e., any infinitely long

realization of the Langevin process samples ρ.

A. Linear Langevin equation

In this article we will consider only linear Langevin

equations. That is, we study the Langevin equation (2) with

H(x) =
1

2
xTEx , E = ET > 0

and the matrices D, S being constant. The reader may think

of this linear Langevin system as, e.g., the Markovian limit

of an optimal prediction strategy of a linearized Hamiltonian

system or simply as a linearization of a nonlinear Langevin

equation around a stable equilibrium (see the example be-

low). With D ∈ R
2n×2n as given above, the drift matrix

A = (J − D)E is Hurwitz, i.e., all eigenvalues have

strictly negative real part. Hence x = 0 is the unique stable

equilibrium of the deterministic dynamics.
Given X0 = x, the solution Xt, t > 0 of the linear

Langevin is given by the stochastic integral [7]

Xt = x+

∫ t

0

AXt dt+

∫ t

0

S dWt .

As is straightforward to verify using Itô’s formula, the last

equation is equivalently expressed as

Xt = eAtx+

∫ t

0

eA(t−s)S dWs . (4)

We stress that some of the considerations in this article carry

over to the nonlinear case as well, such as the large deviations

principle — at least on a formal level. However the analysis

may differ in the details and we feel that most of the ideas can

be stated in a more transparent way for the linear problem;

so we shall stick to this case here. For balancing of nonlinear

control systems we refer to, e.g., [11].

III. A LARGE DEVIATIONS PRINCIPLE

The Hörmander property of the Langevin equation essen-

tially guarantees that the noise in the system spreads over the

full phase space as the system evolves in time which implies

that the system (2) is completely controllable in the sense

of control theory [12]. A notion of stochastic controllability

of is provided by large deviations theory; see, e.g., [5], [13].

Let us briefly recall some basic concepts: For ǫ > 0, we

consider the family of stochastic Langevin equations

ẋ = (J −D)∇H(x) +
√
ǫSẆ (5)

with x(0) = x that have the solutions

Xǫ
t = eAtx+

√
ǫ

∫ t

0

eA(t−s)S dWs ,

again with the abbreviation A = (J−D)∇2H(x). Let further

C([0, T ]) be the space of continuous functions taking values

in P = Q × R
n, and H1([0, T ]) the space of absolutely

continuous functions with values in P and square-integrable

derivatives. We assume that for all t < ∞ the solutions Xǫ
t

of (5) are continuous, and we denote by P
ǫ
x the probability

measure induced on C([0, T ]) by the processes Xǫ
t starting

at Xǫ
0 = x. We introduce the rate function

Ix(f) = inf
u∈H1, f=F (u)

1

2

∫ T

0

|u̇(t)|2 dt (6)

with u(0) = 0 and f = F (u), where F : H1([0, T ]) →
C([0, T ]) is given by

F (u)(t) = eAtx+

∫ t

0

eA(t−s)Su̇(s) ds . (7)

We declare that Ix(f) = ∞ if there is no u ∈ H1 such

that f = F (u). The idea of the thus defined rate function

is to replace Wt by its polygonal approximation. Due to

the scaling of the noise term in (5) the approximation error

‖f(t) −Xǫ
t ‖ vanishes as ǫ goes to zero, so we may expect

that the smooth approximation does not influence the final

result. We state the large deviations principle (LDP) that can

be found in [13]:
Proposition 3.1: Let Xǫ

t : [0, T ] → P with T < ∞ be

the random solution of (5) with Xǫ
0 = x fixed. Then the rate

function Ix(·) is lower semi-continuous, and Xǫ
t satisfies a

LDP. That is, for each open set A ⊂ C([0,∞])

lim inf
ǫ→0

ǫ log P
ǫ
x

(

Xǫ
(0,T ] ∈ A

)

≥ − inf
f∈A

Ix(f) ,

whereas for each closed set B ⊂ C([0,∞])

lim sup
ǫ→0

ǫ log P
ǫ
x

(

Xǫ
(0,T ] ∈ B

)

≤ − inf
f∈B

Ix(f) .

Notice that the infinum in the rate function Ix(·) is taken

over functions u ∈ H1 that are smoother than the ordinary

realizations of the Brownian motion. Roughly speaking,

the LDP makes an assertion concerning the probability of

smooth solutions of the Langevin equation in the limit of

weak noise. In other words, we may treat the white noise

process Ẇ (t) in (2) like a smooth control variable, provided

that the matrix S is sufficiently small in any appropriate

matrix norm. For details we refer to [3].
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A. Controllability and observability

The above considerations suggest that a controllability

function for (2) can be defined in the following fashion:

Lc(z) = inf
f(T )=z

I0(f) , (8)

where the rate function Ix=0(f) is given by (6) and f =
F (u) is defined according to (7) with x = 0. The function Lc

describes the minimal energy that is needed for the process

to reach z ∈ P after time t = T , when it was started at

x = 0 at time t = 0. Note that, by definition, Lc = ∞ when

u /∈ H1. Now we can state:

Proposition 3.2: Consider the Langevin equation (2) with

constant D,S ∈ R
2n×2n and quadratic Hamiltonian H , such

that A = (J −D)∇2H(x) is Hurwitz. Then, for all z 6= 0,

the controllability function Lc(z) > 0 is given by

Lc(z) =
1

2
zTK−1

T z , (9)

where KT = cov(XT ) is the covariance matrix of the

unscaled Langevin process (4) at time t = T .

Proof: We start by revisiting the well-known property

of linear control systems to have a quadratic controllability

function, and then show that it can be expressed in terms

of the covariance matrix. Regarding the first, let f = F (u)
with u ∈ H1 be such that f(T ) = z and consider the linear

mapping C : H1([0, T ]) → P defined by

Cu =

∫ T

0

eA(T−s)Su̇(s) ds .

By construction, we have z = Cu. The adjoint map C∗ :
P → H1([0, T ]) is defined by means of the inner products

〈z, Cu〉
R2n = 〈C∗z, u〉H1 .

Hence,

(C∗z) (t) = ST eAT (T−t)z

is an admissible approximation of Ẇ , such that the process

reaches z at time T . Since A is Hurwirtz and (2) is com-

pletely controllable the map C is onto. Consequently, the

map CC∗ : P → P is invertible. Now consider any u ∈ H1

with z = Cu. The optimal such u is given by minimizing

‖u‖2
H1 = ‖u̇‖2

L2 subject to the constraint z = Cu. The

solution to this problem is given by the projection theorem:

u̇0 = C∗ (CC∗)
−1
z .

Obviously u0 ∈ H1 and we can use (8) together with the

definition of the rate function to obtain

Lc(z) =
1

2
zT (CC∗)

−1
z .

This completes the first part of the proof. As for the identity

CC∗ = cov(XT ), consider the solution

Xt =
√
ǫ

∫ t

0

eA(t−s)S dWs

of the Langevin equation (2) for the initial value X0 = 0.

Since EXt = 0, the covariance matrix turns out to be

cov(Xt) = EXtX
T
t

= E

(
∫ t

0

eA(t−s)SdWs

∫ t

0

dWT
s S

T eAT (t−s)

)

which, by using the Itô isometry, can be recast as

cov(Xt) =

∫ t

0

eA(t−s)SST eAT (t−s) ds

=

∫ t

0

eAsSST eAT s ds .

The assertion follows upon noting that CC∗ = cov(XT ).
As T goes to infinity, the Gramian CC∗ converges to the

equilibrium covariance matrix of the Langevin process that

is well-defined for A being Hurwitz. Using integration by

parts in the expression of KT = cov(XT ) for T → ∞,

the equilibrium covariance K is the unique and symmetric

positive-definite solution of the Lyapunov equation

AK +KAT = −SST .

Observability of the stochastic Langevin equation can be

established in the standard way as for any other controlled

ordinary differential equation; see [1]. To this end, we write

the observed Langevin equation in the common form of a

port-controlled Hamiltonian system [14]

ẋ = (J −D)∇H(x) + SẆ

y = R∇H(x) .
(10)

We can now define the observability function by disregarding

the noise contribution, viz.,

Lo(x) =
1

2

∫ T

0

|y(t)|2 dt , (11)

where y(t) = R∇H(f(t)) with f = F (0) being the solution

of the deterministic dynamics with initial condition f(0) =
x. Since f(t) = exp(At)x, the observability function reads

Lo(x) =
1

2
xTOTx ,

where OT denotes the finite-time observability Gramian

OT =

∫ T

0

eAT tGTGeAt dt , G = R∇2H(x) .

Again, as we let T go to infinity, the observability Gramian

can be represented as the unique positive-definite symmetric

solution of the Lyapunov equation

ATO +OA = −GTG .

IV. BALANCED TRUNCATION

Controllability and observability Gramians both have sug-

gestive physical interpretations: The controllability Gramian

K measures to which extend states are excitable by the

noise. Given two states x1 and x2 with |x1| = |x2|, x1 is

more sensitive than x2, if xT
1 Kx1 > xT

2 Kx2. Conversely,

disregarding the noise, x1 is better to observe than x2, if it

produces a higher output energy, i.e., if xT
1 Ox1 > xT

2 Ox2.
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Balancing consist in finding a coordinate transformation,

such that states can be simultaneously ordered according to

the excitability and their output energy. This is achieved by

finding a transformation x 7→ Tx that makes both Gramians

equal and diagonal, viz.,

T−1KT−T = TTOT = diag(σ1, . . . , σ2n) .

A basis result is that such a transformation exists, whenever

the Gramians are positive definite. Moreover the Hankel

singular values σ1, . . . , σ2n are invariant under coordinate

changes. In the balanced coordinates those states that are

least excitable also give the least output which legitimates

to neglect them, provided the corresponding Hankel singular

values are sufficiently small (truncation).

The linear Langevin equation (10) resembles a stable port-

controlled Hamiltonian system. In [6] it has been demon-

strated that constraining the system to the even-dimensional

subspace U ⊂ P of the most controllable and observable

states results again in a stable port-Hamiltonian system. In

point of fact, the problem reduces to imposing a holonomic

constraint on a Hamiltonian system, either directly by restric-

tion or by employing singular perturbation techniques. If the

constraint U ⊂ P is holonomic (i.e. integrable), imposing

constraints for the stochastic Langevin equation works in

the same manner as for any other Hamiltonian systems; we

refer to [8] for the details regarding the constraint problem

for stochastic differential equations.

The considerations in [6] carry over to the Langevin

problem – at least partially. Given coordinates z =
(z1, . . . , z2k), k < n on U ⊂ P , the truncated version of

the Langevin equation (10) reads

ż = (Jr −Dr)∇Hr(z) + SrẆ

y = Rr∇Hr(z) ,
(12)

with Jr −Dr = V1(J −D)V T
1 , Sr = V1S and Rr = RV T

1 ,

where V1 contains the first 2k < 2n rows of V = T−1. The

reduced Hamiltonian is obtained simply by restriction, i.e.,

Hr =
1

2
zTErz , Er = TT

1 ET1 .

Here T1 consists of the first 2k columns of T . The reduced

system is stable, i.e., the matrix Ar = (Jr −Dr)∇2Hr(z) is

Hurwitz. (Alternatively, one may replace Er by the the Schur

complement of the balanced matrix Ẽ = TTET resulting

also in a stable reduced system.) Moreover Jr = −JT
r

is skew-symmetric as is easily seen. Note that, if that the

original system satisfied the fluctuation-dissipation relation

2D = SST , then the same is true for the truncated system.

Nonetheless some care is needed in the interpretation of

the noise term, for the dimension of the Brownian motion

W (t) ∈ R
n has not changed. Consequently it may happen

that 2k < n which implies that the process is no longer

Langevin, and it matters whether we regard the equation

either as an Itô or an Stratonovich equation.

A final remark is in order. The usual singular perturbation

argument of Balanced Truncation does not directly apply in

the presence of unbounded white noise. If the noise is acting

on the subsystem that corresponds to the smallest singular

values contains noise, the dynamics does not contract to the

controllable and observable subspace as the small Hankel

singular values go to zero; cf. [6]. In fact, the variables be-

come distribution-valued (in the sense of probability theory)

which brings us into the realm of averaging techniques [15].

A. Empirical state-space decomposition

The argument from Section III establishes a relation

between controllability of linear control systems and the

covariance matrix of a stable linear stochastic differential

equation. Given any (discrete) realization {X0, X1, . . .} of

(2), we define the empirical covariance matrix by

KN =
1

N

N−1
∑

i=0

(

Xi − X̄N

) (

Xi − X̄N

)T
,

where

X̄N =
1

N

N−1
∑

i=0

Xi .

By stability and ergodicity of the Langevin process we

have KN → K as N → ∞ with probability one for

almost all initial conditions X0 = x. Likewise, we may

compute the observability Gramian O from realizations of

the adjoint system (complete observability assumed), which

is numerically feasible, even if the system’s dimension is too

high so as to solve the corresponding Lyapunov equations.

The empirical covariance matrix is the chief ingredient for

computing low rank approximants of a given data set. For

{X0, X1, . . . ,XN−1}, the optimal rank-2k approximation

min
Θk

N−1
∑

i=0

‖Xi − ΘkXi‖2 s.t. Θ2
k = Θk

is obtained by choosing Θk to be the orthogonal projection

onto the first 2k eigenvectors of KN . Upon replacing the

Euclidean inner product in the last equation by the Gramian-

weighted one, ‖x‖O =
√

〈Ox, x〉 and letting N → ∞,

the projection method recovers the Balanced Truncation

subspace as has been pointed out in [16]; cf. also [17].

B. Diffusive limit

Balanced Truncation as carried out in the just described

way preserves the port-Hamiltonian structure of the Langevin

equation, let alone the exact meaning of the noise term. How-

ever there may be situations in which structure-preservation

may be relaxed in favour of a physical considerations.

An interesting object in this respect the diffusive limit

of the Langevin equation that also known by the name of

diffusive limit or Smoluchowski equation. The following

remarkable result is due to Nelson [18]; we have adapted

it so as to fit our framework.

Proposition 4.1: Let (Qǫ
t, P

ǫ
t ) denote the solutions of

q̇ =
∂Hǫ

∂p

ṗ = −∂H
ǫ

∂q
− γ

∂Hǫ

∂p
+ σẆ ,
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where friction and noise coefficients satisfy 2γ = σσT , and

Hǫ is a family of Hamiltonians given by

Hǫ(q, p) =
1

2ǫ
pTM−1p+

1

2
qTLq .

Then, as ǫ → 0, the process Qǫ
t converges with probability

one to a diffusion process Q0
t that is the solution of

γq̇ = −Lq + σẆ . (13)

The diffusive limit of the Langevin equation is an exam-

ple of a model reduction procedure, in which the reduced

equations have a genuinely different structure (second-order

vs. first-order). Nonetheless we can interpret the above result

nicely in terms of Balanced Truncation as we shall illustrate

with a simple example. For x1 ∈ R, consider the equation

ǫẍ1 = −x1 − ẋ1 +
√

2Ẇ , (14)

that describes damped oscillations of a stochastic particle of

mass ǫ. If we rescale the free variable according to t 7→ ǫt
the last equation turns out to be equivalent to the system2

ẋ1 = x2

ẋ2 = −ǫx1 − x2 +
√

2ǫẆ .
(15)

By standard perturbation arguments, we might guess that, as

ǫ→ 0, the dynamics degenerates to the system

ẋ1 = x2

ẋ2 = −x2 ,

which implies x2 ≈ exp(−t)x2,0 and x1 ≈ −x2 for ǫ ≪ 1.

However we have to be careful in neglecting terms involving

ǫ, for the white noise is unbounded and, hence, both ǫẋ1 and√
2ǫẆ can be become arbitrarily large, no matter what ǫ is.

Now suppose that we observe only the position component

y = x1 of the system (15). As the noise amplitude is small

for ǫ≪ 1 the large deviations principle of Section III applies,

thus we can study controllability and observability of the

system. The two Gramians are easily found, viz.,

K =

(

1 0
0 ǫ

)

, O =
1

2ǫ

(

1 + ǫ 1
1 1

)

.

The corresponding Hankel singular values are

σ1/2 =
1

2

√

1 + 2ǫ±
√

1 + 4ǫ

ǫ

yielding σ1 ∼ 1/
√
ǫ and σ2 ∼ √

ǫ for ǫ → 0. Computing

the balancing transformation and truncating the low energy

modes for ǫ≪ 1, we obtain the diffusion equation

ξ̇1 = −ǫξ1 +
√

2ǫẆ

with the single balanced variable ξ1 = x1 as the reduced

form of the scaled Langevin equation (15). If we scale back

to the original time scale by ǫt 7→ t, we find that x1 in

the original problem (14) is best described by the diffusion

process X0
t that is the solution of

ẋ1 = −x1 +
√

2Ẇ ,

2Notice that the white noise scales according to Ẇ (t) 7→
√

ǫẆ (t/ǫ).

Fig. 1. Helical conformation of 8-alanine

which in fact is of the diffusive limit form (13). The last

equation defines a Gaussian diffusion process X0
t with

EX0
t = e−tx1,0 , cov(X0

t ) = 1 − e−2t .

V. MOLECULAR DYNAMICS

We want to study Balanced Truncation for a realistic

molecular system: the backbone angle dynamics of 8-alanine

in water at 300K. The corresponding Hamiltonian is clearly a

nonlinear function in the dihedral angles and their conjugate

momenta, so we linearize around a stable fixed point. Such a

fixed point is, e.g., given by the stable helical conformation

of the alanine molecule (see Fig. 1).

As the system’s Hamiltonian is typically given in Cartesian

coordinates rather than dihedral angles, we employ a data-

based ansatz, whereupon the right-hand side of the Langevin

equation is estimated from an observation time series consist-

ing of 7 backbone angles pairs q = (φ2, ψ1, . . . , φ8, ψ7) and

their angular velocities q̇ = dq/dt. The molecular dynamics

simulation is performed with the GROMOS force field and

implicit solvent with a 1fs time step and total length of 1ns.

The angular velocities are obtained accurately via force field

evaluations within the GROMOS package. The dynamics

was restricted to the helical conformation such that the

assumption of linear Langevin dynamics seems reasonable.

The parameters of the respective linear Langevin equation

Mq̈ = −Lq − γq̇ + σẆ (16)

are estimated using the maximum-likelihood routine de-

scribed in [19], assuming dissipation-fluctuation relation

2γ = σσT to hold. From the optimal parameters (see Fig. 2)

we then compute the Hankel singular values that are shown

in Figure 3 where, as before, we have chosen the observable

y = q. We see that the singular values are quickly decaying

with three dominant ones.
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Fig. 2. Optimal model parameters of the linearized Langevin equation
around the helical conformation. Upper panel: mass M and stiffness matrix
L. Lower panel: friction and noise coefficients, γ and σ.

By looking at the corresponding transformation matrix

(upper panel in Fig. 3) we see that the most pronounced

modes are essentially configuration variables (i.e., angles),

where the largest contributions to these modes come from

the central dihedral angles of the alanine backbone. The last

observation might probably be caused by lower mobility of

the (implicit) solvent in the central regime of the peptide.

The finding that the most pronounced modes are essen-

tially configuration variables is in agreement with our finding

about the diffusive limit: as Figure 2 shows, mass and the

friction matrix are about two orders of magnitude larger than

the stiffnesses. In order to understand the effects of this

difference in scaling let uns introduce

M =
1

ǫ
M0 , γ =

1

ǫ
γ0 , σ =

1√
ǫ
σ0 ,

and define the ”compressed” time τ = ǫt, we see that the

Langevin equation (16) is indeed of the form (14), namely,

ǫM0
d2q

dτ2
= −Lq − γ0

dq

dτ
+ σ0Ẇ ,

where M0, L, γ, σ are all of order 1. To further emphasize the

effect of scale separation we compare the computed Hankel

singular values and the balancing transform for the estimated

parameters M,L, γ, σ with the upscaled parameters M 7→
µM and γ 7→ µγ (accordingly: σ 7→ √

µσ), while keeping

the stiffness matrix L fixed. The result for µ = 100 is shown

in the lower panel of Figure 3. It turns out that as µ increases,

half of the Hankel singular values goes to zero (uniformly

proportional to 1/
√
µ). In the same way the contribution

of the momenta to the dominant modes disappears, and the

dominant modes become purely configurational.
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Fig. 3. Hankel singular values and the corresponding inverse balancing
transformation. Upper panel: Hankel SV and the first three rows of T−1

for µ = 1 (estimated parameters). Lower panel: Hankel SV and the first
three rows of T−1 for µ = 100 (the largest SV has been scaled to unity).
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