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Abstract— In this paper we recursively estimate the magnetic
and electric potential of the Earth’s Arctic region. We construct
estimates based on data gathered from over 85 magnetometer
sources and several radar sites dispersed around the North
Pole. The approach to estimating the Arctic polar cap electric
potential is through data assimilation based on linear and
nonlinear Kalman filters. We demonstrate that the magnetic
and electric potential over the Arctic region can be approxi-
mately reconstructed from sparse, nonuniform magnetometer
and radar data sources.

I. INTRODUCTION

Our goal is to develop techniques for estimating and fore-
casting polar region electric and magnetic potential fields.
These fields impact society in various ways. For example,
large fluctuations in the ionospheric potential can drive large
current spikes in municipal power grids. These unexpected
currents can overload and destroy power transformers. In
fact, in 1989 an extreme event occurred in Quebec, causing
a power grid failure that left six million residents without
electricity [9]. The ability to predict spikes in ionospheric
currents may allow utility suppliers to take action to prevent
the destruction of transformers and eliminate power disrup-
tion to its customers.

Fluctuations in the ionospheric magnetic potential can also
impact satellite systems orbiting the Earth, specifically, the
Global Positioning System (GPS). The accuracy of GPS
depends on measuring the transit time of signals from Earth-
based receivers to the satellites. Fluctuations in the magnetic
and electric potential can significantly alter the state of the
ionospheric electron density, which subsequently alters the
propagation time of these signals and reduces the accuracy
of navigation systems.

We use data gathered from magnetometers and radars in
northern Canada and northern Europe. As outlined in Table
I, a linear Kalman filter (KF) is employed to estimate the
magnetic potential. The electric potential is estimated using
both a KF and an unscented Kalman filter (UKF).
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TABLE I
DATA ASSIMILATION OUTLINE

Mag. Data Radar Data Both
Magnetic Potential KF - -
Electric Potential UKF KF or UKF UKF

II. MAGNETIC POTENTIAL ESTIMATION MODEL

The Earth’s magnetic potential field can be viewed as a set
of contours that outline areas of equal potential. To approx-
imate these contours, a grid is constructed from 44◦ to 90◦

latitude and from 0 h to 24 h, where 0 h corresponds to the
longitude at midnight in a Sun-fixed coordinate frame. Here,
latitude and longitude refer to geomagnetic coordinates. Each
point of intersection of the grid lines is a pixel of the image.
The number of pixels is n = nlatnlong, where nlat is the
number of latitude divisions and nlong is the number of
longitude divisions . We assemble the data into matrices of
size nlat × nlong. Specifically, the magnetic potentials are
represented by

Gψ,k ,


ψlat1long1 · · · ψlatn long1

ψlat1long2 · · · ψlatn long2

...
. . .

...
ψlat1longn

· · · ψlatn longn

 ∈ Rnlat×nlong ,

(1)
where ψlongi lati is the magnetic potential ψ at longitude
longi and latitude lati . It is convenient to represent Gψ,k
as the column vector

Ψk , vec Gψ,k ∈ Rn, (2)

where Ψk = [ψk,1 · · ·ψk,n]T. We model the magnetic
potential field as a linear discrete-time system of the form

xk+1 = Akxk + wk, (3)

yk = Ckxk + vk, (4)

where xk = Ψk is the magnetic potential field at time k.
Since the model is assumed to be static, the transition matrix
Ak ∈ Rn×n is given by

Ak = I . (5)

Furthermore, wk ∈ Rn represents the effects of disturbances
on the magnetic field, yk ∈ Rq is the vector of sensor
measurements, and vk ∈ Rq is the measurement noise.
Therefore Ck ∈ Rq×n. Henceforth we drop the time index
k for simplicity.
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The components of y are the ground magnetic field
perturbation readings, obtained from over 85 magnetometers.
These magnetometers are roughly globally distributed over
land masses. Only magnetometers poleward of 50◦ magnetic
latitude are utilized in this study. It should be noted that
magnetic and geographic latitude are different, since the
magnetic north pole is 11◦ south of the geographic north
pole toward Canada.

To estimate the ground magnetic potential field ~Bg, the
magnetic potential field perturbation readings are assumed
to approximate the magnetic potential gradient given by

~Bg = ∇ψ. (6)

Each magnetometer measures field perturbations in three
directions, namely, vertical, north, and east of the Earth-
fixed frame at the magnetometer’s location. In spherical
coordinates, ~Bg is given by

~Bg =
∂ψ

∂r
r̂ +

1
Re

∂ψ

∂θ
θ̂ +

1
Re sin θ

∂ψ

∂φ
φ̂, (7)

where r̂, θ̂, and φ̂ are unit vectors in the vertical, northerly
and easterly directions, respectively, and Re is the radius of
the Earth. Furthermore, we define Θ , vec Gθ ∈ Rn and
Φ , vec Gφ ∈ Rn analogously to (1), where θ and φ are
latitude and longitude, respectively.

Letting qE and qN represent the number of east and north
measurements, respectively, the observation matrix can be
represented as

C =
[
CE

CN

]
,

where CE ∈ RqE×n and CN ∈ RqN×n. The vertical
direction measurements are not used. For i = 1, . . . , qE, the
entries of C corresponding to an easterly sensor measurement
yE,i located at pixel j are

Ci,j+nlat =
1

2Re(sin Θj)(Φj+nlat − Φj)
, (8)

Ci,j−nlat =
−1

2Re(sin Θj)(Φj−nlat − Φj)
, (9)

For i = qE + 1, . . . , qE + qN, the entries of C corresponding
to a northerly measurement yN,i located at pixel j are

Ci,(j−1) =
1

2Re(Θj−1 −Θj)
, (10)

Ci,(j+1) =
−1

2Re(Θj+1 −Θj)
. (11)

A. LINEAR KALMAN FILTER

Since the observations yk are linear functions of the
magnetic potential field we use the KF to estimate the
magnetic potential over the grid. A forecast estimate xf

k+1

and forecast error covariance P f
k+1 at time k+ 1 are defined

as
xf
k+1 = Akx

da
k , (12)

P f
k+1 = AkP

da
k AT +Q, (13)

where Q is the process noise covariance and P da
k is the error

covariance at time k. For the data assimilation step, the data
injection gain K is

Kk+1 = P f
k+1C

T
k+1(Ck+1P

f
k+1C

T
k+1 +R)

−1
, (14)

where R is the measurement noise covariance. The data
assimilation step is

xda
k+1 = xf

k+1 +Kk+1(yk+1 − Ck+1x
f
k+1). (15)

The error covariance is updated by

P da
k+1 = (I −Kk+1Ck+1)P f

k+1. (16)

Two diagnostics are used to assess the KF performance.
The mean standard deviation of the error, which is obtained
from the error covariance matrix, is analyzed. Next, the
measurement residual is examined. Acceptable performance
occurs when the measurement residual yk− ŷk is within ±3
σy,k, where

σy,k ,
√
Ck+1P f

k+1C
T
k+1 +R (17)

is the measurement error standard deviation for a sensor y
at time k.

B. MAGNETIC POTENTIAL ESTIMATION

The model parameters are initialized with data from May
1st 1998 from 00:00 to 23:59 UT. The optimal Kalman filter
presented in Section II-A is based on error covariance Q and
measurement covariance R. These values are not known and
must be estimated to use the KF. We introduce the estimated
error covariance Q̂ and estimated measurement covariance
R̂. In particular, Q̂ is estimated by scaling the electric
potential covariance taken from the assimilative mapping
of ionospheric electrodynamics (AMIE) data sources [8].
Furthermore, R̂ is chosen to be a diagonal matrix with entries
R̂i,i = σ2

yi , where σyi is the standard deviation of the
measurement yi for the sampled time period. The initial error
covariance matrix P is chosen to be a diagonal matrix with
entries Pi,i = 104. Choices for Q̂, R̂ and P̂ are determined
and adjusted based on the results of the filter diagnostics.

The KF is used to assimilate the magnetometer data,
yielding an image of the polar magnetic potential as shown in
Figure 1(a). The black circles are the magnetometer locations
at 06:00 Z UT. Dominant high and low areas can be observed
in the image. Figure 2 shows the trace of the error covariance
matrix from 00:00 to 23:59 Z UT. The error approaches
steady state at approximately 100 minutes after midnight.
The final diagnostic is the analysis of the measurement resid-
ual over the time period. Figures 3 and 4 show measurement
residual plots from two different sensors. The measurement
residuals are within ±3 standard deviations of measurement
residual error. In the absence of true magnetic potential
values for comparison, the diagnostics and images are used
to detect anomalous estimation errors.
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(a) Magnetic Field May 1, 1998 6h:00 Z

Fig. 1. Polar magnetic potential field. Dominant high and low areas
can be seen in the image. The black circles indicate magnetometer
locations at this time period.

Fig. 2. Mean error standard deviation. The standard deviation starts
to converge at about 100 minutes past midnight on May 1st 1998.

(a)

Fig. 3. Example of easterly measurement residual.

(a)

Fig. 4. Example of northerly measurement residual.

III. ELECTRIC POTENTIAL ESTIMATION MODEL

The electric potential field is estimated with the same
method used for the magnetic potential field. The measure-
ments for estimating the polar electric potential are drift
velocity readings from the SuperDARN radar network [6]
and magnetometer readings from AMIE. The model used for
electric potential is similar to the one presented in Section II.
Three methods for electric potential estimation are presented,

a linear KF with drift velocity measurements, the UKF
with magnetometer measurements, and the UKF with drift
velocity and magnetometer measurements.

We use the discrete-time linear model (3),(4) with the state
vector xk redefined as the electric potential at each pixel. To
construct an observation matrix we introduce drift velocity
measurements ~V , which are related to the electric field ~E by

~V =
~E × ~B

B2
∈ R3, (18)

where ~B is the magnetic field of the earth. The data for
~B = [Br Bθ Bφ]T is generated using the International
Geomagnetic Reference Field (IGRF). The electric field is
related to the electric potential ψ by

~E = −∇ψ. (19)

The drift velocity in spherical coordinates is therefore

~V =
1
B2

(
Bθ∂ψ

Re sin θ∂φ
− Bz∂ψ

Re∂θ

)
r̂

+
1
B2

(
Bφ∂ψ

∂r
− Br∂ψ

Re sin θ∂φ

)
θ̂

+
1
B2

(
Br∂ψ

Re∂θ
− Bθ∂ψ

∂r

)
φ̂

where Re is the radius of the Earth and r̂, θ̂, φ̂ are unit vectors
in the vertical, northerly, easterly directions respectively. The
radars measure flow toward or away from their location, that
is, a line-of-sight measurement, as described by [2]. Each
line-of-sight measurement intersects the local longitude at
an angle α, such that the measurements are scalar values,
where

V = sinα

(
Br

B2Re

∂ψ

∂θ
−
Bθ

B2

∂ψ

∂r

)
+cosα

(
Bφ

B2

∂ψ

∂r
−

Br

B2Re sin θ

∂ψ

∂φ

)
.

(20)

Because magnetic fields are primarily radial in the polar
ionosphere, and ψ is constant along magnetic field lines,
terms involving ∂

∂r are neglected. The discrete velocity com-
ponents are derived to create C ∈ Rq×n. For i = 1, . . . , q,
the entries of C corresponding to an easterly drift velocity
measurement yi at pixel j are

Ci,(j+nlat) =
Br cosα

2B2Re sin Θj(Φj+nlat − Φi)
, (21)

Ci,(j−nlat) =
−Br cosα

2B2Re sin Θj(Φj−nlat − Φi)
. (22)

For the same measurement yi, the northerly measurements
are

Ci,(j−1) =
−Br sinα

2B2Re(Θj−1 −Θj)
, (23)

Ci,(j+1) =
Br sinα

2B2Re(Θj+1 −Θj)
. (24)

The electric potential is estimated using the same KF
presented in Section II-A. However, the data provided by
SuperDARN includes measurement standard deviation.
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A. LINEAR ELECTRIC POTENTIAL ESTIMATION

The model parameter Q is initialized with data from May
1st 1998 from 00:00 to 08:20 UT, with Q estimated by
scaling the electric potential covariance taken from AMIE
data sources. R is provided from the SuperDARN data.

The error standard deviation in Figure 5 indicates stable
performance, approaching a steady state value at approxi-
mately 100 minutes after midnight. The image shown in

Fig. 5. The mean error standard deviation. The standard deviation
indicates that the filter reaches a steady state before the end of the
time interval.

Figure 6(a) is generated with the Kalman filter and is
compared to the image generated from the AMIE technique
[8]. AMIE is used as a benchmark for filter performance. The
image generated for May 1st shows a valid electric potential
pattern, the high and low area coincide with the AMIE image.
Error in potential pattern trends is shown by the magnitude

(a) KF estimated polar electric potential field.

(b) AMIE estimated electric potential.

Fig. 6. The images are generated for May 1, 1998 5h:00 Z.

of the cross polar potential difference, which is the difference
between the absolute high and absolute low of the electric

potential field. The cross polar difference for AMIE and the
KF estimate are shown in Figure 7. Observing the potential

Fig. 7. The cross polar potential difference is used to determine
if the estimates are producing the correct electric potential trends.
We use this diagnostic to detect filter divergence.

difference and error covariance suggests that the KF produces
acceptable estimates from 01:00 Z to about 04:30 Z UT.
After this time the KF does not track the potential difference
well. Note that the SuperDARN measurements are localized
to a small area of the grid as shown in Figure 6(a), where
the black circles indicate radar locations.

IV. NONLINEAR ELECTRIC POTENTIAL MODEL

To use the magnetometer data for electric potential esti-
mation we consider the nonlinear discrete-time model

xk+1 = Akxk + wk, (25)

yk = H(xk) + vk, (26)

where Ak, xk, wk, vk are defined in Section II. H(·) is a
nonlinear observation function used to relate magnetometer
measurements to the electric potential. Since the KF pre-
sented in Section II-A cannot be used for this system, we use
the UKF. To obtain H(·) we start from the current density
~JH = [Jr Jθ Jφ]T of the polar region, which is

~JH =
−σH∇ψ × ~B

|B|
, (27)

where σH is the hall conductance [3]. The current density is
related to the magnetometer measurements ~Bg by

~Bg =
µ0

4π

∫ ~JH × ~ρ
ρ3

dA, (28)

where µ0 is the permeability of free space. The position of
the current source relative to the magnetometer location is
~ρ = [ρr ρθ ρφ]T. Evaluating the cross product in (27) gives

~Bg =
µ0

4π

∫ (
Jθρφ − Jφρθ

ρ3
r̂ +

Jφρr − Jrρφ

ρ3
θ̂ +

Jrρθ − Jθρr

ρ3
φ̂

)
dA.

(29)

The three components of ~Bg = [Bgz Bgθ Bgφ]T for a
magnetometer m = 1, . . . , q are

Bgzm =

nlat∑
j=1

nlong∑
i=1

µ0

4π

[
Jθi,jρφi,j − Jφi,jρθi,j

ρ3i,j

]
R

2
e sinGθ,ki,j∆θ∆φ,

(30)
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Bgθm =

nlat∑
j=1

nlong∑
i=1

µ0

4π

[
Jφi,jρri,j − Jri,jρφi,j

ρ3i,j

]
R

2
e sinGθ,ki,j∆θ∆φ,

(31)

Bgφm
=

nlat∑
j=1

nlong∑
i=1

µ0

4π

[
Jri,jρθi,j − Jθi,jρri,j

ρ3i,j

]
R

2
e sinGθ,ki,j∆θ∆φ,

(32)

where ∆θ and ∆φ are the dimensions of the unit area we
use to numerically integrate these components.

A. UNSCENTED KALMAN FILTER

To implement the UKF choose 2n+1 sigma points, where
n is the number of states, given by

x̂
(i)
k = x̂k +

(√
(n+ λ)Pk

)T

i
i = 1, . . . , n,

x̂
(n+i)
k = x̂k −

(√
(n+ λ)Pk

)T

i
i = 1, . . . , n,

where Pk is the error covariance and λ = α2(n + κ) − n.
We also create two weighting vectors

W
(i)
s = W

(i)
c = 1

2(n+λ) ,

W
(0)
s = λ

n+λ ,

W
(0)
c = λ

n+λ + (1− α2 + β),

where Ws weights state estimates and Wc weights covariance
estimates. We obtain the forecast estimate by summing the
weighted sigma points

xf
k+1 =

1
2n

2n∑
i=1

W (i)
s xk

(i). (33)

We obtain the state forecast directly from the weighted sigma
points because the model is static. The weighted forecast
error covariance is obtained from

P f
k+1 =

1
2n

2n∑
i=1

W (i)
c

(
x̂

(i)
k+1 − x̂

f
)(

x̂
(i)
k+1 − x̂

f
)T

+Q,

(34)
where Q is the process noise covariance. We then transform
the sigma points into a vector of predicted measurements by
using H(·) such that

ŷ
(i)
k+1 = H

(
x̂

(i)
k+1, k

)
, (35)

where H(·) is (30),(31),(32). The predicted measurements
are weighted and combined to recover the measurement
estimate ŷk+1, where

ŷk+1 =
1

2n

2n∑
i=1

W (i)
s

(
ŷ

(i)
k+1

)
. (36)

The estimated measurement covariance Py and the state
measurement cross covariance Pxy is

Pyk+1 = 1
2n

2n∑
i=1

W (i)
c

(
ŷ
(i)
k+1 − ŷk+1

)(
ŷ
(i)
k+1 − ŷ

)T

+ R,

Pxyk+1 = 1
2n

2n∑
i=1

W (i)
c

(
x̂

(i)
k+1 − x̂f

)
.
(
ŷ
(i)
k+1 − ŷ

)T

,

where R is the estimated measurement covariance. The data
assimilation step requires a data injection gain K based on

Py and Pxy . The gain K is

Kk+1 = Pxyk+1Py
−1
k+1. (37)

The state estimate and error covariance are

xda
k+1 = xf

k+1 +Kk+1(yk+1 − ŷk+1),
P da
k+1 = P fk+1 −Kk+1Pyk+1K

T
k+1.

To determine filter performance we analyze the mean stan-
dard deviation of the error, as in Section II-A. Electric
potential data is available from AMIE for this time period
and resolution, which we use to assess candidate values for
Q̂ and R̂.

B. NONLINEAR ESTIMATION

The model parameters are initialized with data from May
1st 1998 from 00:00 to 08:20 Z UT, with Q estimated by
scaling the electric potential covariance taken from AMIE
data sources. The measurement covariance is

R =
[
Rd 0
0 Rm

]
,

where Rd is the measurement covariance for the drift veloc-
ity measurements from Section IV and Rm is the estimated
magnetometer covariance from Section II-B. The Kalman
filter parameters κ, α, and β are initialized as 0, 1, 2,
respectively.

The error standard deviation for magnetometer only, as
well as with both data sets show that the filter approaches
steady state at about 75 minutes after midnight. The cross

(a) Mean error standard deviation,
magnetometer data only.

(b) Mean error standard deviation,
radar and magnetometer data.

Fig. 8. Mean error standard deviation analysis. In both cases, the
mean error standard deviation reaches steady state approximately
75 minutes after midnight.

polar potential difference plots in Figure 9 show comparable
estimates to AMIE. When compared to the linear filter with
radar data only (Figure 7) the linear filter does not follow
AMIE’s trends 300 minutes past midnight. However, the
UKF and combined data UKF provide acceptable tracking
for the entire simulation. The polar images generated for
May 1 1998, show valid electric potential patterns. The
locations of the highs and lows are within the expected
range and locations. Figures 10(a) and 10(b) are polar images
generated using the unscented Kalman filter. Figure 10(a)
is an image based on magnetometer data, and Figure 10(b)
is based on combined radar and magnetometer data. Figure
10(c) is generated from AMIE data for comparison. The
diagnostics performed on the UKF, namely, the cross polar
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(a) Cross polar potential difference, magne-
tometer data only.

(b) Cross polar potential difference, radar and
magnetometer data.

Fig. 9. Both UKF’s show good estimations of the cross polar
potential difference. The UKF with combined data in Figure 9(b)
shows acceptable tracking for the entire time period.

potential difference show that the nonlinear estimation better
estimates the electric potential field than its linear counterpart
in Section III.

V. CONCLUSION

Using magnetometer and drift velocity measurements,
the polar magnetic and electric potentials were estimated
using linear and nonlinear Kalman filters. The magnetic
and electric potential fields were set up as linear discrete-
time systems, driven by external disturbances. Linear expres-
sions were used to relate magnetometer and drift velocity
measurements to the magnetic and electric potential fields,
respectively. Furthermore, the electric potential was also set
up as a nonlinear discrete-time system, driven by external
disturbances. A nonlinear function was used to relate the
magnetometer measurements to the electric potential field.
The nonlinear filter was used with magnetometer measure-
ments, and with combined drift velocity and magnetometer
data. Results were demonstrated using real data.
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