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Abstract— This paper deals with system identification of new
system dynamics revealed by online introduction of new sensors
in existing multi-variable linear control systems. The so-called
”Hansen Scheme” utilises dual Youla-Kucera parameterisation
of all systems stabilised by a given linear controller to transform
closed-loop system identification problems into open-loop-like
problems. We show that this scheme can be reformulated to
accomodate extra sensors in a nice way. The approach is
illustrated on a simple simulation example.

I. INTRODUCTION

The life-time of a controller for an embedded control

system might be just as long as the life-time of the embedded

system itself, especially if the control system has been de-

signed to handle aging components (e.g. by adaptive control

methods, see for instance [1]) and/or faulty components (e.g.

by fault tolerant control methods, see for instance [2], [3]).

In contrast, the life-time of a high level control system

for a complex, industrial process is typically very short,

as industrial control processes are often characterized by

constant, structural modifications.

The short life-time of high level process control systems

is often a limiting factor for companies, when they have

to decide whether to invest in advanced control design

projects. Obviously, the payback time has to be shorter

than the controller life-time, but this precondition might not

be satisfied for complicated processes that are subject to

frequent, structural changes.

Furthermore, general technological progress may make

new sensor and/or actuator hardware cheaper and more

attractive than at the time of the original design, and re-

structuring (adding) the hardware in the loop may yield

performance improvements that were deemed infeasible or

too expensive at design time.

The problem here is that a vast majority of control design

methodologies are monolithic in the sense that they embark

from a model of an uncontrolled (open-loop) system and

outputs a full, multivariable control system, which does

not exploit any knowledge or functionality from previous

designs. On the other hand, when new sensor and/or actuator

hardware becomes available for use in a control system, it is

often desirable to retain the existing control laws and apply

the new control capabilities in a gradual online fashion rather

than decommissioning the entire existing control system and

replacing it with the new system, see for example [4], [5],

[6], [7].
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In order to utilise the new hardware, some sort of system

identification will typically be required in order to design

controllers with good stability and performance properties.

Furthermore, since large-scale plants are typically not per-

mitted to operate in open loop – the plant might for instance

not operate acceptably without a controller forcing it to stay

within the relevant operating range – closed-loop identifica-

tion of the plant is usually necessary. However, closed-loop

identification tends to be much more difficult than open-loop

identification. It will therefore be convenient to adopt the

system identification to the control strategy in some way,

preferably even to the point of obtaining ‘open-loop-like’

qualities. The so-called Hansen scheme ([8], [9], [10], [11],

[12]) employs the Dual Youla-Kucera parameterisation ([13],

[14]) of all linear plants stabilised by a given controller

to transform the closed-loop identification problem into an

open-loop-like problem. See also [15] and the references

therein.

In this paper, we show how the Hansen scheme can be

reformulated to deal with new measurements that become

available during online operation. The original plant is em-

bedded in a larger system, in which hitherto unobservable

dynamics is revealed by letting a new sensor come online. We

show how the identification of the newly revealed dynamics

is equivalent to the identification of a surprisingly simple

dual Youla-Kucera parameter.

The outline of the rest of the paper is as follows.

Section II first provides an overview of the Youla-Kucera

parameterisation and the Hansen-scheme closed-loop system

identification framework. Section III then presents the main

contribution of this work, an extension of the Hansen scheme

to accomodate new sensor measurements. Section IV then

illustrates the usefulness of the scheme, and finally Section

V sums up the conclusions of the work.

II. DUAL YOULA-KUCERA PARAMETERISATION

In this section we provide some preliminaries, which will

be employed in the subsequent Section III. All results in this

section are equally valid in continuous and discrete time. Our

notation is standard, as established in e.g., [16].

A. Basic Parameterisation

Consider a LTI system G mapping a set of inputs to a set

of outputs:

y = Gu (1)

where y ∈ R
p is the measurement vector and u ∈ R

m is

the input vector. If G is stabilisable and detectable, it can

be stabilised by some appropriate feedback controller, for

instance an observer-based controller (see e.g. [16]).
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Any proper G can be written as a right, respectively left,

coprime factorisation of the form:

G = NM−1 = M̃−1Ñ (2)

with N,M, M̃, Ñ ∈ RH∞. Correspondingly, a controller K

that stabilises G can be factorised as

K = UV −1 = Ṽ −1Ũ (3)

where U, V, Ũ , Ṽ ∈ RH∞. These coprime factorisations can

be chosen to satisfy the double Bezout identity

[

Ṽ −Ũ

−Ñ M̃

] [

M U

N V

]

=

[

M U

N V

] [

Ṽ −Ũ

−Ñ M̃

]

=

[

I 0
0 I

]

(4)

For example, if G has the state space realisation

G =

[

A B

C D

]

(5)

with A ∈ R
n×n, B ∈ R

n×m, C ∈ R
p×n and D ∈ R

p×m

being constant matrices and K an observer-based feedback

controller of the form

K =

[

A + BF + LC + LDF −L

F 0

]

(6)

with F ∈ R
m×n and L ∈ R

n×p chosen such that the

matrices A+LC and A+BF are stable, the double Bezout

identity is satisfied by choosing the factorisation

[

M U

N V

]

=





A + BF B −L

F I 0
C + DF D I



 (7)

[

Ṽ −Ũ

−Ñ M̃

]

=





A + LC −(B + LD) L

F I 0
C −D I



 (8)

It is now possible to characterise all systems stabilised by

a fixed controller by means of a so-called dual Youla-Kucera

parameter S ∈ RH∞. Let some system G, factorised as in

(2), be stabilised by a feedback controller K. Then the set

of all systems stabilised by K is given by

{G : G(S) = (N + V S)(M + US)−1

= (M̃ + SŨ)−1(Ñ + SṼ ), S ∈ RH∞}.

B. The Hansen Scheme

To motivate the usage of the Youla-Kucera parameterisa-

tion in system identification, we first consider normal open-

loop identification of the system G. Some input u is applied

to the system, and corresponding output measurements y

affected by noise ny are obtained. These measurements are

related through

y = Gu + ny

and an unbiased estimate of G can be obtained if u and ny

are uncorrelated. Unfortunately, in a closed-loop setting u is

not uncorrelated with ny , since the noise is fed back through

the controller. To alleviate this, we employ the dual Youla-

Kucera factorisation to recast the closed-loop system identi-

fication problem into an ‘open-loop-like’ problem ([11]).

Assume that a controller K stabilises the plant we wish to

identify, and that some nominal plant estimate G is known,

factorised as in (3) and (2), respectively. Then the set of

all plants stabilised by K can be represented as shown in

Figure 1. Here, n′ = (M̃ +SŨ)ny is the measurement noise

that would normally affect the measurements y, relocated in

the block diagram to affect the output of the Youla-Kucera

parameter instead, and r1 and r2 are external excitation

signals.

r1 - - Ṽ −1Ũ - ?
r2

-
u

-M−1 - N - -
y6 − ?

ζ

S

?�n′

�U

6

- V

6

z

Fig. 1. Dual Youla-Kucera parameterisation used for closed-loop system
identification

By manipulating the block diagram and using (4), it is

possible to check that y = G(S)u + ny . From Figure 1 it is

then possible to deduce (see e.g., [15], but please note that

here we are using positive feedback control) that

ζ = Ũr1 + Ṽ r2 (9)

z = M̃y − Ñu (10)

and, obviously, z = Sζ + n′. ζ and z are available from

filtered measurements. Furthermore, if ny is independent of

r1 and r2, then ζ is independent of n′ as well. Also, S is

known to be stable due to the dual Youla-Kucera theory (cf.

the previous section). Thus, it can be seen that although u

and y are measured in closed-loop, the identification of S

becomes equivalent to an open-loop identification problem.

III. NEW SENSOR MEASUREMENT

We now turn to the problem of identifying new dynamics

revealed by a new sensor plugged into an existing control

system, as mentioned in the Introduction. As the sensor is

plugged into the system, it reveals new information about

the plant, including (possibly) extra dynamics that has been

unobservable from the existing measurements. Preferably, we

wish to identify only the new information revealed by the

plugged-in sensor, possibly including dynamics introduced

by the sensor itself.

Thus, we assume that a nominal model (A,B,C,D) of the

‘old’ plant dynamics has been found, through first-principles

modelling and/or system identification. This model will be

denoted G0 and has the state space realisation (5). G0 is

stabilised by a controller K0 of the form (6). Now, plugging

in a new sensor provides access to a new measurement y1 ∈
R

p1 , which is affected by the internal (unmeasurable) plant

states x as well as the control input u, as depicted in Figure

2. The new measurements are affected by noise ny⋆ , which

is not necessarily uncorrelated with ny .
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G0

G1

K0
- - - -

y0

u

- - -
y1

?
ny

?
ny⋆?x

Fig. 2. Plugging in a new sensor reveals the hitherto unobservable subsystem
G⋆. x denotes the internal state vector of G0.

The plant-controller inerconnection in Figure 2 can be

represented using the following state space representation.

First, we embed G0 in the augmented plant model

G′ =

[

G0

0

]

=





A B

C D

0 0



 (11)

which represents the system before introducing the new

sensor, and when the new sensor is brought on-line we

introduce the new plant

G⋆ =

[

G0

G1

]

=









A 0 B

A21 A22 B2

C 0 D

C21 C22 D2









(12)

where A21, A22, B2,D21,D22 and D2 are unknown matrices

of appropriate dimensions representing G1 and the couplings

from G0. Note that A22 must necessarily be stable, since the

closed loop as a whole is stable.

Next, we augment the controller as

K⋆ =
[

K 0
]

=

[

A + BF + LC + LDF −L 0
F 0 0

]

(13)

and it is easy to check that closing the loop with this

controller and either G′ or G⋆ will yield the same transfer

function from r1 and r2 to y0 as before the sensor was

introduced.

The augmented coprime factorizations corresponding to

(7)–(8) then become

[

M ′ U ′

N ′ V ′

]

=









A + BF B −L 0
F I 0 0

C + DF D I 0
0 0 0 I









(14)

[

Ṽ ′ −Ũ ′

−Ñ ′ M̃ ′

]

=









A + LC −(B + LD) L 0
F I 0 0
C −D I 0
0 0 0 I









(15)

for the old system and

[

M⋆ U⋆

N⋆ V ⋆

]

=













A + BF 0 B −L 0
A21 + B2F A22 B2 0 0

F 0 I 0 0
C + DF 0 D I 0

C21 + D2F C22 D2 0 I













(16)
[

Ṽ ⋆ −Ũ⋆

−Ñ⋆ M̃⋆

]

=













A + LC 0 −(B + LD) L 0
A21 A22 −(B2 + LD2) 0 0
F 0 I 0 0
C 0 −D I 0

C21 C22 −D2 0 I













(17)

for the system with the new sensor. In each of the above ex-

pressions, the dashed lines indicate how the system matrices

on the right-hand side should be partitioned to correspond to

the system blocks on the left-hand side.

Embedding this factorisation in the Hansen framework

introduced in Section II, we can now show the following

result.

Theorem 1: Consider the augmented plant (12) in closed

loop with (13). A dual Youla-Kucera parameter system

that allows open-loop-like identification of the new sensor

dynamics G1 is given by

S =

[

A22 B2 A21

C22 D2 C21

]





A + BF B

F I

I 0



 (18)

Proof: We take the starting point in (9) and first point

out that the augmented system can be written as a function of

the old system by means of a particular dual Youla-Kucera

parameter S = M̃⋆(G⋆ − G′)M ′. To see this, insert this

expression in (9) and use the factorisations G⋆ = (M̃⋆)−1Ñ⋆

and G0 = N ′(M ′)−1 to obtain

G(S) = (N ′ + V ′M̃⋆(G⋆ − G′)M ′) ×

(M ′ + U ′M̃⋆(G⋆ − G′)M ′)−1

= (N ′ + V ′(Ñ⋆M ′ − M̃⋆N ′)) ×

(M ′ + U ′(Ñ⋆M ′ − M̃⋆N ′))−1

Here we use the Bezout identities N⋆Ṽ ′ − V ′Ñ⋆ =
0, V ′M̃⋆ − N⋆Ũ ′ = I and Ṽ ′M ′ − Ũ ′N ′ = I to see that

N ′ + V ′(Ñ⋆M ′ − M̃⋆N ′) = Ñ⋆

Similar, from the Bezout identities N⋆Ũ ′ − U ′M̃⋆ =
0, M̃⋆Ṽ ′ − U ′Ñ⋆ = I and Ṽ ′M ′ − Ũ ′N ′ = I , we see that

M ′ + U ′(Ñ⋆M ′ − M̃⋆N ′) = M̃⋆

and hence G(S) = G⋆. Thus, we may proceed to compute

an expression for S as follows:

S = M̃⋆(G⋆ − G′)M ′

= M̃⋆









A 0 B

A21 A22 B2

0 0 0
C21 C22 D2









M ′
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Now, by looking at M̃⋆ in (17), it is recognised that M̃⋆

receives no input via its first input channel, and its last input

channel is simply an identity matrix. Thus we have

S = M̃⋆









A 0 B

A21 A22 B2

0 0 0
C21 C22 D2









M ′

=









A 0 B

A21 A22 B2

0 0 0
C21 C22 D2









[

A + BF B

F I

]

=













A 0 BF B

A21 A22 B2F B2

0 0 A + BF B

0 0 0 0
C21 C22 D2F D2













=

[

0
S1

]

By a simple state transformation, S1 can be reduced to

S1 =





A + BF 0 B

A21 + B2F A22 B2

C21 + D2F C22 D2





Here, we introduce the filter

Φ =





A + BF B

F I

I 0





This filter takes ζ defined in (9) as input and yields the output
[

Fξ + ζ

ξ

]

= Φζ

where ξ is the state vector of Φ. This allows us to write S

as the factorisation S =

[

0
Γ

]

Φ, where

Γ =

[

A22 B2 A21

C22 D2 C21

]

. (19)

We thus arrive at our main contribution, the setup for the

modified Hansen scheme depicted in Figure 3.

r1 - - K⋆ - ?

r2

-
u

-(M ′)−1 - N ′ - -
y6 − ?

ζ

Φ

?

[

Fξ + ζ

ξ

]

0

Γ

?�n′

�U ′

6

- V ′

6

z

Fig. 3. Hansen scheme for identification of new dynamics

The procedure is straightforward; first generate a data

sequence by adding excitation signals through r1 and r2,

then compute the signals
[

Fξ + ζ

ξ

]

= Φ(Ũ ′r1 + Ṽ ′r2)

and z = M̃ ′y−Ñ ′u by filtering. Γ can now be obtained by a

standard open loop identification method. Once Γ has been

found, the extension parameters in (12) are given directly

by (19). Alternatively, the plant transfer function can be

computed by inserting Γ in the loop in Figure 3.

It is worth noting that this setup carries over the nice non-

correlation qualities of the original Hansen scheme, whereas

identifying the transfer function from u to y1 directly from

closed loop data can cause bias problems, especially if

the noise is correllated with the noise affecting the control

system.

Remark 1 The signals generated by Φ can have a strong

correllation between the elements. This makes it difficult

to identify the matrices in Γ independently, although the

resulting transfer function from u to y1 will usually be

correct. This issue is inherent to the identification problem

itself, and the only solution seems to be to aquire more

data. ⊳

Remark 2 It may be slightly surprising that the setup

depicted in Figure 3 still shows the ’old’ factorisation,

i.e., the factors M ′, N ′, U ′, V ′ rather than M⋆, N⋆, U⋆, V ⋆.

However, this is due to the connection between the old and

the augmented system, i.e., G⋆ = G′(S), where, essentially,

all the new dynamics is isolated in the S1-parameter. ⊳

IV. SIMULATION EXAMPLE

We now illustrate the feasibility of the identification

scheme by a numerical example. We consider the discrete-

time system

xk+1 = Axk + Buk

yk = Cxk + ny

where

A =





0.7 0.7 0.4
0.65 0.3 0.09
−0.8 0.27 0.94



 , B =





0.07
0.03
0.1





C =
[

1 0 0
]

and ny is a Gaussian white noise signal with variance

0.0050. The system is open-loop unstable (with poles in

z = −0.1084, z = 1.0242 ± 0.4047j), so it is not pos-

sible to disconnect the controller to obtain good data for

identification. This system has been chosen because it poses

a relatively difficult identification task when we are only

allowed to impose mild excitation signals.

A stabilizing observer-based controller for the system has

been found using standard optimal control design methods.

The feedback and observer gains were found to

F =
[

−1.5 −2.6 −2.7
]

and L =





−0.36
−0.27
0.23





respectively.
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The system is then augmented with a new sensor, which

has its own dynamics, feedthrough from the control input,

etc. It is described by the following augmented system

matrices specified in (12):

A21 =
[

0 0.1 0.3
]

, A22 = 0.9, B2 = 0.094

C21 =
[

0 0 −0.4
]

, C22 = 1.2,D2 = 0.2

Furthermore, it is affected by Gaussian noise ny⋆ , which is

correlated with ny as given by the covariance matrix

E

{[

ny

ny⋆

]

[

ny ny⋆

]

}

=

[

0.0025 0.0025
0.0025 0.005

]

All the information about the new sensor is considered

unknown at the point where the sensor is brought on-line.
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0

0.5
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−1

0

1

y
n
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w

Samples

Fig. 4. Data sequences for identification. From the top: excitation sequences
r1 and r2, control signal u, old output y0 and new output y1.

We now apply pseudo-random excitation signals r1 and r2

to the control loop as indicated in Figure 3. Figure 4 shows

plots of the excitation signals, the control input, as well as

the ‘old’ output y0 and the new sensor output y1. As can

be seen from the figure, the excitation signals are of small

amplitude compared to u and y and are mainly in the low

end of the frequency spectrum, i.e., they do not interfere

aggressively with the closed-loop operation of the plant.

Next, we filter r1, r2, u and y1 as given in the previous

section and use the filtered signals ζ and z for system iden-

tification of the S parameter system. Figure 5 shows a Bode

plot of the identified system together with the corresponding

Bode plot of the true S (computed using equation (1), with

−30
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M
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0

P
h

a
s
e

 (
d

e
g

)

S

Frequency  (rad/sec)

Fig. 5. Bode plot of S. Solid: True S. Dashed: Identified by Hansen scheme.

the true parameters inserted). As can be seen, there is very

good agreement between the two, especially for frequencies

up to 1 rad/sec.
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g
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 (
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P
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e
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Bode Diagram

Frequency  (rad/sec)

Fig. 6. Bode plot of transfer function from u to y1. Solid: Real. Dashed:
Inserting S identified by Hansen scheme. Dotted: Identified directly

For comparison purposes, we also perform a ‘direct’

system identification, i.e. identifying a transfer function from

u to y1 using these signals directly. We then compute the

transfer function from u to y1 for the true system, using

the S-parameter found above, and the new ‘direct’ identified

model. Bode plots of the results are shown in Figure 6,

from which it is very apparent that the Hansen-scheme-based

model is much closer to the real system than the ‘direct’

identified model. This is most likely because u and y1 are

correlated through the old plant-controller loop, and due to

the fact that the noise signals are correlated.
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Fig. 7. Bode plot of Γ. Solid: Computed from (1). Dashed: Identified by
Hansen scheme.

Finally we take a look at the identified Γ in Figure 7,

comparing it to the real Γ given by (19). As seen, the fit is

very poor, which is not surprising, see Remark 1. Additional

tests indicate that using a much larger data sequence will

make the estimated Γ converge to the correct one, but as

seen above, this is not necessary if we are only interested in

getting the correct transfer function to the new output.

In conclusion, we have demonstrated that the proposed

scheme can identify new dynamics for relatively difficult

unstable systems with only a small amount of excitation.

V. DISCUSSION

Closed-loop system identification is much more difficult

than open-loop system identification, due to the fact that

inputs and noise cannot be considered uncorrelated because

of the controller feedback. The so-called Hansen scheme

is a factorisation-based approach to alleviate some of these

difficulties by taking the starting point in a ‘nominal’ system

model and identifying the unknown dynamics by means of

a dual Youla-Kucera parameter in an essentially open-loop

setting.

This paper showed how the Hansen scheme can be ex-

tended to deal with new measurements that become available

during online operation. The original plant is embedded in

a larger system, in which hitherto unobservable dynamics is

revealed by letting a new sensor come online. It was then

shown how the identification of the newly revealed dynamics

is equivalent to the identification of a surprisingly simple

dual Youla-Kucera parameter.

The novel scheme was shown to be superior to simple,

‘direct’ system identification of the new dynamics in a simple

example. One might argue that similar results can be obtained

by generating signals through a simulation of the closed loop

with only excitation signals as inputs. However, formulating

the problem in the Youla-Kucera-Hansen framework paves

the way for controller redesign and transfer along the lines

demonstrated in [17].
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