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Abstract— The increase of efficiency in the management
of container terminals is addressed via a predictive control
approach to allocate the available handling resources. The
predictive control action results from the minimization of a
performance cost function that measures the lay times of
carriers over a forward horizon. Such an approach to predictive
control is based on a model of container flows inside a terminal
as a system of queues. Binary variables are included into
the model to represent the events of departure or stay of
a carrier, thus the proposed approach requires the on-line
solution of a mixed-integer nonlinear programming problem.
Two techniques for solving such a problem are proposed
that account for the presence of binary variables as well
as nonlinearities into the model and the cost function. The
first relies on the application of a standard branch-and-bound
algorithm. The second is based on the idea of dealing with the
decisions associated with the binary variables as step functions.
In this case, real nonlinear programming techniques are used
to find a solution. Finally, a third approach is proposed that
is based on the idea of approximating off line the feedback
control laws that result from the application of the two previous
approaches. The approximation is made using a neural network,
which allows one to construct an approximate feedback control
law and generate the corresponding on-line control action with
a small computational burden. Simulation results are reported
to compare such methodologies.

I. INTRODUCTION

The problem of an efficient management of container

terminals has been the objective of intensive investigation

from time. Queueing theory may be used for performance

evaluation [1], but it suffers from a poor capability of

describing the dynamic behavior of the container flows inside

a terminal. A similar criticism concerns the approaches based

on a pure static modeling (see, e.g., [2]). As a consequence,

more powerful modeling paradigms were proposed that al-

low one to account for dynamic aspects like, for example,

discrete-event systems [3]. Discrete-event tools allow one to

construct very precise models of the logistic operations car-

ried out in container terminals, but they are quite demanding

from the computational point of view. Such difficulty arises

particularly when a model is used to control a container

terminal in real time.

In this paper, in lines of previous works (see [4], [5]), a

novel approach to container terminals modeling is proposed

that is based on a nonlinear dynamic model of the terminal
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activities, and consists in optimizing the container flows

using a limited amount of resources (i.e., cranes, yard trucks,

and other transfer machines). Using this model, an optimal

allocation of such resources is searched that minimizes a

given performance index according to a predictive-control

strategy. Predictive control is based on the idea of solving

an open-loop finite-horizon optimal control problem at each

time step and applying only the first control action (see [6]

for an overview). The optimization has to be performed over

a forward horizon from the current time instant using the

available information on the container occupancies in the

various areas of the terminal, and the foreseen import and

export flows of the various carrier classes (i.e., typically, for

a maritime terminal, ships, trucks, and trains).

The contribution of this paper can be summarized as

follows. First of all, a novelty is the use of nonlinear

predictive control to manage the handling activities in a

maritime terminal, as a generalization of the results presented

in [4], [5]. The problem we deal with is a mixed-integer

nonlinear programming one, for which we investigated the

use of two methodologies. The first approach consists in

using a standard branch-and-bound technique for nonlinear

programming [7]. The second approach is based on the

idea of treating the decisions associated with the binary

variables that model the departure or stay of a carrier as

nondifferentiable step functions. Thus, real mathematical

programming tools are required to perform the optimization.

Another contribution of the paper consists in applying an

approximation scheme to find suboptimal feedback control

laws. Such laws result from the approximation of the optimal

ones that are obtained via the two above-described method-

ologies. Among the various choices for the family of nonlin-

ear approximators, we focused on neural networks (see, e.g.,

[8]). Such class of approximators includes one-hidden-layer

neural networks, which exhibit another powerful feature that

consists in requiring a small number of parameters (i.e., the

neural weights) to ensure a fixed approximation accuracy,

especially in high-dimensional settings. More specifically,

one-hidden-layer sigmoidal neural networks and radial-basis-

function networks with tunable external and internal parame-

ters may guarantee a good uniform approximation with upper

bounds depending on a number of parameters that grows at

most polynomially with the dimension of the input of the

function to be approximated (see [9]–[11] and the references

therein). According to such an approach, we constructed

suboptimal controllers that take on the structure of a neural

network, whose parameters are chosen by training algorithms

that allow one to approximate the optimal control laws.
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The learning process is computationally demanding, but it

is made off line. By contrast, the on-line use of the resulting

neural controller requires a very small computation.

II. A DYNAMIC MODEL OF TERMINAL OPERATIONS

The model of container flows considered in this paper (see

Fig. 1 for a pictorial sketch) is derived by the modeling

framework reported in [5]. The arrivals of ships, trucks,

and trains are modeled by means of waiting queues (qship,

qtruck, and qtrain), where the various carriers stay until a

berth, a parking lane, or a rail platform for loading/unloading

operations become free, respectively. The number of berths,

parking lanes, and rail platforms is denoted by Nb, Np,

and Nr, respectively. The container queues are denoted

by xb
i (i = 1, 2, . . . , 2Nb), x

p
i (i = 1, 2, . . . , 2Np), xr

i

(i = 1, 2, . . . , 2Nr), and x
y
i (i = 1, 2, . . . , 18), where the

superscript “y” refers to “yard”.

y

8x

y

7x
y

1 0x

y

1 1x

y

1 2x

y

1 3x

y

1 4x

y

1 5x
y

9x

y

1 6x

y

1 7x

y

1 8x

y

1x

y

2x

y

3x

y

4x

y

5x

y

6x

r

1x r

r

Nx +

b

1x b

b

Nx +

b

2x b

b

Nx + b

b

Nx b

b

2 Nx

y

9u
y

6u

y

5u

y

4u
y

7u

y

8u

y

1 0u

y

1 1u

y

1 2u

y

1 3u

y

1 4u

y

1 5u

y

1u

y

2u

y

3u

b

1u
b

2u b

b

Nub

b

Nu + b

b

Nu + b

b

2 Nu

r

1u r

r

Nu +

R M G C

R SR S R S Y T

Y T

Y TR T G C

R T G C

R T G C

R T G C

R T G C

R T G C

Y T

Y T

Y T

Q C
Q C

S H I P S

T R U C K S T R A I N S

h a n d s h a k e  q u e u e s h a n d s h a k e  q u e u e s

r

r

Nx

r

r

Nu r

r

2 Nu

p

1x p

p

Nx +

p

1u p

p

Nu +

p

p

Nx p

p

2 Nx

p

p

Nu p

p

2 Nu
L LL L

L L L L

R M G C

R SR S

b e r t h b e r t h b e r t h bN

1

1

1

1

1

1 2

2

p a r k i n g  l a n e r a i l  p l a t f o r m

s h i pq

t r u c kq t r a i nq

pN rN

1a

2a

3a

1b

2b

3b

11

1 2

r

r

2 Nx

r a i l  p l a t f o r mp a r k i n g  l a n e

L L L L

L L L L

Fig. 1. Queueing model of a container terminal.

The containers to be unloaded from calling ships are in

the queues xb
i (i = 1, 2, . . . , Nb). Each queue corresponds

to a berth, and is served by quay cranes (QCs). Every time

a QC lowers a container down to the quay, there must be

a yard truck (YT) that receives it and promptly takes it to

the rendezvous with the planned rubber tyred gantry crane

(RTGC) in the import area of the storage yard, ready to pick

it up and place it in the yard. This corresponds to the path

from x
y
1 to x

y
4 , x

y
5 , and x

y
6 . Note that ideally there should be

no waiting times in the handshake queues1 x
y
1 , x

y
4 , x

y
5 , and

x
y
6 . Similarly, using reach stackers (RSs) and rail mounted

gantry cranes (RMGCs), the import flows from trucks and

trains are modeled by the queues x
p
i (i = 1, 2, . . . , Np), x

y
2 ,

x
y
4 , and xr

i (i = 1, 2, . . . , Nr), x
y
3 , x

y
4 , respectively. The

presence of containers within the yard is represented by

means of the queues x
y
7 , x

y
8 , x

y
9 , x

y
10, x

y
11, and x

y
12. Such

queues refer to the six areas in which the yard is logically

divided (i.e., import and export areas for ships, trucks, and

trains). The flows from x
y
7 to x

y
10, x

y
8 to x

y
11, and x

y
9 to

x
y
12 represent the rehandling activities (i.e., the movements

of containers from the import area to the export area). The

export flows are modeled by the couples of queues: x
y
13 and

x
y
16 for ships; x

y
14 and x

y
17 for trucks; x

y
15 and x

y
18 for trains.

The storage before the final delivery is made in the queues

xb
Nb+i (i = 1, 2, . . . , Nb) for ships, x

p
Np+i (i = 1, 2, . . . , Np)

for trucks, and xr
Nr+i (i = 1, 2, . . . , Nr) for trains.

The set of all the parameters and the variables of the

model are briefly described in the following. We shall adopt

a discrete-time setting with sampling time ∆T .

The state vector x(t)
△
=

[

xb
1(t), . . ., xb

2Nb
(t), x

p
1(t), . . .,

x
p
2Np

(t), xr
1(t), . . ., xr

2Nr
(t), x

y
1(t), . . ., x

y
18(t)

]T
represents

the queue lengths of containers waiting to be processed at

time t = 0, 1, . . .. Each component of the vector x(t) is

greater than zero or equal to zero. We shall measure the

lengths of the queues in TEU (a TEU corresponds to a typical

20-foot-long maritime container).

The control input vector u(t)
△
=

[

ub
1(t), . . ., ub

2Nb
(t),

u
p
1(t), . . ., u

p
2Np

(t), ur
1(t), . . ., ur

2Nr
(t), u

y
1(t), . . ., u

y
15(t)

]T

is the collection of the percentages of the server capacities

used for container transfers at time t = 0, 1, . . .. Each

component of the vector u(t) lies in the range [0, 1].

The exogenous inputs ab
i (t) ≥ 0 (i = 1, 2, . . . , Nb),

a
p
j (t) ≥ 0 (j = 1, 2, . . . , Np), and ar

l(t) ≥ 0 (l =
1, 2, . . . , Nr) (in TEU) are the number of containers that

enters the terminal at time t = 0, 1, . . . via ships, trucks,

and trains, at the berth i, the parking lane j, and the rail

platform l, respectively.

The parameters µb
i (t) ≥ 0 (i = 1, 2, . . . , 2Nb), µ

p
i (t) ≥ 0

(i = 1, 2, . . . , 2Np), µr
i(t) ≥ 0 (i = 1, 2, . . . , 2Nr), and

µ
y
i (t) ≥ 0 (i = 1, 2, . . . , 15) are the maximum container

handling capacities for the various queues (in TEU/h) at time

t = 0, 1, . . .. Such parameters are related to the number of

available resources and to the corresponding handling rates

of each resource. Toward this end, we assume that each

class of resource is composed of transfer machines with

the same ideal time-varying capacity given by rQC(t) for

QCs, rRMGC(t) for RMGCs, rRS(t) for RSs, rRTGC(t) for

1Following the approach of [5], a queue can be classified as either a
real one or a “handshake” one. In the first case, the actual consignment in
some area is provided, while in the second one there is an on-going transfer
without storage. A real queue corresponds to the occupancy of spaces in
the terminal. A handshake queue describes the delay that may occur when
containers are transferred from one resource to another (i.e., the path from
QCs to the storage yard via YTs). Ideally, the length of an handshake queue
should be kept equal to zero since the higher the lengths of the handshake
queues, the less efficient the terminal operations.
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RTGCs, and rYT(t) for YTs. The total numbers of such

transfer machines are given by nQC, nRMGC, nRS, nRTGC,

and nYT, respectively. Thus, the following relationships

hold:

µb
i (t) = rQC(t)nQC, i = 1, 2, . . . , 2Nb (1a)

µ
p
i (t) = rRS(t)nRS, i = 1, 2, . . . , 2Np (1b)

µr
i(t) = rRMGC(t) nRMGC, i = 1, 2, . . . , 2Nr (1c)

µ
y
i (t) = rYT(t)nYT, i = 1, 2, 3, 13, 14, 15 (1d)

µ
y
i (t) = rRTGC(t)nRTGC, i = 4, 5, 7, 8, 10, 11 (1e)

µ
y
i (t) = rRS(t)nRS, i = 6, 9, 12 (1f)

where t = 0, 1, . . ..

The vector y(t)
△
=

[

yb
1 (t), . . ., yb

Nb
(t), y

p
1 (t), . . ., y

p
Np

(t),

yr
1(t), . . ., yr

Nr
(t)

]T
∈ {0, 1}Nb+Np+Nr is the collection of

the binary variables that are used to model the departure

or stay of a carrier depending on the fact that the planned

loading/unloading operations are finished or not at time t =
0, 1, . . .. For instance, yb

i (t) is equal to 0 when the ship at

the berth i has finished all the loading/unloading operations

and therefore can leave the terminal. Otherwise it is equal to

1. Similarly for the binary variables y
p
i (t) (i = 1, 2, . . . , Np)

and yr
i(t) (i = 1, 2, . . . , Nr). In other words, the variables

yb
i (t) (i = 1, 2, . . . , Nb), y

p
i (t) (i = 1, 2, . . . , Np), and yr

i(t)
(i = 1, . . . , Nr) assume their values as follows:

yw
i (t) =







0 if xw
Nw+i(t)+∆Tµw

Nw+i(t)u
w
Nw+i(t)=sw

i (t)
and xw

i (t) = 0
1 otherwise

i =1, 2, . . . , Nw, w = b, p, r (2)

where t = 0, 1, . . . and sw
i (t) (i = 1, 2, . . . , Nw, w = b, p, r)

is defined as the quantity of containers scheduled, at time

t, for loading before departure with the carrier at the berth,

the parking lane, or the rail platform i. The introduction of

such binary variables allows one to have at disposal a more

precise, though more complex, model with respect to that

reported in [5].

The parameters αi(t) ≥ 0 (i = 1, 2, 3) are the sharing

percentages of import traffic at time t = 0, 1, . . .: α1(t) for

transhipment, α2(t) for ship to truck, and α3(t) for ship to

rail. Clearly, the equality α1(t) + α2(t) + α3(t) = 1 holds

for all t = 0, 1, . . .. The parameters βi(t) ≥ 0 (i = 1, 2, 3)

are the percentages of containers that are ready for prompt

export operations, and thus can skip the rehandling procedure

at time t = 0, 1, . . ..

The dynamics that results from the balance of input and

output container flows for all the queues in Fig. 1 is given

by the following equations:

xw
i (t + 1) = xw

i (t) + aw
i (t) − ∆Tµw

i (t)uw
i (t),

i = 1, 2, . . . , Nw, w = b, p, r (3a)

x
y
i (t + 1) = x

y
i (t) + ∆T





Nw
∑

j=1

µw
j (t)uw

j (t) − µ
y
i (t)uy

i (t)



,

i = 1, 2, 3, w = b, p, r (3b)

x
y
4(t + 1) = x

y
4(t) + ∆T [α1(t)µ

y
1(t)u

y
1(t) + µ

y
2(t)u

y
2(t)

+ µ
y
3(t)u

y
3(t) − µ

y
4(t)u

y
4(t)] (3c)

x
y
i (t + 1) = x

y
i (t) + ∆T [αi−3(t)µ

y
1(t)u

y
1(t)

− µ
y
i (t)uy

i (t)] , i = 5, 6 (3d)

x
y
i (t + 1) = x

y
i (t) + ∆T

{

µ
y
i−3(t)u

y
i−3(t)[1 − βi−6(t)]

− µ
y
i (t)uy

i (t)} , i = 7, 8, 9 (3e)

x
y
i (t + 1) = x

y
i (t) + ∆T

[

µ
y
i−6(t)u

y
i−6(t)βi−9(t)

+ µ
y
i−3(t)u

y
i−3(t) − µ

y
i (t)uy

i (t)] ,

i = 10, 11, 12 (3f)

x
y
i (t + 1) = x

y
i (t) + ∆T

[

µ
y
i−3(t)u

y
i−3(t) − µ

y
i (t)uy

i (t)
]

,

i = 13, 14, 15 (3g)

x
y
i (t + 1) = x

y
i (t) + ∆T

[

µ
y
i−3(t)u

y
i−3(t)

−

Nw
∑

j=1

µw
Nw+j(t)u

w
Nw+j(t)

]

,

i = 16, 17, 18, w = b, p, r (3h)

xw
Nw+i(t + 1) = yw

i (t)
[

xw
Nw+i(t) + ∆Tµw

Nw+i(t)u
w
Nw+i(t)

]

,

i = 1, 2, . . . , Nw, w = b, p, r (3i)

where t = 0, 1, . . .. To account for the boundedness and

sharing of resources, we need to impose constraints on the

control variables u(t) as follows:

2Nb
∑

j=1

ub
j (t) ≤ 1 (4a)

2Np
∑

j=1

u
p
j (t) + u

y
6(t) + u

y
9(t) + u

y
12(t) ≤ 1 (4b)

2Nr
∑

j=1

ur
j(t) ≤ 1 (4c)

u
y
4(t) + u

y
5(t) + u

y
7(t) + u

y
8(t) + u

y
10(t) + u

y
11(t)≤1 (4d)

u
y
1(t) + u

y
2(t) + u

y
3(t) + u

y
13(t) + u

y
14(t) + u

y
15(t)≤1 (4e)

where t = 0, 1, . . .. In order to account also for the limits

of the yard, we have to impose the following bound on the

state variables:
12
∑

j=7

x
y
j (t) ≤ b (5)

where t = 0, 1, . . . and b is a constant that represents the

space limitation of the yard (in TEU).

As regards the rehandling of containers from the import

area to the export area, a common solution consists in

using the resources that are not employed in other transfer

operations. A model to account for such a rehandling strategy

is the following:

u
y
7(t) = min

{

x
y
7(t) + ∆Tµ

y
4(t)u

y
4(t)[1 − β1(t)]

∆Tµ
y
7(t)

,

γ(t)[1 − u
y
4(t) − u

y
5(t) − u

y
10(t) − u

y
11(t)]

}

(6a)
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u
y
8(t) = min

{

x
y
8(t) + ∆Tµ

y
5(t)u

y
5(t)[1 − β2(t)]

∆Tµ
y
8(t)

,

[1 − γ(t)][1 − u
y
4(t) − u

y
5(t) − u

y
10(t) − u

y
11(t)]

}

(6b)

u
y
9(t) = min

{

x
y
9(t) + ∆Tµ

y
6(t)u

y
6(t)[1 − β3(t)]

∆Tµ
y
9(t)

,

1 −

2Np
∑

i=1

u
p
i (t) − u

y
6(t) − u

y
12(t)

}

(6c)

where t = 0, 1, . . . and γ(t) ∈ (0, 1) represents the

percentage of unused RTGC transfer capacity that is em-

ployed for the rehandling of containers from ships. The first

arguments of the minimization operators ensure to keep the

positivity of the involved state variables, while the second

ones are the percentages of unused resources. It is noteworthy

that the presence of the minimization operators introduces

nonsmooth nonlinearities into the model.

III. PREDICTIVE CONTROL OF CONTAINER FLOWS

In this section, we shall use the model (1)-(6) to develop

an optimal resource allocation strategy based on predictive

control. The goal of predictive control is to allocate the

resources in order to optimize an objective function that is

related to the performance of the terminal over a certain

time horizon from the current instant. Toward this end,

we assume that the quantities of containers scheduled for

loading/unloading on the arrival of carriers are known.

In developing and analyzing the performances of any

control strategy, we shall account for the following require-

ments: (i) the departure of a carrier occurs only after the

completion of the scheduled loading and unloading plan; (ii)

the handshake queues are empty; (iii) the lay time of carriers

(i.e., the time needed to complete the loading/unloading

operations) is as small as possible.

As regards the requirement (i), in order to ensure that a

carrier leaves the terminal only when all the export operations

are completed, we need to impose the following constraints:

xw
Nw+i(t) + ∆Tµw

Nw+i(t)u
w
Nw+i(t)<sw

i (t) + M [1 − yw
i (t)]

i = 1, 2, . . . , Nw, w = b,p, r (7a)

xw
Nw+i(t) + ∆Tµw

Nw+i(t)u
w
Nw+i(t)≤sw

i (t) + Myw
i (t)

i = 1, 2, . . . , Nw, w = b,p, r (7b)

xw
Nw+i(t) + ∆Tµw

Nw+i(t)u
w
Nw+i(t)≥sw

i (t) − Myw
i (t)

i = 1, 2, . . . , Nw, w = b,p, r (7c)

where t = 0, 1, . . . and M is a very large positive constant.

Constraint (7a) is active if yw
i (t) is equal to 1, i.e., if the

loading operations are not completed, and hence the carrier

is not ready for departure. The effect of such a constraint

is that of avoiding loading into the carrier more containers

than those that are requested. The inequality constraints

(7b) and (7c) provide an equality constraint if they are

simultaneously activated with yw
i (t) equal to 0 (i.e., when

the loaded containers are equal to those that are requested).

In order to obtain the conclusion of all the import operations

before departure, we need to introduce another constraint:

xw
i (t) ≤ M yw

i (t) , i = 1, . . . , Nw, w = b,p, r (8)

where t = 0, 1, . . . and M is the previously introduced

large positive constant. For example, when yw
i (t) = 0, the

constraint (8) can be satisfied only if xw
i (t) = 0, i.e., if all

the containers to be unloaded have been unloaded and hence

the carrier can leave the terminal. By contrast, if yw
i (t) = 1,

(8) is trivially satisfied.

We can exactly impose the condition in (ii) via the

following constraints:

Nw
∑

j=1

µw
j (t)uw

j (t) − µ
y
i (t)uy

i (t) = 0,

i = 1, 2, 3, w = b,p, r (9a)

α1(t)µ
y
1(t)u

y
1(t) + µ

y
2(t)u

y
2(t) + µ

y
3(t)u

y
3(t)

− µ
y
4(t)u

y
4(t) = 0 (9b)

αi−3(t)µ
y
1(t)u

y
1(t) − µ

y
i (t)uy

i (t) = 0, i = 5, 6 (9c)

µ
y
i (t)uy

i (t) − µ
y
i+3(t)u

y
i+3(t) = 0, i = 10, 11, 12 (9d)

µ
y
i (t)uy

i (t) −

Nw
∑

j=1

µw
Nw+j(t)u

w
Nw+j(t) = 0,

i = 13, 14, 15, w = b, p, r (9e)

where t = 0, 1, . . ..

We can take into consideration the requirement (iii) via a

suitable choice of a cost function to be minimized. Toward

this end, we refer to a function h (in general nonlin-

ear), which provides a measure of performance given by

h [x(t), y(t), u(t)].
We chose the minimization of the lay times of carriers

as a management goal since a carrier that remains for too

long in the terminal results in higher costs for both a useless

employment of resources and a poor service to customers.

As in [5], we focused on the following function h:

h [x(t), y(t), u(t)] =
∑

w∈{b,p,r}

Nw
∑

j=1

{

cw
1 pw

j (t)[1 − uw
j (t)] yw

j (t)

+ cw
2 pw

j (t)[1 − uw
Nw+j(t)] yw

j (t)
}

(10)

where the parameters cw
1 and cw

2 (w = b,p, r) are positive

constants and pw
1 (t), . . ., pw

Nw
(t) (w = b, p, r) are “priority”

terms that allows one to serve the carriers “fairly” over time.

At each time t = 0, 1 . . ., a higher priority is assigned to the

carriers that have been in the terminal for a longer time by

increasing the weights of the corresponding terms in the cost.

A performance index based on (10) aims to minimize the

lay times of ships, trucks, and trains. Indeed, since the time

a carrier spends in the terminal depends tightly on how fast

the containers to be loaded to and unloaded from the carriers

are moved, one can reduce the overall delay by keeping the

control inputs as higher as possible.

A predictive control approach consists in minimizing, at

each time t = 0, 1, . . ., and under the various constraints, a

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 WeB09.3

2803



cost function of the form

Jt[x(t), y(t, t + T − 1), u(t, t + T − 1)]

=
t+T−1
∑

k=t

h[x(k), y(k), u(k)] (11)

where T is the length of the forward horizon and y(t, t +
T − 1) and u(t, t + T − 1) stand for y(t), . . . , y(t + T − 1)
and u(t), . . . , u(t + T − 1), respectively.

Summing up, given x(t) at each time t = 0, 1, . . ., we

need to solve the following optimization problem:

min
u(t, t + T − 1)
y(t, t + T − 1)

Jt[x(t), y(t, t+T−1), u(t, t+T−1)] (12)

subject to the constraints (1), r.h.s. of (3)≥ 0, (4), (5), (7)-(9),

u(k) ∈ [0, 1]2Nb+2Np+2Nr+15, y(k) ∈ {0, 1}Nb+Np+Nr , and

u
y
7(k) = u

y
8(k) = u

y
9(k) = 0 for k = t, . . . , t + T − 1. Once

the optimal controls for y(k) and ub
i (k) (i = 1, 2, . . . , 2Nb),

u
p
i (k) (i = 1, 2, . . . , 2Np), ur

i(k) (i = 1, 2, . . . , 2Nr), and

u
y
i (k) (i = 1, 2, . . . , 6, 10, 11, . . . , 15) have been found for

k = t, . . . , t + T − 1, only the first control action is retained

and applied, and unused resources are employed for the

rehandling operations, i.e., by selecting u
y
7(t), u

y
8(t), and

u
y
9(t) according to (6).

A possible approach to find a solution to problem (12)

is based on Branch-and-Bound Mixed-Integer NonLinear

Programming techniques (we shall refer to such method-

ologies as BBMINLP) because of the binary variables that

are involved in both the state equation and the constraints.

This complicates the process of finding a solution, thus a

technique that avoids using them is highly desirable. In fact,

we can avoid dealing with binary variables by treating the

constraints (3i) as nonsmooth step functions. More specifi-

cally, (3i) can be rewritten as follows:

xw
Nw+i(t+1)=















0 if xw
i (t) = 0 and xw

Nw+i(t)
+ ∆Tµw

Nw+i(t)u
w
Nw+i(t)=sw

i (t)

xw
Nw+i(t)+∆Tµw

Nw+i(t)u
w
Nw+i(t) otherwise

i = 1, 2, . . . , Nw, w = b, p, r.

Such constraints can be expressed by the following rela-

tionships:

xw
Nw+i(t+1) =

[

xw
Nw+i(t)+∆Tµw

Nw+i(t)u
w
Nw+i(t)

]

χ
[

sw
i (t)

− xw
Nw+i(t) −∆Tµw

Nw+i(t)u
w
Nw+i(t)+xw

i (t)
]

,

i = 1, 2, . . . , Nw, w = b, p, r

where χ(·) is the step function (i.e., χ(z) = 1 if z > 0,

χ(z) = 0 otherwise). In this way, we avoid using the

binary variables, and the problem reduces to a nonlinear

programming one with no integer variables but with non-

smooth functions, thus resorting for the solution to Real

NonLinear Programming techniques (we shall refer to such

methodologies as RNLP). Unfortunately, it may be quite

demanding to find a solution of RNLP and particularly

BBMINLP problems in a real-time context, especially with

predictive horizons larger than T = 1 and a large number of

decision and state variables. Following the RNLP approach,

the binary variables of y(t) are replaced with the correspond-

ing functions χ(·) and the predictive control problem (12)

reduces to find only the optimal inputs u◦(t, t + T − 1).
Since only the first control input (i.e., u◦(t)) is applied, a

different approach is proposed that consists in approximating

off line the optimal feedback control function x(t) 7→ u◦(t)
by means of some approximators in order to generate the

control action on line almost instantaneously. In particular,

once T has been selected, we can (i) solve off line many

RNLP problems starting with different initial conditions,

(ii) collect the pairs (x(t), u◦(t)), and (iii) apply some

regression method to approximate such pairs. Toward this

end, we shall employ one-hidden-layer feedforward neural

networks (OHLFFNNs) with sigmoidal activation function

in the hidden layer. Thus, the regression problem becomes

a neural learning task to find the optimal weights that

allow to compute the control action on line via the trained

OHLFFNN.

It is worth noting that the resulting approximate control

law may not satisfy exactly some constraints. However,

to deal with this difficulty, some simple solutions can be

devised. For example, if the equality constraints in (9) were

not satisfied, we could simply avoid moving from queues

containers that would violate the flow balance. Concerning

the inequality constraints (4), we can normalize the outputs

of the neural networks in such a way to impose their

satisfaction. Clearly, the more precise the approximation, the

smaller the correction. Thus, in order to ensure a desired

precision, OHLFFNNs of sufficiently large size should be

used to take on the structure of the approximating function

that generates the control.

IV. NUMERICAL RESULTS

In this section, we present the simulation results obtained

in a case study that refers to a medium-size container

terminal in North-West Italy. Details on the characteristics

of the terminal as to layout, interarrival times of carriers,

inbound and outbound container flows, and capacities of the

various transfer machines can be found in [5].

The solutions of the various problems (12) at t = 0, 1, . . .

were found using either Matlab standard nonlinear program-

ming techniques without using the derivatives of both the

cost function and the constraints according to a RNLP ap-

proach, or a standard branch-and-bound algorithm to perform

a BBMINLP optimization. As regards the neural approach,

we used a OHLFFNN with 10 sigmoidal activation functions

in the hidden layer. The neural training was done using a

data set made up of 1500 state-control pairs obtained by the

RNLP approach. The selection of the optimal weights was

performed with the Levenberg-Marquardt training algorithm

available in Matlab.

The performances of the terminal were evaluated by solv-

ing the optimal control problem (12) for different predictive

horizons T and computing the number of served ships,

trucks, and trains, the quantity of transferred containers,
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TABLE I

PERFORMANCES GIVEN BY THE BBMINLP, RNLP, AND OHLFFNN APPROACHES FOR DIFFERENT CONTROL HORIZONS.

Control horizon T = 1 T = 2 T = 3
Carrier type Ship Truck Train Ship Truck Train Ship Truck Train

Number of served carriers 6 71 13 6 72 13 6 72 13
Transferred containers [TEU] 4096 4860 2110 4096 4866 2110 4096 4866 2110

BBMINLP Mean lay time [h] 13.2 0.33 3.76 13.1 0.33 3.80 12.5 0.35 3.90

ITf
183.8 · 109 180.2 · 109 167.4 · 109

Mean on-line computation time [min] 7.6 49.0 154.1

Number of served carriers 6 71 13 6 70 13 6 72 13
Transferred containers [TEU] 4096 4860 2110 4096 4850 2110 4096 4866 2110

RNLP Mean lay time [h] 13.6 0.32 3.84 13.5 0.33 3.84 12.8 0.36 3.88

ITf
209.1 · 109 205.5 · 109 178.6 · 109

Mean on-line computation time [min] 0.16 0.79 3.5

Number of served carriers 6 66 13 6 68 13 6 67 13
Transferred containers [TEU] 4096 4746 2110 4096 4810 2110 4096 4780 2110

OHLFFNN Mean lay time [h] 15.3 0.50 4.75 14.8 0.45 4.42 13.7 0.45 4.65

ITf
240.0 · 109 206.8 · 109 181.6 · 109

Mean on-line computation time [min] 0.0011 0.0011 0.0011
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Fig. 2. Values of the function h given by the BBMINLP, RNLP, and OHLFFNN approaches for different control horizons.

the mean lay times of carriers, and the index ITf
=

∑Tf

t=0 h [x(k), y(k), u(k)] where Tf is the simulation length.

In the results reported in Table I, Tf was chosen equal to

144, which corresponds to a simulation length of 72 h. The

simulations were performed on a 3.2 GHz Pentium 4 PC

with 1 GB of RAM.

As expected, the longer the control horizon T , the lower

the value of the function h, as pictorially shown in Fig.

2 for the BBMINLP, RNLP, and OHLFFNN approaches.

As shown in Table I, BBMINLP provides better results in

terms of the final minimization cost, while RNLP demands

a reduced computational burden with respect to BBMINLP;

this reduction is paid with a small decay of performances.

The OHLFFNN control performs worse than the other ap-

proaches, but it has the great advantage of a very low on-

line computational burden. Moreover, in Fig. 2 note that

BBMINLP ensures better performances in the transient with

respect to RNLP, while the behavior of the two approaches

is practically the same when the values of the function h are

constant. The OHLFFNN control performs similarly to the

controls obtained by BBMINLP and RNLP for t ∈ [0, 100],
with a small decay of performances for t ∈ [100, 144].
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