
Generalized Piecewise Linear Feedback Stabilizability of Controlled
Linear Switched Systems

Zoltán Szabó, József Bokor and Gary Balas

Abstract— The paper consider the (closed–loop) stabilizabil-
ity problem of controlled linear switched systems. It is shown
that if the switching system is completely controllable then it is
stabilizable. Moreover, it is shown that for these systems it can
be found a closed–loop (event driven) switching strategy with
suitable linear feedbacks that (weakly) stabilizes the system, i.e.
the switching system is stabilizable by a generalized piecewise
linear feedback. These results holds for systems where the
control inputs are sign constrained, too.

I. INTRODUCTION

Motivated by the need of dealing with physical systems
that exhibit a more complicated behavior, hybrid systems
have become very popular nowadays. In particular, there has
been a relevant interest in the analysis and synthesis of so-
called switching systems intended as the simplest class of
hybrid systems.

A switching system is composed of a family of different
(smooth) dynamic modes such that the switching pattern
gives continuous, piecewise smooth trajectories. Moreover,
we assume that one and only one mode is active at each
time instant.

The study of the switching systems is closely related
to some investigations on differential inclusions. By using
techniques from convex nonsmooth analysis a series of very
powerful results can be deduced, for an overview of the most
important ideas related to differential inclusions and stability
problems related to switching systems see [5], [25], [27].

Stability issues of switched systems, especially switched
linear systems, have been of increasing interest in the recent
decade, see for example [10], [15], [16], [17], [19], [31].

In the study of the stability of switched systems one may
consider switched systems under given switching signals or
tries to synthesise stabilizing switching signals for a given
collection of dynamical systems. Concerning the first class
a lot of papers focus on the asymptotic stability analysis
for switched homogeneous linear systems under arbitrary
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switching (strong stability, robust stabilization), and provide
necessary and sufficient conditions, see [4], [12], [22].

The requirement of (robust) stability imposes very strict
conditions on the dynamics, e.g. all the subsystems must be
stable or stabilizable. Even under this condition, one has,
in general, further restrictions on the allowable switching
frequency (dwell time), determined by the spectrum of the
matrices, [34], [33].

For strongly stabilizable linear controlled switching sys-
tems the feedback control always can be chosen as a
"patchy", linear variable structure controller, see [4]. The
control is defined by a conic partition Rn =

⋃N
k=1 Ck of

the state space while on each cone Ck the feedback is given
by u = Fkx.

In the more general situation, when one has unstable
modes, more severe conditions on the switching sequence
have to be imposed. In this respect one of the most elusive
problems is the switching stabilizability problem, i.e., under
what condition is it possible to stabilize a switched system by
properly designing autonomous (event driven) switching con-
trol laws. For autonomous switchings the vector field changes
discontinuously when the state hits certain "boundaries". This
problem corresponds to the weak asymptotic stability notion
of the associated differential inclusions.

Based on the ideas presented in [23] it was proved that
the (weak) asymptotic stabilizability of switched autonomous
linear systems by means of an event driven switching strat-
egy can be formulated in terms of a conic partition of
the state space, see [18],[20]. This result can be seen as
a generalization of the corresponding theorem for strong
stability. However, in contrast to the strong stability results,
the corresponding Lyapunov function is not always convex,
see [6].

Completely controllable linear time invariant (LTI) sys-
tems ẋ = Ax+Bu are stabilizable and the stabilization can
be always done by a static state feedback u = Kx. Similar
result, with a suitable set of linear state feedbacks, is valid
for the case when the inputs are sign constrained, see [26],
[32].

The paper gives a generalization of these fundamental
results for the weak stabilizability of the class of completely
controllable linear switching systems, where the control
inputs might be sign constrained, i.e. it is shown that a
completely controllable linear switching system is closed–
loop stabilizable, moreover, the stabilization can be per-
formed by using a generalized piecewise linear feedback.
The structure of the paper is the following: after fixing the
notation and giving a short overview of the results concerning
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controllability in Section II, in Section III it is proved that
complete controllability implies stabilizability. In Section
IV it is shown that the stabilization can be achieved by
applying a finite set of suitable linear state feedbacks with a
closed–loop switching strategy. The next section contains the
Conclusions together with some topics for further research.

II. GENERAL CONSIDERATIONS

Consider the class of (open-loop) linear switched systems:

ẋ(t) = A(σ(t))x(t) +B(σ(t))u(t) (1)

where x ∈ Rn is the state variable and u ∈ Ω is the input
variable. σ : R+ → S is a measurable switching function
mapping the positive real line into S = {1, ∙ ∙ ∙ , s}, i.e. the
matrices A(σ) and B(σ) are measurable. The input set might
be unconstrained Ω = Rm or constrained Ω = Rm+ .

A solution (Carathéodory) of (1) on an interval I is an
almost everywhere (a.e.) differentiable function ϕ(t) : I →
Rn that satisfies (1) a.e. on I .

Following classical lines, (1) is said to be completely
controllable if every point in the state space is reachable
from any other point in the state space by using bounded
measurable controls and a suitable switching function. As for
LTI systems, algebraic conditions that guarantees complete
controllability can be given in terms of the state matrices of
the individual subsystems, see [31], [7].

It is of fundamental importance for our further inves-
tigations that for completely controllable linear switching
systems every point pair of the state space can be joined by a
trajectory with a finite number of switchings. Actually there
is a universal (but not necessarily unique) finite switching
sequence, for details, see e.g. [31] for the unconstrained case
and [7] for the sign constrained case.

A. Vector fields, differential inclusions

A control system on a smooth n-dimensional manifold
M is a collection F of smooth vector fields depending on
independent parameters w = [w1, ∙ ∙ ∙ , wm] ∈ Ξ ⊂ Rm

called control inputs such that w(t) belongs to a suitable
class of real valued functions W , called admissible controls.
The set of admissible control functions usually are taken to
be the set of measurable functions.

A switching system can be considered as a nonlinear
polysystem of the form

ẋ = f(x(t), w(t)), x(0) = 0 (2)

where in general, it is assumed that x ∈M and f(., w), w ∈
Ξ is an analytic (smooth) vector field on M. It is supposed
that M is an n-dimensional real analytic manifold (para-
compact and connected).

In our case Ξ = S × Ω with

fw(x) = f(x(t), w(t)) = Aix(t) +Biu

where w = (i, u). System (2) can be associated in a natural
way with the collection of vector fields

F (x) = {fw(x) |w ∈ Ξ},

i.e. instead of the original switching system (1) one can
consider the the (convexified) differential inclusion

ẋ ∈ Ac(x)

where

Ac(x) = {
s∑

i=1

αi(Aix+Biu), αi ≥ 0,
s∑

i=1

αi = 1 |u ∈ Ω}.

By weak stabilizability of the linear switching system is
meant the weak stabilizability of the associated differential
inclusion, for details see [27].

System (2) is globally asymptotically controllable (GAC)
provided that for each x0 there is a bounded measurable con-
trol such that for the corresponding trajectory limt→∞ x(t) =
0 and |x(t)| ≤ θ(|x0|) for all t ≥ 0 for a nondecreasing
function θ : [0,∞) → [0,∞) with limt→∞ θ(t) = 0, i.e.
for each initial state, there exists a control such that the
corresponding solution is defined and converges to zero with
"small overshoot" and also that the input remains bounded
for x near zero, for details see [24].

III. STABILIZABILITY OF COMPLETELY CONTROLLABLE

LINEAR SWITCHING SYSTEMS

In order to prove stabilizability of completely controllable
linear switching systems it is sufficient to show that they are
globally asymptotically controllable.

Lemma 1: A completely controllable linear switching sys-
tem is globally asymptotically controllable.

Proof: Let us consider the unit sphere S and a point x ∈ B.
By complete controllability it follows that there is a finite
switching sequence τx = (τLx , . . . , τ2, τ1) and a bounded
measurable control sequence (actually a piecewise constant
control) ux = (uLx , . . . , u2, u1) ∈ Ω

Lx such that the
corresponding trajectory steers the point x to the origin, i.e.

Φ(τx, ux)x =

Lx∏

j=1

e(Alj ξ+Bljuj)τjx = 0,

where, for notational convenience e(Alj ξ+Bljuj)τζ denotes
the flow associated to the vector field Aljξ + Bljuj that
passes through the initial state ζ at t = 0.

By the continuity of the map Φ(τx, ux) for the fixed pair
(τx, ux) for every ε > 0 there is a neighborhood Vx of x
such that

||Φ(τx, ux)ξ|| < ε, ∀ ξ ∈ Vx,

hence for all ξ ∈ Wx = Vx ∩ S , see Fig. 1.
Since the unit sphere is compact, there is a finite covering
S = ∪j∈JWxj . It follows that there is a control strategy
that maps the unit sphere into the sphere with radius ε < 1
defined by this finite partition.

Since the linear maps Φ(τxj , uxj ) are bounded one has a
uniform bound for the "overshoot",

Θ = max
j∈J
||Φ(τxj , uxj )||.
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Fig. 1.

Since the vector fields are linear the reachable spaces are
cones, therefore the control strategy can be extended from
the unit sphere to the whole state space, i.e. one can construct
a trajectory with the bound ||x(t)|| < Θ||x0|| that converges
to the origin. It follows that a completely controllable linear
switching system is globally asymptotically controllable.

The importance of global asymptotical controllability is
that it implies closed–loop stabilizability, i.e. it implies the
existence of a feedback control such that the resulting closed
loop–system is stable, see [9] (in terms of the so–called π
trajectories) and [1], [24] (Carathéodory trajectories).

Corollary 1: The completely controllable linear switching
system (1) is closed–loop stabilizable.

Remark 1: For discrete–time linear switched systems with
unconstrained inputs the assertion of Lemma 1 was proved
recently, see [35]. The switching strategy in the proposed
solution is a periodic one, based on the universal switching
sequence. In contrast to the continuous time case the proof
is constructive, moreover the necessary linear feedbacks can
be obtained by a linear matrix inequality.

The continuous–time result for the unconstrained input
case can be obtained directly from the discrete–time one by
using the fact that generically the discretized linear switched
system preserves the complete controllability property, see
[31]. The resulting control will be a stabilizing control with
a periodic (open–loop) switching strategy and a "feedback–
like" control for u – a feedback implemented in a sample
and hold way.

The assertion of Lemma 1 is also valid for the sign
constrained control input case, when the proof based on the
discrete–time result is not applicable.

IV. STABILIZABILITY BY GENERALIZED PIECEWISE

LINEAR FEEDBACK

While the general nonlinear theory guarantees the exis-
tence of a not too pathological feedback and control Lya-
punov function, see [1], [11], [24], the results are hard to
be applied to construct directly the required feedback for the
switching system, i.e. to obtain the closed–loop switching
strategy and necessary control inputs or even to infer that
the control inputs are given by linear feedbacks.

Given an autonomous linear switching system

ẋ = Aix, i ∈ S

it is a nontrivial task to decide if the system is (weakly)
stabilizable or not, in general. There are only a few suffi-
cient conditions that guarantee stabilizability and provide a
relatively simple closed-loop switching strategy. One such
situation is when the convex hull of the system matrices
contains a stable (Hurwitz) matrix, i.e. when there are αi >
0,
∑s
i=1 αi = 1 such that

∑s
i=1 αiAi is stable.

For the nonautonomous case with unconstrained inputs it
is known that if the sum of the individual controllability
subspaces gives the whole state space, then there are linear
state feedbacks u = Kix such that the resulting linear
switching system

ẋ = (Ai +BiKi)x, i ∈ S

is stable with a suitable closed–loop switching strategy, see
[31]. It is not hard to figure out that the required condition
is sufficient to guarantee that for any convex combination
αi > 0,

∑s
i=1 αi = 1 there exist feedbacks Ki such that∑s

i=1 αi(Ai +BiKi) is stable.
As it can be concluded through simple examples, see

[31], there are completely controllable switching systems that
are not stabilizable by merely applying a single linear state
feedback for the individual subsystems. However, as it will
be shown in this Section, if the number of linear feedbacks is
increased, one can obtain a set of autonomous linear systems
that are (weakly) stabilizable.

For a given set of non–autonomous (controlled) linear
switched systems (1) we call Generalized Piecewise Linear
Feedback Stabilizability (GPLFS) the problem of finding a
closed-loop switching strategy with

• suitable linear feedbacks ui = Klix, i ∈ S
• a switching law κ(x) ∈ S, x ∈ Rn

that (weakly)stabilizes the system.
The reasoning behind introducing the concept of general-

ized piecewise linear feedback stabilizability is to separate
the task of finding a suitable switching strategy and that
of finding suitable control inputs with low complexity that
stabilizes the system in closed–loop.

The main idea is to substitute the original stabilizable
nonautonomous system by a stabilizable autonomous linear
switched system that might contain more modes then the
original one, by applying as control inputs a number of
suitable static linear control feedbacks.
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Theorem 1: The completely controllable linear switching
system (1) is generalized piecewise linear feedback stabiliz-
able.

Proof: In proving the assertion we will apply ideas of the
Nagano–Sussmann_Jurdjevic theory of attainability.

The first observation is that the vector field

f(x) = {fu(x) = Ax+Bu}

can be replaced by the vector field

F(x) = {fK(x) = Ax+BKx},

if x 6= 0. Indeed, for any u ∈ Ω one can chose a nonzero
component xi of x and a K = [kl,j ] such that kl,j = 0 if
j 6= i and kl,i =

ul
xi

, then u = Kx. Actually one has

F (x) = F(x), if x 6= 0.

Moreover, for any y, z ∈ Rn \0 there is a trajectory of the
original system that does not pass through the origin. This
follows from the fact that the origin is normally reachable
from any point, see [14], [30]. Then by the surjective
mapping theorem, [3], follows that a neighborhood of the
origin is reachable by the same switching sequence. Hence,
by the linearity of the vector fields, the whole space is
reachable with the given switching sequence.

Since the trajectory x(t) does not pass through the origin,
the original vector fields (F (x)) can be replaced by the new
one (F(x)). Moreover, since a given component of x(t)
might vanish only a finite times on a finite interval, it follows
that the controls Ki of the vector field FK(x) are piecewise
continuous. It follows that every point pair of the manifold
Rn \ 0 can be joined by a trajectory corresponding to the
vector field F by admissible controls.

It follows that the vector field F is completely controllable
on the manifold Rn\0. Since complete controllability implies
controllability by piecewise constant controls, see [13], [14],
it follows that every point pair of the space Rn \ 0 can
be joined by a trajectory of suitable autonomous switched
systems Al +BlKl.

Remark 2: Complete controllability of the vector field F
has a very intuitive geometrical background. Since the solu-
tions of a linear autonomous differential equations realizes
some rotations and dilations/compressions in Rn, it means
that for a given point pair (y, z) it is possible to select a finite
set of feedbacks such that the resulting set of autonomous
systems transform the point y into z for a suitable (finite)
switching sequence.

In order to show that it is possible to select a finite set
of autonomous systems that has the (weak) stabilizability
property, the compactness argument applied in the proof of
Lemma 1 can be repeated.

Indeed, selecting a point y on the unit sphere S and fixing
a point z on the sphere ε1, there is a trajectory formed by
suitable autonomous systems Al + BlKl that steers y to z,
i.e.

Ψ(τy,Ky)y =

Ly∏

j=1

e(Alj+BljKj)τjy = z.

By continuity of Ψ(τy,Ky) for fixed τy and Ky there is
a neighborhood of y that is mapped in a sufficiently small
neighborhood of z, such that ||Ψ(τy,Ky)ξ|| < ε2, with 0 <
ε1 < ε2 < 1, see Fig. 2.

y

z

Ψ(τy, Ky)y

S

ε2S

ε1S

1

Fig. 2.

These neighborhoods form a covering of the unit sphere,
from which it is possible to select a finite one. It follows
that it is possible to select a finite set of linear static state
feedbacks such, that the resulting set of autonomous system
is stabilizable.

Concerning the switching strategy the existence of the
suitable closed–loop switching rule is guaranteed by the
general results for nonlinear globally asymptotically control-
lable systems, [24]. However, for nonautonomous switching
systems with unconstrained controls slightly more can be
asserted.

In [21] it was shown that the existence of an asymptoti-
cally stabilizing switching strategy (without sliding motion)
of an autonomous linear switched system implies the exis-
tence of a conic partition based switching law which globally
asymptotically stabilizes the closed–loop switching system.
The control is defined by a conic partition Rn =

⋃L
l=1 Cl of

the state space while on each cone Cl the system defined by
Ail +BilKl with il ∈ S is active.

Remark 3: Since for linear autonomous switching systems
asymptotical stability and exponential stability are equiva-
lent, see [31], Theorem 1 shows that completely controllable
linear switching systems with (unconstrained input) are ex-
ponentially stabilizable.

The sign constrained case is more delicate. The result-
ing autonomous systems correspond to certain regions of
the state space, i.e. the resulting switching system is an
autonomous state constrained linear switching system. There-
fore the result from [31] is not applicable directly and the
case needs further investigation.
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Remark 4: Theorem 1 guarantees the generalized piece-
wise linear feedback stabilizability but does not give a
method to compute such feedbacks. However – for the
unconstrained input case – the property of complete con-
trollability is feedback invariant. It is known that any con-
trollable unconstrained multi–input linear switching system
can be changed into a controllable single–input system via
suitable non–regular state feedbacks, see [31]. Moreover, the
controllable single–input system can be put into the form
(A1, b1), A2, ∙ ∙ ∙ , As. Theorem 1 guarantees that by these
transformations not only controllability but also stabilizabil-
ity is preserved. Hence one can obtain a switching system
with a reduced complexity for which one might find suitable
stabilizing feedbacks more easily, e.g. the resulting BMI
or LMI equations in finding suitable piecewise quadratic
Lyapunov functions will be simpler.

V. CONCLUSION

This paper considers the problem of event driven stabiliza-
tion of linear controlled switched systems and claims that if
the system is completely controllable then it is stabilizable by
generalized piecewise linear feedback, i.e. it is stabilizable
by applying event driven switchings for a finite set of linear
autonomous systems obtained by applying a suitable set of
linear feedback.

The obtained results are general enough to include the
class of linear controlled switched systems with sign con-
strained control inputs.

For the class of completely controllable unconstrained
linear switching systems one has not only closed–loop sta-
bilizability but also closed–loop exponential stabilizability.
It is a subject of further research to explore what type of
performance bounds exists concerning the convergence rate.
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