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Abstract— Recursive state estimation is considered for dis-
crete time linear systems with mixed process and measurement
disturbances that have stochastic and (convex) set-bounded
terms. The state estimate is formed as a linear combination of
initial guess and measurements, giving an estimation error of
the same mixed type (and causing minimal interference between
the two kinds of error). An ellipsoidal over-approximation to
the set-bounded estimation error term allows to formulate a
linear matrix inequality (LMI) for optimization of the filter
gain, considering both parts of the estimation error in the
objective. With purely stochastic disturbances, the standard
Kalman Filter is recovered. The state estimator is shown
to work well for an event based estimation example, where
measurements are very coarsely quantized.

I. INTRODUCTION

In many control systems, there exist some disturbances
that are best modelled as stochastic, and other disturbances
that are better modelled as set-bounded uncertainties. The
classical approach to state estimation in such cases is to ap-
proximate the set-bounded uncertainties by stochastic ones,
allowing to use a standard Kalman Filter. Another approach
is to approximate the stochastic disturbances by set-bounded
ones, and use a state estimator for set-bounded uncertainty.

It is, however, not straightforward to translate between
stochastic and set-bounded disturbances, since they do not
combine in the same way. Two measurements of the same
variable with independent identically distributed (I.I.D.)
stochastic noise combine to form an estimate with only
half the error variance. Two measurements with set-bounded
uncertainty yi = x + zi, |zi| ≤ 1 may on the other hand
be little better than just one if y1 ≈ y2, not uncommon of
situations where this kind of disturbance model is applied.

Thus, it is useful to be able to deal with both kinds
of disturbances at the same time. The contribution of this
paper is the formulation of an estimator that can deal with
general state estimation problems with mixed disturbances.
The optimization of the filter gain required in each step is
expressed as an LMI. Since the basic structure is that of a
Kalman Filter, the estimator reduces to a Kalman Filter in
the case of purely stochastic disturbances.

There is much previous work for the cases of only
stochastic or only set-bounded disturbances, and also some
variations on mixing the two. With only stochastic distur-
bances, the optimal solution is the classical Kalman Filter
(see [6], [7]). State estimation with set bounded disturbances
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is considered in [1] and [3]. Kalman Filtering with a set-
bounded initial expectation in the prior is treated in [8]. For
a different approach to mixed disturbance estimation, see [4]
and references therein.

When dealing with set-bounded disturbances, there is the
issue of how to represent the uncertainty sets that arise as
data is combined. Unlike Gaussian noise, there is no gen-
eral exact closed form representation of limited complexity.
We first present the general equations, which can be used
with polytopic uncertainty sets. These will however grow
quickly in complexity. We will thus focus on the ellipsoidal
approximation of uncertainty sets; together with a recursive
formulation of the estimator this gives a fixed complexity for
the estimator operations.

The rest of the paper is laid out as follows. The mixed
state estimation problem to be solved is stated in section
II, including the basic estimator structure. Section III covers
some preliminaries used in the solution. The first step of
the solution is taken in section IV, which shows how to
decompose the problem into the stochastic part, treated in
section V, and the set-bounded part, treated in section VI.
The latter section contains the central theorem to express
the set-bounded part of the filter’s optimization criterion for a
combination of polytopic and ellipsoidal uncertainties, which
is proved in the appendix. Section VII compares the proposed
estimator with a grid based Bayesian estimator and a Kalman
Filter for an example problem. Conclusions are given in
section VIII.

II. PROBLEM FORMULATION

The objective is to perform recursive state estimation for
discrete time dynamic systems modelled by

xk = Axk−1 + uk−1 + e
proc.
k−1

(1)

yk = Cxk + emeas.
k (2)

where A and C are the dynamics and measurements ma-
trices, and the state xk, the known control input uk, the
measurements yk, the process disturbance e

proc.
k , and the

measurement disturbance emeas.
k are vectors. Also A and C

may be time dependent.
All error terms ei are the sum of a stochastic term wi and

a set-bounded term δi,

ei = wi + δi

E(wi) = 0, E(wi(wi)T ) = Ri

δi ∈ ∆i

for some positive semidefinite covariance matrix Ri and
convex uncertainty set ∆i. The stochastic terms of the
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process and measurement disturbance w
proc.
k and wmeas.

k for
all times are assumed mutually uncorrelated.

Given the system above and an initial state estimate x̂0

with mixed error

e0 = x0 − x̂0

we want to form a running state estimate as a linear combina-
tion of the initial state and the measurements. The dynamics
(1) are used to form the predicted estimate x̂k|k−1 from the
previous filtered estimate x̂k−1|k−1:

x̂k|k−1 = Ax̂k−1|k−1 + uk−1. (3)

The measurement yk is then used to form the current filtered
estimate

x̂k|k = x̂k|k−1 + Lk

(

yk − Cx̂k|k−1

)

=
(
I − LkC Lk

)

︸ ︷︷ ︸

Xk

(
x̂k|k−1

yk

)

(4)

using some suitable filter gain Lk. We wish to choose Lk

to minimize the estimation error in some appropriate sense.
The matrix Xk specifies how to weigh together the predicted
state estimate and the current measurement, and represents
the action of the filtering step.

III. NOTATION AND PRELIMINARIES

The Minkowski sum of two sets Xk and Y is defined as

X + Y = {x + y;x ∈ X, y ∈ Y } .

Similarly, we will let the sum X +y of a set X and a vector
y be the translation X + {y}. The product of a set X and a
matrix A will be interpreted as the element-wise product

AX = {Ax;x ∈ X} .

We will also use the product of two sets X,Y as the stacked
Cartesian product

X × Y =

{(
x

y

)

;x ∈ X, y ∈ Y

}

.

For a matrix A, we denote by A > 0 (A ≥ 0) that A is
positive (semi-)definite. For a block matrix

M =

(
A B

BT D

)

with D > 0, the conditions that M ≥ 0 and that the Schur
Complement (see [2, ch. 2.1, pp. 7-8]) of D in M

∆ = A − BD−1BT

is positive semidefinite, ∆ ≥ 0, are equivalent.

IV. PROBLEM DECOMPOSITION

We begin by decomposing the problem into a stochastic
and a set-bounded part. The dynamics (1) combined with the
prediction (3) gives the next prediction error

ek|k−1 = Aek−1|k−1 + e
proc.
k−1

(5)

while the measurement equation (2) combined with the
filtering step (4) gives the next filtered error

ek|k = Xk

(
ek|k−1

emeas.
k

)

. (6)

The minimization of the expected/worst-case estimation error
will guide the selection of the filter gain Lk, which will
then be used to update the point estimate according to (4).
Lk can be optimized online, or, since it is independent of
the point estimate, it can be calculated ahead of time if
the disturbance characteristics are known, e.g. if they are
periodic or stationary.

The estimation errors ek|k−1 and ek|k are composed of a
stochastic and a set-bounded part, and are formed by forming
each part separately. The two parts will be coupled only in
the search for the optimal filter gain Lk in the filtering step,
which we find by minimizing the cost function

V (L) = tr W
(
Rk|k(L) + αr(L)2P (L)

)
(7)

where W > 0 is a weight on the estimation error for different
states, α > 0 is the relative penalty on set-bounded error,
Rk|k(L) is the filtered error covariance, and Pk(L) and r(L)
bound the set-bounded error after filtering δk|k ∈ ∆k|k(L)
inside an ellipsoid:

δT
k|kP (L)−1δk|k ≤ r(L)2 ∀ δk|k ∈ ∆k|k(L). (8)

Either P or r can be fixed for the optimization step, de-
pending on whether we want to prespecify the shape of the
ellipsoid circumscribed around ∆k|k(L).

To carry out the minimization, we take the following steps:
• Form LMI conditions linear in L for

– the stochastic part: R ≥ Rk|k(L)
– the set-bounded part: (P, r) satisfying (8)

• Minimize
V̄ = tr W (R + αr2P )

under these LMI conditions.
When we introduce ellipsoidal approximation of the set-
bounded error ∆k|k, we will merge the prediction and
filtering steps for this part to reduce conservatism.

V. STOCHASTIC PART

We consider the update and optimization of the stochastic
estimation error terms. The prediction and filtering steps (5)
and (6) give the stochastic error covariances

Rk|k−1 = ARk−1|k−1A
T + R

proc.
k−1

(9)

Rk|k = Xk

(
Rk|k−1 0

0 Rmeas.
k

)

︸ ︷︷ ︸

R
pm
k

XT
k (10)
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for wk|k−1 and wk|k respectively, since if E(wwT ) = R,

E
(

(Aw)(Aw)T
)

= AE(wwT )AT = ARAT .

The prediction step (9) is straightforward. To form an LMI
for the filtering step (10), we first factor R

pm
k as

R
pm
k = SRpm0ST , Rpm0 > 0.

By the Schur Complement, the condition R ≥ Rk|k or

R − XkSRpm0ST XT
k ≥ 0

is then equivalent (since Rpm0 > 0) to the LMI

(
R XkS

ST XT
k (Rpm0)−1

)

≥ 0,

which is linear in L and R.

VI. SET-BOUNDED PART

We now consider the update and optimization of the set-
bounded estimation error terms. The operations are first
formulated for general uncertainty sets, and then the case
of ellipsoidal over-approximation is treated.

A. General Uncertainty Sets

From the prediction step (5), we must have δk|k−1 ∈
∆k|k−1,

∆k|k−1 = A∆k−1|k−1 + ∆proc.
k−1

.

If ∆k−1|k−1 and ∆proc.
k−1

are polytopes, so is ∆k|k−1.
For the filtering step, we have

δk|k = Xk

(
δk|k−1

δmeas.
k

)

︸ ︷︷ ︸

δ
pm
k

.

The constraint (8) can be expressed for any δ
pm
k ∈ ∆pm

k =
∆k|k−1 × ∆meas.

k as a second order cone constraint when P

is fixed:

r ≥ ||P− 1

2 δk|k|| = ||P− 1

2 Xkδ
pm
k ||

or in general by the Schur Complement (since P > 0) as an
LMI

r2 − (δpm
k )T XT

k P−1Xkδ
pm
k ≥ 0

⇐⇒

(
P Xkδ

pm
k

(δpm
k )T XT

k r2

)

≥ 0.

If ∆pm
k is a polytope, it is enough to consider the constraint

at the vertices, since an ellipsoid contains a set of vertices iff
it contains the convex hull of those vertices (the polytope).

B. Ellipsoidal Uncertainty Sets

Now suppose that the filtered set-bounded error from the
previous step ∆k−1|k−1, and possibly the process or mea-
surement disturbance parts ∆proc.

k−1
and ∆meas.

k , are described
by ellipsoids. In this case we can use the ellipsoid (8) to find
an ellipsoidal over-approximation for ∆k|k to use in the next
step. To formulate (8) as an LMI in this case, we need the
following theorem.

Theorem 1 (Ellipsoid Bounding Weighted Ellipsoid Sum):

Given a number of ellipsoids Ei, i = 1 . . . n:

zi ∈ Ei ⇐⇒

{

zi = Gixi + bi

xT
i Qixi ≤ r2

i

the weighted Minkowski sum

A = X
∑

i

Ei =

{

x = Xz; z =
∑

i

zi, zi ∈ Ei ∀i

}

can be proved by the S-procedure (see [2, ch. 2.6.3, pp. 23-
24]) to be contained in the centered target ellipsoid E ,

x ∈ E ⇐⇒ xT P−1x ≤ r2 (11)

iff the LMI condition




P XG Xb

GT XT Qτ

bT XT r2 −
∑

i τir
2
i



 ≥ 0 (12)

is satisfied for some scalars τi ≥ 0, where b =
∑

i bi, and

G =
(
G1 G2 . . . Gn

)
, Qτ = diag

(
{τiQi}i

)
.

If n = 1 and r1 > 0, the condition (12) is also necessary for
A ⊆ E .
Proof: See the appendix.

1) Using the theorem: We let P = P and z = δ
pm
k , where

∆pm
k is a sum of ellipsoids. With one centered ellipsoid (bi =

0) containing each of the previous filtered error, the process
and measurement disturbances:

∆k−1|k−1 ⊆ E1, ∆proc.
k−1

⊆ E2, ∆meas.
k ⊆ E3

the set-bounded part gets the prediction step ∆k|k−1 ⊆
AE1 + E2 and the filtering step

∆k|k ⊆ Xk(∆k|k−1 × E3) ⊆ Xk

(
(AE1 + E2) × E3

)
.

The ellipsoid sum for ∆k|k can thus be expressed with the
theorem, plugging in the ellipsoids E1, E2, E3, and

G1 =

(
A

0

)

, G2 =

(
I

0

)

, G3 =

(
0
I

)

.

Thus we can use the LMI condition (12) to circumscribe an
ellipsoid around ∆k|k.
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2) Variations: We can use more or fewer ellipsoidal terms
for the uncertainty sets ∆i, and also polytopic terms. For
polytopic terms, the sum P of all such terms is first formed.
As in the case with only polytopic terms, the LMI must
be written once for each vertex of P . If P is symmetric, we
need only write half as many LMI:s since the centered target
ellipsoid E sees no difference between the vertices v and −v.
A polytope vertex can be represented by a zero-dimensional
ellipsoid with bi 6= 0.

A polytope that is the sum of one-dimensional polytopes
(line segments) may expressed more economically as a sum
of one-dimensional ellipsoids. However, the result may be
more conservative since forming the sum of ellipsoids relies
on the S-procedure.

The use of both P and r as variables in the condition (11)
for the target ellipsoid may seem redundant, but it allows to
state a possibly simpler optimization problem if the shape of
the target ellipsoid is fixed. (I.e. to some shape desired in a
stationary situation.) It is of course possible to constrain P

to other spaces than to be fully free or with a prespecified
shape. Another use for r could be to improve the numerical
conditioning of the optimization problem by guessing the
size of the resulting ellipsoid before optimizing for P .

VII. SIMULATIONS

A. Example System

Consider a double integrator process with dynamics

xk+1 =

(
1 h

0 1

)

︸ ︷︷ ︸

A

xk +

(
1

2
h2

h

)

︸ ︷︷ ︸

B

uk + w
proc.
k

E
(
w

proc.
k

)
= 0, E

(

(wproc.
k w

proc.
k )T

)

=
1

4

(
1

3
h3 1

2
h2

1

2
h2 h

)

︸ ︷︷ ︸

R
proc.
k

where h = 0.1 is the sample time, (xk)1 is the position and
(xk)2 the velocity. White process noise enters along with the
control acceleration uk.

The measurements are coarsely quantized:

yk = round
(
Cxk

)
, C =

(
1 0

)
,

where round(x) rounds x to the nearest integer. Using the
current framework, we can model the measurement by

yk = Cxk + δmeas.
k , δmeas.

k ∈ ∆meas.
k = [− 1

2
, 1

2
].

With the sampling time h small enough, we may consider
(xk)1 to be almost completely known at all events, when yk

changes value. This measurement may be modelled as

1

2

(
yk + yk−1

)
= Cxk + wmeas.

k ,

E
(
wmeas.

k

)
= 0, E

(

(wmeas.
k wmeas.

k )T
)

= Rmeas.
k ,

(13)

where Rmeas.
k gives a suitable approximation of the error in

the guess Cxk ≈ 1

2

(
yk +yk−1

)
. We take Rmeas.

k = (Rproc.
k )11.

Since the system is unstable, we stabilize it with the
control law

uk = −
(
1 2

)
x̂k,

0 5 10 15 20
−4

−2

0

2

4

0 5 10 15 20

−3

−2

−1

0

1

u
y

t

t

Fig. 1. Test sequence for the observers

EMixed EGrid EKalman
„

0.054 0.063

0.063 0.180

« „

0.045 0.053

0.053 0.157

« „

0.444 0.223

0.223 0.285

«

TABLE I

MEAN QUADRATIC ERRORS OVER A 105 TIME STEP TEST SEQUENCE.

which places the poles in approximately z = e−h. The state
estimate x̂k is taken from a simple heuristic state estimator
that:

• runs in open loop between events
• updates at events:

(x̂k)1 =
1

2

(

yk + yk−1

)

(x̂k)2 =
(x̂k)1 − (x̂klast)1

h(k − klast)

where klast is the time index of the last event or known
initial state.

The process was simulated with the heuristic controller to
produce the test sequence uk, yk in Fig. 1. The corresponding
state sequence xk can seen in Fig. 2. (together with state
estimates from different estimators)

B. Estimator Implementation For The Example

In this example, the process noise is purely stochastic, and
the set-bounded measurement error ∆meas.

k can be represented
as an interval symmetric around the origin, so the target
ellipsoid E ⊇ ∆k|k should enclose the sum of an ellipsoid for
∆k|k−1 and the polytope for ∆meas.

k . Since we have only one
ellipsoid in the sum, (12) is both necessary and sufficient for
the target ellipsoid E to enclose it. Since the polytope ∆meas.

k

is symmetric with two vertices, we need only one instance
of the LMI condition (12).

C. Performance Comparison

Three filters were compared on the test sequence:
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0 5 10 15 20
−3

−2

−1

0

1

2

0 5 10 15 20
−2

−1

0

1

2

x
1

x
2

t

t

Fig. 2. Actual states and state estimates generated by the observers. Actual
states (solid), Mixed Estimator (dashed), Grid Filter (dotted), Kalman Filter
(dash-dotted). Events are marked with a + sign.

• The Mixed Estimator proposed in this paper using
ellipsoidal over-bounding of ∆k|k in each step, with

α = 1, W =

(
1 −0.3

−0.3 0.4

)

.

The weight matrix W was chosen by letting W−1 be
roughly proportional to the error covariance of the Grid
Filter (see below) a long time after an event.

• A Grid Filter; a discretization of the Bayesian Estimator
for the system (with approximately 32 000 states). See
[5] for more about the Bayesian Estimator for this
system.

• A Kalman Filter that uses only the measurements (13)
at events, and runs in open loop in between.

Table I shows the average estimation error of the filters
over a test sequence of 105 time steps, evaluated as

E =
1

N

N∑

k=1

(xk − x̂k)(xk − x̂k)T .

The Mixed Estimator is seen to come quite close to the Grid
Filter performance, but the Kalman Filter is far behind. Fig.
2 shows actual state trajectories together with the estimates.
Events are marked with + signs. When events are frequent,
all estimators seem to follow the state trajectories reasonably
well, especially for the position x1. When there is longer
time between events, the Kalman Filter seems to lose track.
The Mixed Filter is much better at following the Bayesian
estimate. The strategy it uses seems to be something like:

• At an event, update the state estimate.
• Continue by open loop predictions some time after each

event, while the prediction error is small.
• When the prediction error becomes too large, start to

incorporate the imprecise measurements available.

0 5 10 15 20
−3

−2

−1

0

1

2

0 5 10 15 20
−2

−1

0

1

2

x
1

x
2

t

t

Fig. 3. Actual states and state estimates, with α = 10 for the Mixed
Estimator, which makes it follow the Kalman Filter for too long.

−0.5 0 0.5

−1

−0.5

0

0.5

1

 

 

x1

x
2

∆k|k

∆̂k|k

Fig. 4. Actual set bounded error and ellipsoidal approximation used by
the Mixed Filter at t = 12.9, just before an event.

Fig. 3 shows the same simulation with α = 10 for the
Mixed Estimator. The weight α adjusts the tradeoff between
stochastic and set-bounded estimation error. With higher α it
is seen that the Mixed Filter waits longer to incorporate the
uncertain measurements after each events. The value α = 1
used in Fig. 2 seems to give a more reasonable tradeoff.

The uncertainty set ∆k|k (a polytope in this example) and
the recursive ellipsoidal over-approximation ∆̂k|k used by
the mixed filter can be seen in Fig. 4, just prior to the event
at t = 13. The actual set takes up perhaps 2

3
of the ellipsoid’s

volume, and that they more or less touch at the sharpest
corners of the polytope.
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VIII. CONCLUSION

This paper describes the design of a state estimator for
linear systems with process and measurement disturbances
containing both stochastic and set bounded terms. The es-
timator structure that is borrowed from the Kalman Filter
is optimal for purely stochastic disturbances, and allows the
two parts of the estimation error to be treated efficiently and
almost independently. The filter gain is optimized by solving
a Linear Matrix Inequality (LMI) problem.

The estimator can value the usefulness of measurements
corrupted by different amounts of stochastic and set bounded
disturbances, with a parameter α that can be used to tune
the tradeoff between the two kinds of error. An example
shows that the estimator performs quite close to an optimal
Bayesian Estimator, and that α can be used to adjust how
long to wait after receiving a good measurement before
incorporating measurements with interval uncertainty.

The estimator reproduces the behavior of the Kalman
Filter with set-bounded initial expectation in [8] under the
circumstances assumed in that work, when the weight α goes
to zero. When α is nonzero, the estimator applies a higher
filter gain to eliminate the set-bounded uncertainty faster.

An open issue is how to choose the state weighting matrix
W in a systematic fashion.
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APPENDIX

Proof of Theorem 1: This development is based on [2, ch.
3.7.4, pp. 46-47]. The construction is extended to be linear
in the transformation X , to handle ellipsoids that are flat in
some dimensions, and to specify the centers bi separately, but
is reduced in that we are only interested in centered target
ellipsoids E .

To handle the Minkowski sum of ellipsoids, we need a
condition for when one ellipsoid contains the intersection of
a number of ellipsoids. Given a set of quadratic functions
{fi(x)}i, i = 1 . . . n, one sufficient condition to verify that a
quadratic function f(x) ≥ 0 whenever all fi(x) ≥ 0 is given
by the S-procedure:

∃ τi ≥ 0, i = 1 . . . n : f(x) ≥
∑

i

τifi(x) ∀x.

The condition is also necessary e.g. when n = 1 and f1(x) >

0 for some x, see [2, ch. 2.6.3, pp. 23-24].
The condition (12) which we seek to derive is formed by

first constructing an extended space where each term of the
ellipsoid sum has its own coordinates, and forming the set
where all coordinates are within their respective ellipsoids,
which is the intersection of ellipsoidal cylinders. We then
used the S-procedure to circumscribe an ellipsoidal cylinder
parametrized in the sum coordinates.

Let

xT =
(
xT

1 xT
2 . . . xT

n

)
, z =

∑

i

zi.

Then, according to the definitions in the theorem,

z = Gx + b =
(
G b

)

︸ ︷︷ ︸

Ge

(
x

1

)

︸︷︷︸

xe

= Gexe.

We take the first step of the S-procedure (using τi ≥ 0∀i)
by forming the condition

∑

i

τi(r
2
i − xT

i Qixi) =

(
∑

i

τir
2
i

)

− xT Qτx ≥ 0 (14)

which will always be fulfilled when zi ∈ Ei ∀i.
The condition for the target ellipsoid, x ∈ E , x = Xz =

XGexe is equivalent to

r2 − xT
e GT

e XT P−1XGxe ≥ 0. (15)

Subtracting (14) from (15), we form our S-procedure condi-
tion, which can clearly only be fulfilled for all x if (15) is
fulfilled whenever (14) is:

xT
e








(
Qτ

r2 −
∑

i τir
2
i

)

︸ ︷︷ ︸

Qe

−GT
e XT P−1XGe








xe ≥ 0.

As we assume x to be arbitrary, we might as well assume
xe to be arbitrary since scaling of xe with a nonzero constant
does not affect whether the condition holds. The case when
the last entry of xe is zero is approached when ||x|| → ∞.
Thus we can equivalently consider positive semidefiniteness
of the matrix that stands between xT

e and xe above.
By the Schur Complement, since P−1 > 0, this condition

is equivalent to
(

P XGe

GT
e XT Qe

)

≥ 0,

which is exactly (12).
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