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Abstract—A new approach for robust fixed-order H∞ con-
troller design by convex optimization is proposed. Linear time-
invariant single-input single-output systems represented by a
finite set of complex values in the frequency domain are consid-
ered. It is shown that theH∞ robust performance condition can
be approximated by a set of linear or convex constraints with
respect to the parameters of a linearly parameterized controller
in the Nyquist diagram. Multimodel and frequency-domain
uncertainty can be directly considered in the proposed approach
by increasing the number of constraints. The proposed method
is compared with the standard H∞ control problem. It is
shown by an example that for an unstable uncertain model,
a PID controller can be designed with the proposed approach
which gives better H∞ performance than a 7th order unstable
controller obtained by the standard H∞ solution.

I. INTRODUCTION
Spectral models (or frequency function models) can be

easily identified from input/output data using Fourier or spec-
tral analysis. These models are represented by a finite set of
complex values and give some important information about
the bandwidth and the static gain of the system. Although
spectral models are largely used in practice, controller design
methods based on this type of models are rather limited.
The first systematic controller design methods were based
on loop shaping with graphical tools in Bode diagrams or
in Nichols chart and are discussed in classical textbooks for
design and analysis of control systems. These approaches
are very intuitive and work well for simple systems that can
be approximated by a low-order model with relatively small
delay. For unstable and non minimum phase systems and
systems with parametric and frequency-domain uncertainty,
more advanced methods should be used. A well-known
method is the Quantitative Feedback Theory (QFT) [1] which
is based on loop shaping in the Nichols chart. Frequency-
domain approaches lead usually to low-order controllers and
the design procedures need some expertise and are based on
trial and error. Although recently optimization approaches
are used to compute controllers in the QFT framework [2],
[3], H2 and H∞ control criteria for spectral models have not
been considered.
With new progress in numerical methods for solving

convex optimization problems, new approaches for controller
design with convex objectives and constraints have been
developed. These techniques have been also applied to
controller design for spectral models. In [4], [5] a convex
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optimization method for PID controller tuning by open-loop
shaping in the frequency-domain is proposed. The infinity-
norm of the difference between the desired open-loop trans-
fer function and the achieved one weighted by a so-called
target sensitivity function is minimized. For open-loop stable
systems, it is shown through the small gain theorem that if
the infinity norm is less than 1, then the nominal closed-
loop system is stable. This is a sufficient condition which
depends on the choice of the target sensitivity function. The
condition for the stability of multiple models becomes more
conservative as for each model a reasonable target sensitivity
function should be available.
In [6] a robust fixed-order controller design using linear

programming is proposed. The main feature of this method is
that the stability and some robustness margins are guaranteed
by linear constraints in the Nyquist diagram and the method
is applicable to multiple models as well. However, the
performance specifications are limited to the choice of a
lower bound for crossover frequency and minimization of
the integral of the tracking error. The results are improved
by open-loop and closed-loop shaping using quadratic pro-
gramming in [7].
In this paper, based on the idea proposed in [6], [7] a new

approach for robust fixed-order controller design is devel-
oped. It is shown that robust fixed-order linearly parameter-
ized controllers for Linear Time Invariant Single-Input Single
Output (LTI-SISO) systems represented by nonparametric
spectral models can be computed by convex optimization.
The performance specification, like the standard H∞ control
problem, is a constraint on the infinity norm of the weighted
sensitivity function. It should be mentioned that the set of all
fixed-order stabilizing controllers is a nonconvex set. In this
paper, a convex approximation of this set is given by a set
of linear constraints in the Nyquist diagram. The proposed
method can be used for PID controllers as well as for
higher order linearly parametrized controllers in discrete or
continuous time. The case of unstable open-loop systems can
also be considered if a stabilizing controller is available. The
main idea is to define new constraints such that the designed
open-loop system has the winding number satisfying the
Nyquist stability criterion. Another important feature is that,
by contrast with the standard H∞ problem, this approach
can treat the case of multimodel uncertainty as well. The
effectiveness of the proposed approach is illustrated by com-
parison with the standard H∞ control design in a simulation
example.
This paper is organized as follows: In Section II the class

of models, controllers and the control objectives are defined.
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Section III introduces the control design methodology based
on the linear and convex constraints in the Nyquist diagram.
Simulation results and comparison with the standardH∞ de-
sign are given in Section IV. Advantages and disadvantages
of the proposed method are discussed in Section V. Finally,
Section VI gives some concluding remarks.

II. PROBLEM FORMULATION
A. Class of models
The class of continuous-time LTI-SISO systems with

bounded infinity norm is considered. However, the results
can be applied directly to the discrete-time systems. It is
assumed that the plant model belongs to a set G that is the
convex combination of m spectral models with a sufficiently
large number of frequency points N :

G =

{

m
∑

i=1

λiGi(jωk) :
m

∑

i=1

λi = 1; k = 1, N

}

(1)

where λi are real positive numbers. By sufficiently large
number of frequency points we mean that the open-loop
frequency response of the system in the Nyquist diagram
between two adjacent frequency points can be well ap-
proximated by linear interpolation. The set G represents
multimodel and unstructured frequency-domain uncertainty.
In the sequel, for the sake of simplicity, we consider a
nominal model G ∈ G and represent the robust performance
conditions for a single nominal model with frequency-
domain uncertainty. It will be shown that the multimodel
uncertainty can be considered by repeating the constraints
for each model.

B. Class of controllers
Linearly parameterized controllers are given by :

K(s) = ρTφ(s) (2)

where ρT = [ρ1, ρ2, . . . , ρn], φT (s) = [φ1(s),φ2(s), . . . ,
φn(s)], n is the number of controller parameters and φi(s)
are stable transfer functions with possible poles on the imag-
inary axis chosen from a set of orthogonal basis functions.
It is clear that PID controllers belong to this set. The main
property of this parameterization is that every point on the
Nyquist diagram of L(jω) = K(jω)G(jω) can be written
as a linear function of the controller parameters ρ:

K(jωk)G(jωk) = ρTφ(jωk)G(jωk)
= ρTR(ωk) + jρT I(ωk)

(3)

where R(ωk) and I(ωk) are respectively the real and imag-
inary parts of φ(jωk)G(jωk).

C. Design Specifications
Let the sensitivity function S(s) = [1 + L(s)]−1, the

complementary sensitivity function T (s) = L(s)[1+L(s)]−1

and the crossover frequency ωc be defined. The proposed
approach can consider very simple specifications for the
design of simple PID controllers as well as standard perfor-
mance specifications for H∞ control problems. For simple

controller design, a lower bound on the modulus margin
(the inverse of the infinity norm of the sensitivity function
that ensures a lower bound on the gain and the phase
margin) and a desired value for the crossover frequency can
be considered. While more advanced control problems in
which the performance and robust stability are defined by
constraints on the infinity norm of the weighted sensitivity
functions can also be treated for fixed-order controller design.
A very standard robust control problem is to design a

controller that satisfies ‖W1S‖∞ < 1 for a set of models,
where W1(s) is the performance weighting filter. If the set
of models is represented by multiplicative uncertainty, i.e.
Gm(s) = G(s)[1 + W2(s)∆(s)] with ‖∆‖∞ < 1, the
necessary and sufficient condition for robust performance is
given by [8]:

‖|W1S| + |W2T |‖∞ < 1 (4)

There is no analytical solution to this problem, however,
in the standard H∞ framework a solution to the following
approximate problem can be found:

∥

∥

∥

∥

W1S
W2T

∥

∥

∥

∥

∞

<
1√
2

(5)

This solution is conservative and leads to high order con-
trollers. The proposed approach in this paper is based on
some linear or convex constraints on the Nyquist diagram
such that the following constraints are satisfied :

|W1(jωk)S(jωk)| + |W2(jωk)T (jωk)| < 1 (6)

for k = 1, . . . , N . For models with additive uncertainty, i.e.
Ga(s) = G(s) + W3(s)∆(s) with ‖∆‖∞ < 1, the robust
performance condition is given by:

|W1(jωk)S(jωk)| + |W3(jωk)K(jωk)S(jωk)| < 1 (7)

for k = 1, . . . , N . The use of linear or convex constraints
instead of the above non-convex constraints leads also to a
conservative solution. It will be shown that this conservatism
can be significantly reduced if a desired open-loop transfer
function Ld(s) is available and a norm of L(s) − Ld(s) is
minimized under the robust performance constraints.
The choice of Ld(s) has already been discussed in open-

loop shaping design methods and we do not intend to inves-
tigate this choice in this contribution. However, some simple
choices are recalled that usually lead to good results for
simple models. For example Ld(s) = ωc/s is an appropriate
choice for low-order stable systems. If a desired reference
model M(s) for the closed-loop system is available, Ld(s)
can be chosen equal to M(s)[1 − M(s)]−1. The choice
of Ld(s) is more important for unstable systems. In this
case the winding number of Ld(s) around the critical point
in the Nyquist diagram should satisfy the Nyquist stability
criterion. For this purpose, the number of unstable poles of
the plant model should be known or a stabilizing controller
K0(s) should be available. It should be mentioned that a
nonrealistic choice of Ld(s) (with respect to plant model
and controller structure) will only increase the conservatism
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of the approach and never leads to a destabilizing controller.
A reasonable approach, known as windsurfing [9], is to start
with a modest choice of Ld(s) (with a small bandwidth) and
increase iteratively the closed-loop bandwidth.

III. ROBUST CONTROLLER DESIGN IN NYQUIST
DIAGRAM

A. Robust performance constraints
The basic idea is to approximate the nonconvex robust

performance constraints in (6) and (7) by linear constraints.
This way, the controller design is represented by a convex
feasibility problem. We start by multiplying the robust per-
formance condition in (6) by |1 + L(jωk)| to obtain:

|W1(jωk)| + |W2(jωk)L(jωk)| < |1 + L(jωk)|
for k = 1, N (8)

Note that |1 + L(jωk)| is the distance between the critical
point and L(jωk). Hence, this constraint is satisfied if and
only if there is no intersection in the Nyquist diagram
between a circle centered at the critical point with a ra-
dius of |W1(jωk)| and a circle centered at L(jωk) with
a radius of |W2(jωk)L(jωk)| at each frequency ωk [8].
Now, consider a straight line d∗k which is tangent to the
circle with radius |W1(jωk)| and orthogonal to the line
between the critical point and L(jωk). Therefore, the robust
performance condition in (6) is satisfied if and only if
the circle centered at L(jωk) does not intersect d∗k and is
completely in the side that excludes the critical point (at
the right hand side in Fig. 1). This condition cannot be
represented as a convex constraint because d∗k is a function of
the controller parameters. However, d∗k can be approximated
by dk which is tangent to the circle with radius |W1(jωk)|
but orthogonal to the line connecting the critical point to
Ld(jω) (see Fig. 1). It should be noted that the equation
of dk at each frequency ωk depends only on W1(jωk) and
Ld(jωk). If we name x and y, respectively, the real and
imaginary parts of a point on the complex plane, the equation
of dk at each frequency ωk becomes :

|W1(jωk)[1 + Ld(jωk)]|− Im{Ld(jωk)}y−
[1 + Re{Ld(jωk)}][1 + x] = 0 (9)

where Re{·} and Im{·} represent real and imaginary parts
of a complex value, respectively. Therefore, the condition
that L(jωk) for all ωk is located in the side of dk that
excludes the critical point can be given by the following
linear constraints :

|W1(jωk)[1 + Ld(jωk)]|− Im{Ld(jωk)}ρTI(jωk)−
[1+Re{Ld(jωk)}][1+ρTR(jωk)] < 0 for k = 1, . . . , N

There exists two alternatives in order that this condition to
be satisfied for all models in the uncertainty set represented
by a circle centered at L(jωk). The first alternative is to
approximate the uncertainty circle by a polygon of m > 2
vertices. Then, the robust performance condition in (6) is

-1

|W1(jωk)|

|W2(jωk)L(jωk)|

Ld(jωk)

d
∗

k

dk

Re

Im

L(jωk)

Fig. 1. Linear constraints for robust performance in Nyquist diagram

satisfied if all vertices are located in the right side of dk.
This can be represented by the following constraints :

|W1(jωk)[1 + Ld(jωk)]|− Im{Ld(jωk)}ρTIi(jωk)−
[1 + Re{Ld(jωk)}][1 + ρTRi(jωk)] < 0

for k = 1, . . . , N and i = 1, . . . , m (10)

where Ri(jωk) and Ii(jωk) are the real and the imaginary
parts of φ(jωk)Gi(jωk) with

Gi(jωk) = G(jωk)[1 +
|W2(jωk)|
cosπ/m

ej2πi/m] (11)

It can be observed that the number of linear constraints are
multiplied by m when the uncertainty circle is approximated
by a polygon of m vertices.
The second alternative is to consider for each frequency

only one constraint for the closest point of the circle to
dk . It is clear that if this point is at the side of dk that
excludes the critical point, then the whole uncertainty circle
is in the correct side. The coordinates of the closest point of
the uncertainty circle from dk can be computed as :

x = ρTR(jωk) − |W2(jωk)ρTφ(jωk)G(jωk)|

×
1 + Re{Ld(jωk)}
|1 + Ld(jωk)|

(12)

y = ρT I(jωk) − |W2(jωk)ρTφ(jωk)G(jωk)|

×
Im{Ld(jωk)}
|1 + Ld(jωk)|

(13)

Using these coordinates and the equation of dk in (9) the
robust performance constraints obtained are no longer linear
but convex with respect to the controller parameter vector
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ρ :

|W1(jωk)[1 + Ld(jωk)]|− Im{Ld(jωk)}ρTI(jωk)+

|W2(jωk)ρTφ(jωk)G(jωk)[1 + Ld(jωk)]|−
[1 + Re{Ld(jωk)}][1 + ρTR(jωk)] < 0

for k = 1, . . . , N (14)

This alternative has less constraints and no conservatism but
leads to a bit more complex convex optimization problem
(convex constraints instead of linear constraints).
Remarks:
1) The same approach can be applied while an addi-
tive uncertainty model is available. In this case the
robust performance condition in (7) can be repre-
sented by linear constraints in (10) or by convex con-
straints in (14) with the difference that |W2(jωk)| =
|W3(jωk)|/|G(jωk)|.

2) Individual shaping of the sensitivity functions is also
possible using the constraints in (6) and (7) and putting
one of the filters equal to zero. For example, in many
applications we need to put some constraints on the
magnitude of the input sensitivity function U(s) =
K(s)[1+L(s)]−1 in order to reduce the control effort.
This can be done by defining a weighting frequency
function W3(jωk), usually a high pass filter, and using
the constraints in (7) with W1(jω) ≡ 0.

3) Multimodel uncertainty can be directly taken into
account in the proposed approach. We only should
repeat the constraints for each model in the model set.

4) The robust performance can be improved by defining
the following constraint :

‖|W1S| + |W2T |‖∞ < γ (15)

and minimizing γ. In the proposed approach an upper
bound for γ can be computed by an iterative bisec-
tion algorithm. At each iteration for a fixed γi, we
replace W1 and W2 with W1/γi and W2/γi and we
solve the feasibility problem represented by the linear
constraints in (10) or convex constraints in (14). If the
problem is feasible γi+1 will be chosen smaller than γi

and if the problem is infeasible γi+1 will be increased.

B. Optimization criterion
Up to now, it has been shown that the robust performance

condition can be represented in the Nyquist diagram by a
set of linear or convex constraints. Hence, fixed-order robust
performance control problem becomes a feasibility problem
with linear or convex constraints. The major drawback of
the proposed approach with respect to the standard H∞

control problem is the need for a desired open-loop frequency
function Ld(jω). However, it should be noted that the per-
formance specification is defined by the weighting frequency
function W1(jω) and Ld(jω) plays only an intermediate
role to reduce the conservatism of the solution and not
the solution itself. This means that even without knowing

Ld(jω), a straight line with a fixed slope for all frequencies
can divide the Nyquist plane into two half planes and leads
to a set of linear constraints for robust performance [6].
Therefore, Ld(jω) just adjusts the slope of dk to enlarge
the set of admissible controllers defined by the constraints.
As a result, a non properly chosen Ld(jω) may lead to a
infeasible solution. By a non properly chosen Ld(jω) we
mean a frequency function which is not coherent with the
performance specification (with a bandwidth much larger
than that specified by W1) and is far from achievable for the
plant model with given uncertainty set and restricted order
and structure of the controller. For example, if we consider
an integrator in the controller but we do not put it in Ld(jω)
we will have evidently a non properly chosen Ld(jω). A
suitable choice of Ld(jω) is a simple choice that satisfies
the Nyquist stability criterion and has essentially the poles
on the imaginary axis of the controller and the plant model.
If Ld(jω) is chosen such that it represents some desired

control specifications, then it is judicious to minimize a norm
of L − Ld under the robust performance constraints. We
propose either a quadratic programming approach in which
an approximation of the two norm of L − Ld is minimized
under some linear constraints :

min
ρ

N
∑

k=1

|ρTφ(jωk)G(jωk) − Ld(jωk)|2

Subject to:
|W1(jωk)[1 + Ld(jωk)]|− Im{Ld(jωk)}ρTIi(jωk)−
[1 + Re{Ld(jωk)}][1 + ρTRi(jωk)] < 0
for k = 1, . . . , N and i = 1, . . . , m

(16)
or a convex optimization approach in which an approxima-
tion of the infinity norm of L−Ld is minimized under some
convex constraints :

min
ρ

max
k

|ρTφ(jωk)G(jωk) − Ld(jωk)|

Subject to:
|W1(jωk)[1 + Ld(jωk)]|− Im{Ld(jωk)}ρTI(jωk)+
|W2(jωk)ρTφ(jωk)G(jωk)[1 + Ld(jωk)]|−
[1 + Re{Ld(jωk)}][1 + ρTR(jωk)] < 0
for k = 1, . . . , N

(17)
It is interesting to notice that a large value of the criterion

for the optimal solution shows that the choice of Ld(jω)
has not been appropriate and with a better choice better
performance may be achieved. Based on this observation a
practical algorithm for improving the control performance
can be suggested. We can start with a simple Ld(jω) and
compute a first controller, say K0(s), then we can compute a
new Ld(jω) equal toK0(jω)G(jω) and run the optimization
problem with tighter specifications (e.g. larger |W1|). In this
new optimization the conservatism is significantly reduced
because L and Ld and consequently d∗k and dk are close to
each other at all frequencies.

C. Unstable systems
One of the main interest of the proposed approach with

respect to other frequency-domain methods is that it can
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be applied to the unstable systems. The essential condition
is that the desired open-loop frequency function Ld(jω)
should satisfy the Nyquist stability criterion. It means that
Ld(jω) has to encircle the critical point np times, where
np is the number of unstable poles of G(s) (knowing that
the controller K(s) has no poles in the right half plane).
Under this condition, L(jω) will encircle the critical point
np times too if the constraints in (10) or (14) are satisfied.
The reason is as follows : if Ld(jω) encircles np times the
critical point, then the vector 1 + Ld(jω) and dk which is
orthogonal to this vector will turn np times around the critical
point. Hence, since L(jω) and all models in the uncertainty
circle are always in the side of dk that excludes the critical
point, they will also encircle the critical point np times.
If the unstable poles of the plant model are known, a

good choice of Ld(jω) includes these poles. If these poles
are unknown, Ld(jω) should contain the same number of
unstable poles as the plant model. Finally, if a stabiliz-
ing controller K0(s) is known, an appropriate choice is
Ld(jω) = K0(jω)G(jω). In this case, Ld does not represent
a desired open-loop transfer function so it is not necessary
to minimize a norm of L − Ld in the optimization problem
and only a feasibility problem can be solved instead.

IV. SIMULATION RESULTS

This example is taken from [10] where a robust perfor-
mance problem is defined for an unstable plant. Consider
the family of plants described by the following multiplicative
uncertainty model:

P (s) =
(s + 1)(s + 10)

(s + 2)(s + 4)(s − 1)
[1 + W2(s)∆(s)] (18)

where

W2(s) = 0.8
1.1337s2 + 6.8857s + 9

(s + 1)(s + 10)
(19)

The nominal performance is defined by ‖W1S‖∞ < 1 with :

W1(s) =
2

(20s + 1)2
(20)

The objective is to compute a controller K(s) that opti-
mizes the robust performance by minimizing γ in (15).
The standard H∞ solution that solves an approximate

problem leads to γopt = 0.844 for this problem with the
controller K(s) = N∞/D∞ where

N∞ = 7.409e6s6 + 1.266e8s5 + 6.335e8s4 + 1.152e9s3

+ 6.911e8s2 + 5.442e7s + 9.37e5 (21)

and

D∞ = s7+9.07e5s6+1.901e7s5+1.043e8s4+4.416e7s3

− 4.682e7s2 − 4.962e6s− 1.262e5 (22)

This 7th-order controller is unstable and has a pair of
complex conjugate poles very close to the imaginary axis.

Now, the proposed method is applied to design a PID
controller represented by :

K(s) = [Kp, Ki, Kd][1,
1

s
,

s

1 + Tfs
]T

where the time constant of the derivative part of the PID
controller Tf is set to 0.01 s. The frequency response of the
model is computed at N = 50 logarithmically spaced fre-
quency points between 10−3 and 103 rad/s. The uncertainty
circle at each frequency is approximated by an outbounding
polygon with m = 8 vertices. The plant model contains one
unstable pole and the controller an integrator, so the desired
open-loop transfer function is chosen as

Ld(s) = β
s + 1

s(s − 1)
(23)

where β > 1 satisfies the Nyquist stability condition for
Ld(s). In this example, we choose β = 2. It should be
noted that this choice of Ld(s) is not compatible with desired
performances so the difference between L(s) and Ld(s) will
not be minimized. In order to obtain the controller giving
the minimal value for γ, the bisection algorithm explained
in Remark 4 is used with the linear constraints in (10) that
leads to

‖|W1S| + |W2T |‖∞ = 0.7233

The resulting PID controller is :

K0(s) =
2.426s2 + 6.675s + 11.11

0.01s2 + s
(24)

It is interesting to observe that this PID controller gives better
performance than the H∞ controller. Moreover, it is stable
and easily implementable on a real system. The performance
can be further improved using a new Ld(s) based on K0(s).
With this new Ld(s) the optimal controller is given by :

K(s) =
3.416s2 + 26.28s + 25.08

0.01s2 + s
(25)

which leads to γopt = 0.7213.
In order to study the sensitivity of the solutions to the

choice of Ld(s), the value of β in (23) is changed from 2 to
97 with a step size of 5. For each value of β the minimum
of γ is computed. The mean value of optimal γ’s is 0.7549
and its standard deviation 0.0228. This shows that although
the optimal solution depends on the choice of Ld(s), it is not
very sensitive to this choice. Moreover, the results obtained
by this approach, whatever the choice of β between 2 and
97, are better than the standard H∞ optimal solution.

V. DISCUSSION
It should be mentioned that the problem of robust fixed-

order controller design is a non-convex NP-hard problem
and all solutions to this problem, including ours, are based
on some approximations. For example, if we consider the
standard H∞ control problem for design of a fixed-order
controller for a system with multiple models and frequency-
domain uncertainty, we have the following approximations :
1) Approximation of the structured multimodel uncer-
tainty with unstructured frequency-domain uncertainty.
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2) Approximation of the frequency-domain uncertainty
with a reduced-order weighting filter.

3) Approximation of the real robust performance condi-
tion in (4) with the condition given in (5).

4) Approximation of the resulting high-order controller
with a fixed-order controller. In this operation, it is dif-
ficult to even guarantee the stability and performance
for the reduced-order controller.

The proposed method considers directly the multimodel and
frequency-domain uncertainty and designs directly a fixed-
order controller. However, it seems that this method has some
drawbacks which are discussed below :
1) The plant and uncertainties are defined only in N
frequency points, so the performance and stability
conditions are satisfied only in N points. It is clear that
N should be sufficiently large such that the Nyquist
diagram of L(jωk) is a good approximation of L(jω).
For discrete-time controller design, since the frequency
domain is limited to the half of sampling frequency,
by increasing N the quality of approximation can be
improved. This will increase the number of constraints
but will not make a serious problem for linear and
quadratic programming methods which are able to deal
with more than hundred thousand of linear constraints.
For continuous-time controller design, the choice of N
and the sampling frequency should be done cautiously.
This will need some information about the plant and
the desired closed-loop specifications.

2) The controller is linearly parameterized so the denom-
inator of the controller is fixed and it should be chosen
prior to design. In practice, some of the poles of the
controller are usually fixed to achieve certain closed-
loop performances. For example a pole at origin, an
integrator, or a pair of complex poles in a certain
frequency are fixed in order to reject the disturbances
(internal model principle). Therefore, this condition
is not restrictive for low-order controller design. For
higher order controller design the use of a set of
orthogonal basis function is proposed. It is known that
by increasing the controller order any stable transfer
function can be approximated with such a set. On the
other hand, this restriction ensures the stability of the
controller which is required in many applications and
cannot be guaranteed by a full controller parameteri-
zation.

3) The robust performance condition in (4) is approxi-
mated by a set of linear constraints in (10) or convex
constraints in (14). It is discussed in the paper that the
quality of this approximation depends on the choice of
a desired open-loop transfer function.

It is too difficult (if not impossible) to compare, by a the-
oretical analysis, the overall approximation or conservatism
of different approaches to fixed-order controller design. In
this paper we tried to show the effectiveness of the proposed
approach by means of a simulation example and compare it
with the standard H∞ method.

VI. CONCLUSIONS
A new fixed-order robust controller design method in the

Nyquist diagram for spectral models has been developed.
The method is based on an approximation of the robust per-
formance condition in theH∞ framework that leads to linear
or convex constraints with respect to linearly parameterized
controllers. The advantages of this approach are summarized
below:
1) The method uses only the frequency response of the
system and no parametric model is required. The
frequency response of the model and the uncertainty
at each frequency can be obtained directly by discrete
Fourier transform from a set of periodic data, so the
method can be considered as completely “data-driven”.
Of course, the method can be applied as well if a
parametric model with an uncertainty set is available.

2) The method is very simple, at least as simple as open-
loop shaping methods in Bode diagram or in Nichols
chart currently used in textbooks for undergraduate
courses in control systems. For instance, it can be
used to design of PID controllers ensuring a given
modulus margin and optimizing for a desired crossover
frequency by a quadratic programming optimization
approach. Moreover, the case of multimodel uncer-
tainty can be handled easily just by increasing the
number of linear constraints while the mentioned clas-
sical frequency-domain approaches cannot deal with
this type of uncertainty.

3) Higher order controllers for unstable systems withH∞

type specifications can also be designed within the
same framework.
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