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Abstract— We propose an adaptive scheme which is a coun-

terpart of existing high gain control techniques based on control

Lyapunov functions. Given a control Lyapunov function, the

main idea is that of tuning the feedback gain according to

a suitably–chosen Lyapunov time–derivative. The control gain

is not monotonically non–decreasing as in existing techniques,

but it is increased or decreased depending on the imposed

derivative, thus avoiding the well-known issue of actuator over–

exploitation. We are able to show robust convergence of the

proposed adaptive control scheme as well as other interesting

properties. For instance, it is possible to guarantee an a–priori

given upper bound for the transient mode of behavior during

adaptation. Furthermore, if the control Lyapunov function is

designed based on an optimal control problem, then the control

action is nominally optimal, precisely it yields the optimal

trajectory for any initial condition, if the actual plant matches

the nominal system.

I. INTRODUCTION

Consider a nonlinear dynamic system of the form

ẋ(t) = F (x(t)) + Bu(t)

and assume that a smooth control Lyapunov function Ψ is

available. It is well established [1], [15], [6] that, for such

systems, it is always possible to design a gradient–based

control law of the form

u = −κBT∇Ψ(x)T

which stabilizes the system for a suitably high value of κ.

The appropriate magnitude of the gain κ depends on the

plant characteristics which often are uncertain. Therefore,

the choice of κ can be either ineffective (too small) or too

actuator–exploiting (too high).

In previous works (see [7], [10]) the so called λ–tracking

control has been presented which is a mechanism to increase

the gain in an adaptive way. More specifically, let us consider
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the following adaptive scheme:

u(t) = −κ(t)BT∇Ψ(x(t))T , (1)

κ̇(t) = µλσǫ(‖x‖) , with κ(0) = κ0 ≥ 0, (2)

where µλ > 0 and σǫ(ξ) = max{0, ξ−ǫ}, for a given ǫ > 0.

Function σǫ(‖x‖) represents the distance from the ball of

radius ǫ. This means that the gain κ is increased as long as

x(t) is outside such a ball, proportionally to the distance.

This “increasing” trend of the gain is expected to have a

stabilizing effect, so that the state is eventually confined in

the ǫ–ball. The reader is referred to specialized literature for

the theoretical analysis (see again [7], [10], [11]) and for

some interesting applications [4], [8], [9]).

However, the λ–tracking control architecture has some dis-

advantages, too. First, the gain κ may become too large (note

that the gain growth depends on the coefficient µλ which is

arbitrary) thus requiring an excessive control exploitation.

Conversely, µλ too small may compromise performances.

Moreover, despite the guaranteed convergence to the ǫ–ball,

namely practical stability, no bounds have been given to the

transient modes of behavior, so that the trajectory may be

driven arbitrarily far from the origin. If the adaptive control

algorithm is used for repeated tracking operations the gain

becomes larger and larger, so that there must be a distinction

between the “training session” and the “working session”

when the adaptation is stopped.

An alternative approach is the so–called funnel control

[11], [12]. That idea can be applied in our context by

adapting the gain as follows

κ(t) = µf

1

1 − Ψ(x(t))ϕ(t)
,

where µf > 0 and ϕ(t) is a properly selected strictly

increasing positive function converging to 1/ǫ from below.

This kind of adaptive scheme ensures the decreasing con-

dition Ψ(x(t)) ≤ 1/ϕ(t) and hence convergence of x(t) to

the ǫ–ball of Ψ. The reader is referred to [11] for a nice

survey. This scheme looks quite interesting, however the

resulting controller is time–varying. Furthermore, “jumps”

and measurement errors (for instance due to disturbances)

may lead to singularity.
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The control law we propose in the present paper is based

on the estimation of the Lyapunov derivative, an idea already

pursued in [16], [17]. However, our approach is basically

different since we are considering a high–gain type of

adaptive algorithm, basically combining ideas from [7], [10]

and [16]. The main features of the proposed control law are:

• the gain increases or decreases depending on the current

mode of behavior and there is no need for interruption

of the adaptation;

• there are no requirements of control reset;

• upper bounds on the state transient during adaptation

are provided;

• for nominally–linear systems, the control scheme is

optimal as long as the model matches the plant (while

robust convergence is ensured anyway).

II. MODEL DESCRIPTION AND ASSUMPTIONS

In the following, given a function Ψ : R
n → R, we denote

the α–sublevel set as N [Ψ, α] , {x : Ψ(x) ≤ α} .

Consider a dynamic system of the form

ẋ(t) = F (x(t), ∆F (t)) + G(∆B(t))u(t) , (3)

where the following assumptions characterize the various

terms involved in (3).

Assumption 1: Function F is continuous and ∆F is an

uncertain term bounded as

‖∆F (t)‖ ≤ ∆̄F , ∀t ≥ 0 ,

and G(∆B(t)) = B(I + ∆B(t)), where ∆B is an uncertain

term bounded as

‖∆B(t)‖ ≤ ∆̄B < 1 , ∀t ≥ 0 .

Assumption 2: System (3) admits a control Lyapunov

function Ψ(x), i.e. a radially–unbounded smooth positive–

definite function such that

Ψ̇(x) = ∇Ψ(x)[F (x, ∆F ) + G(∆B)Φ0(x)] ≤ −φ(x) , (4)

where Φ0(x) is a locally–Lipschitz robustly stabilizing state–

feedback controller (not necessarily known) and φ is a

positive–definite radially–unbounded C 1 function.

The following well–known property holds [15].

Proposition 2.1: There always exists a stabilizing

gradient–based control of the form

u = −κ̄(x)BT∇Ψ(x)T (5)

where κ̄(x) is a a properly-selected continuous function.

In rather qualitative terms, κ̄(x) must be “large enough”

so as to ensure that

∇Ψ(x)F − κ̄(x)∇Ψ(x)BBT∇Ψ(x)T

≤ ∇Ψ(x) [F + BΦ0(x)] ≤ −φ(x) .

In this paper, we address a different type of control law

that can be implemented as long as both functions Ψ and φ

are exactly known (see Fig. 1):

u(t) = −κ(t)BT∇Ψ(x(t))T , (6)

κ̇(t) = µ[Ψ̇(x(t)) + φ(x(t))] , κ(0) = κ0 ≥ 0. (7)

plant Ψ

d
dt

φ

−BT∇ΨT

µ
∫κ

u x

+

+

×

Fig. 1. The proposed adaptive control architecture.

The basic idea is to increase/decrease the gain if the Lya-

punov function decreases slower/faster than the prescribed

behavior −φ(x).

Remark 2.1: It is worth noting that the time-derivative

Ψ̇(x) is not available, unless the actual process model is

known. In principle, we could use a derivator, which, of

course, is quite sensible to disturbances. However, from a

practical perspective, the gain adaptation can be implemented

as

κ(t) = µ[Ψ(x(t)) + ξ(t)]

ξ̇(t) = φ(x(t)), ξ(0) = κ0/µ − Ψ(x(0)) .

Remark 2.2: Although for easiness of notation we con-

sider the case of constant B, the following results hold with

no changes for more general control–affine systems of the

type

ẋ(t) = F (x(t), ∆F (t)) + B(x) (I + ∆B(t)) u(t) ,

where the nominal input matrix is a function of the state.

A. Motivations

Before presenting the analysis and some simulation re-

sults, a few basic motivations are provided to gain more

insight into the proposed control mechanism.

To fix ideas, let us consider the following simple nonlinear

system (e.g., an inverted pendulum):

θ̈(t) = α sin(θ) + (1 + β)u(t)
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where α and β are unknown (possibly time–varying) param-

eters subject to the bounds |α| ≤ ᾱ, |β| ≤ β̄ < 1 , where

ᾱ and β̄ are known.

In the ideal case where α and β are exactly known,

the control problem can be easily addressed by means of

feedback linearization, that is, we can pick the following

control action:

u(t) =
−α sin(θ(t)) + v(t)

1 + β
, (8)

where v is an external input variable. Hence, the resulting

closed-loop system takes on the form

ẋ(t) = Ax(t) + Bv(t) (9)

with

A =

[

0 1

0 0

]

B =

[

0

1

]

. (10)

Clearly, if α is not known or time–varying, the above scheme

cannot be applied.

Now, according to the robust control theory for systems

with matched uncertainties [13], [1], [6], a Lyapunov func-

tion for the linear plant can be determined as Φ(x) = xT Px,

along with the linear control law v = −ρBT Px , where ρ

is a properly chosen scaling factor (e.g., the inverse of the

control weighting matrix in LQ control). This can be done

by solving an LQ optimal problem for the nominal linear

system. Then we use this function as a control Lyapunov

function for the original system.

For the sake of brevity and without loss of generality, let

us assume that β = 0 and let us rewrite the system as

ẋ(t) = [A + B∆E]x(t) + Bu(t)

where E = [1 0]T and ∆ is defined as follows:

α sin(θ) = α
sin(x1)

x1
x1 , ∆x1

with |∆| ≤ ᾱ.

If we take u = −κBT Px, the corresponding Lyapunov

time-derivative is

Ψ̇ = 2xT P [(A + B∆E)x − κBBT Px]

= 2xT P [A − ρBBT P ]x

+ 2xT [PB∆Ex − (κ − ρ)PBBT P ]x.

Thus, we have

Ψ̇ ≤ −xT QLQx + ǫ‖∆Ex‖2

−[ǫ‖∆Ex‖2 − ‖xT PB‖‖∆Ex‖ + (κ − ρ)‖BT Px‖2] ,

where xT QLQx is the Lyapunov time-derivative of the linear

optimal control law applied to the ideal plant. If QLQ is

positive definite, and ǫ > 0 small, there exists κ̄ such that for

κ ≥ κ̄ the above derivative is negative and then convergence

is ensured. Therefore, we could just take any of such gain

κ. However if we consider the worst case, the control might

be over–exploited if the actual value of α is smaller than the

worst case one. Hence, we consider the following adaptation

law

κ̇(t) = µ[Ψ̇(x(t)) + x(t)T QLQx(t)] ,

for µ > 0, thus “expecting” the same Lyapunov derivative

we could ideally achieve by means of the control law (8)

with v = −ρBT P that we cannot on–line compute without

information about the current value taken on by α.

Notice that, in the general case where β 6= 0, this further

source of uncertainty may have strong effects on the control

effort. Specifically, for example, a negative value of β might

represent a partial failure. Then the value of k̄ previously

derived must be augmented as κ̄ , κ̄/(1 − β̄) to face this

“worst case” scenario. Clearly, increasing the gain could be

absolutely useless under normal modes of behavior.

This kind of reasoning can be applied to other classes

of processes such as those satisfying the so called strict

feedback form [6] or the convex processes [3].

III. MAIN RESULTS

A. Convergence and transient upper bound

First, we show that, by means of the proposed control

algorithm, we are able to impose bounds on both the transient

behaviors of the state x(t) and of the gain κ(t), according

to the next result.

Proposition 3.1: Under Assumptions 1 and 2, for any

arbitrary ζ > 0 and η > 0, there exists µ̂ > 0 such that,

for any µ ≥ µ̂, the control law with the adaptive mechanism

(6)–(7) ensures the condition

Ψ(x(0)) ≤ ζ ⇒ Ψ(x(t)) ≤ ζ + η .

Furthermore, there exist κ > 0 and κ̄ > 0 such that κ ≤
κ(t) ≤ κ̄ for all t ≥ 0.

Proof: Define κ̄η,ζ as the maximum of κ̄(x) (see

Proposition 2.1) on the sublevel set N [Ψ, η + ζ]:

κ̄η,ζ , max
x∈N [Ψ,η+ζ]

κ̄(x)

As a first step, we note that if κ(t) ≥ κ̄η,ζ in (6), then the

time-derivative is negative inside N [Ψ, η + ζ]. Indeed, by

using the simple notation F , F (x, ∆F ) and G , B(I +
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∆B), we obtain

Ψ̇(x) = ∇Ψ(x)F − κ(t)∇Ψ(x)GBT∇Ψ(x)T

≤ ∇Ψ(x)F − κ̄η,ζ∇Ψ(x)GBT∇Ψ(x)T

≤ ∇Ψ(x)F − κ̄(x)∇Ψ(x)GBT ∇Ψ(x)T

≤ −φ(x).

On the other hand, if Ψ(x(0)) ≤ ζ, from (7) it follows that

κ(t) = κ(0) + µ[Ψ(x(t)) − Ψ(x(0))] + µ

∫ t

0

φ(x(σ))dσ

≥ µ[Ψ(x(t)) − Ψ(x(0))] .(11)

Now, we show that Ψ(x(t)) cannot reach values greater than

ζ + η if we take µ as

µ > µ̄ ,
κ̄η,ζ

η
. (12)

By contradiction, let us assume that Ψ(x(t)) = ζ + η for

some t > 0; then, from (11) it follows that

κ(t) ≥ µ[Ψ(x(t)) − Ψ(x(0))] ≥ µη > κ̄η,ζ

which, in turn, implies that Ψ̇(x(t)) < 0 and hence Ψ(x(t))

cannot cross the value η + ζ.

To show the boundedness of the gain κ(t), we have to

notice that, as long as κ(t) ≥ κ̄η,ζ , we have

Ψ̇(t) ≤ −φ(x(t)) ,

which implies that

κ̇(t) = µ[Ψ̇(x(t)) + φ(x(t))] ≤ 0 .

This means that κ(t) cannot exceed κ̄ , κ̄η,ζ .

Finally, to prove that κ is lower bounded consider again

(11) and eliminating all nonnegative terms we have

κ(t) ≥ −µΦ(x(0)) ≥ −ζµ.

Then, κ , −ζµ, hence concluding the proof.

The next corollary shows that the previous result takes on

a simpler form if we know a global bound on κ̄(x). In this

case, we achieve an uniform upper bound for the difference

Ψ(x(t)) − Ψ(x(0)).

Corollary 3.1: Assume that under Assumptions 1 and 2

we can find κ̄∞ such that κ̄(x) ≤ κ̄∞. Then, for any η > 0,

the value µ̄ = κ̄∞/η is such that, for all µ ≥ µ̄, it turns out

that

Ψ(x(t)) ≤ Ψ(x(0)) + η.

The next result concerns the convergence of the state modes

of behavior.

Proposition 3.2: Under Assumptions 1 and 2, let η > 0,

ζ > 0 and µ ≥ µ̄ be as in Proposition 3.1. Then

lim
t→∞

x(t) = 0 , ∀x(0) ∈ N [Ψ, ζ] .

Proof: In view of Proposition 3.1, we can fix η > 0

and confine x(t) inside N [Ψ, ζ + η], by taking µ ≥ µ̄. Then

Ψ(x(t)) ≤ ζ + η and hence x(t) is bounded. Function κ(x)

is bounded by κ̄ζ,η on such a set. This implies that ẋ(t) is

bounded because

ẋ(t) = F (x, ∆F ) − κG(∆B)BT∇Ψ(x)T .

Furthermore, boundedness of x(t) implies boundedness of

φ(x(t)) and of its gradient. Now, we have

µ

∫ t

0

φ(x(σ))dσ

= κ(t) − κ(0) − µ[Ψ(x(t)) − Ψ(x(0))]

≤ κ(t) + µΨ(x(0)) ≤ κ̄ζ,η + µζ

for all t. The composed function ϕ(·) , φ(x(·)) is nonneg-

ative and its integral is clearly bounded:

∫ t

0

ϕ(σ)dσ < +∞.

If we consider the time-derivative of such a function, we

obtain ϕ̇(t) = ∇φ(x(t))ẋ(t) which is bounded for all t. In

view of Barbălat’s Lemma [2], we have that ϕ(t) → 0 as

t → ∞.

B. Nominal optimality

In this subsection, it will be shown that also the control

mode of behavior, if generated by an optimal non–adaptive

controller designed for the nominal process, remains nomi-

nally optimal, a property which is not ensured by the high–

gain adaptive schemes in the current literature.

Let us consider a linear system of the form

ẋ(t) = [A + ∆F ]x(t) + B[I + ∆B]u(t)

and consider the LQ controller for the nominal plant given by

u = −R−1BT Px. Moreover, consider the function xT Px

where P is the solution of the Riccati equation

AT P + PA − PBR−1BT P + Q = 0

with Q positive definite. Denoting by ACL = A −
BR−1BT P the closed loop matrix, we get

AT
CLP + PACL = −[PBR−1BT P + Q] , −QLQ.

Then, the following result can be easily proved.
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Proposition 3.3: Assume that xT Px is a robust control

Lyapunov function so that −xT QLQx is the Lyapunov time-

derivative for the nominal system under the action of the

optimal controller. Then:

• the adaptive control scheme applied with φ(x) =

xT QLQx and with u(t) = −κ(t)R−1BT Px(t) ensures

convergence of the state modes of behavior to N [Ψ, ǫ]

for µ large enough;

• for ∆F = 0 and ∆B = 0, this control is optimal

provided that κ(0) = 1.

C. Effects of disturbances and practical stability results

We introduce next a modified version which ensures the

gain limitation even in the presence of bounded disturbances.

Consider the system

ẋ(t) = F (x(t), ∆F (t)) + G(∆B(t))u(t) + Ed(t)

where ‖d(t)‖ ≤ d̄ is a bounded disturbance and E is a given

matrix.

For the sake of simplicity, we strengthen a little bit our

assumptions, introducing the following

Assumption 3: For any d̄ there exists δ > 0 and a state–

feedback controller Φ0(x) such that

Ψ̇(x) = ∇Ψ(x)[F (x, ∆) + G(∆B)Φ0(x) + Ed]

≤ −βΨ(x)
(13)

for all x 6∈ N [Ψ, δ] (Ψ(x) > δ) and some β > 0.

Remark 3.1: Note that Assumption 3 does not implies

exponential stabilizability of the nominal system, since in-

equality (13) is not required to hold in a neighborhood of

the origin.

To face the new problem, we consider a clipped version

of Ψ, namely

Ψδ(x) = max{0, Ψ(x) − δ} . (14)

Since Ψδ and Ψ differ by a constant outside N [Ψ, δ], we

have

Ψ̇δ(x(t)) ≤ −β (Ψδ(x(t)))

hence Ψδ(x(t)) is strictly decreasing outside N [Ψ, δ]. The

new adaptation scheme is thus given by

κ̇(t) = µ
[

Ψ̇δ(x(t)) + β (Ψδ(x(t)))
]

.

Note that no adaptation occurs as long as x ∈ N [Ψ, δ]. The

following proposition (whose proof is omitted for brevity)

holds.

Proposition 3.4: Under Assumptions 1 and 13, let ζ > δ

and η > 0 be arbitrary. Then, there exists µ̂ such that, for

all µ > µ̂, the control law with the adaptive mechanism (6)–

(7) ensures that the gain κ(t) is upper and lower bounded,

Ψ(x(t)) ≤ ζ +η and Ψδ(x(t)) → 0, as t → ∞ (namely x(t)

converges to N [Ψ, δ]).

IV. APPLICATION TO THE WING ROCK PROBLEM

Wing rock is an instability phenomenon which can occur

when high performance aircrafts fly in high angle of attack.

It consists of a limit cycling oscillation of the pair φ =

x1 = roll angle and p = x2 = roll rate. According to

[6] and neglecting the actuator dynamics, we considered the

following model:

ẋ1(t) = x2(t)

ẋ2(t) = θ1x1(t) + θ2x2(t) + θ3|x1(t)|x2(t) +

+d(t) + u(t)

where θ1 = −26.67, θ2 = 0.76485, θ3 = −2.9225.

The term u(t) is the control action while the term d(t)

is a persistent disturbance (representing vertical wind gusts)

having a proper spectral density [14]. An LQ optimal prob-

lem has been solved for the undisturbed, feedback–linearized

system of type (9)-(10) (using the weights Q = I2, R = 1)

obtaining the Lyapunov function

Ψ(x) = xT

[ √
3 1

1
√

3

]

x = xT Px.

Then we considered the problem of tracking a square–

wave reference for φ, as shown in Fig.2 (the references

are φ+ = 0.1745 and φ− = −0.1745) by means of the

proposed controller and the λ–tracker (1)–(2). Actually, due

to the disturbance, we used the clipped function Ψδ(x),

with δ = 0.1 (see (14)) and deadzone ǫ = 0.1 for the

λ–tracker, the adaption gains being µ = 4000, µλ = 10.

The obtained roll angle trajectory, adapted gain and control

action are reported, respectively, in Figs. 2,3 and 4 (solid line:

proposed controller, dash-dot line: λ–tracker). As far as the

tracking error only is considered, it is clear from Fig.2 that,

as time increases, the proposed controller produces the same

performance while the λ-tracker reduces both the steady-state

error and the settling time that become smaller than those of

the first transient (where the two controllers are comparable).

This, however, is achieved at the expense of an increasing

control effort. Indeed, in the case of the λ–tracker, the gain is

monotonically increasing in time (Fig.3). As a consequence,

the control actions become stronger and stronger (see Fig.4).

To emphasize the much stronger control efforts shown by the

λ-tracker controller, a part of the control mode of behavior

around t = 10s is shown in enlarged form. This happens
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Fig. 2. Trajectory of the roll angle during tracking of a square–wave

reference (solid line: proposed controller, dash-dotted line: λ−tracker).
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Fig. 3. Adapted gain during tracking for the proposed controller (solid

line) and the λ-tracker (dash-dotted line).

because the adaption law is based on the distance between

the current state and the reference. The proposed controller

does not suffer this problem resulting in transient profiles that

do not change over time and in far less actuator exploitation.
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5
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15
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25

Fig. 4. Control action during tracking for the proposed controller (solid

line) and the λ-tracker (dash-dotted line).

V. CONCLUSIONS

The proposed adaptive scheme overcomes some limita-

tions of existing high–gain controllers such as λ–tracking and

funnel control. The idea is that of adapting the gain based

on the Lyapunov derivative. An a–priori upper bound for

the transient can be determined and the scheme can be used

jointly with standard optimal control techniques guaranteeing

optimality if the model matches the system exactly. This

in practice means that the control is nearly optimal under

accurate modeling and when the system is close to 0. An

open problem is the output feedback one. We think that under

standard minimum–phase and relative degree assumptions

the extension is possible.
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