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Abstract— In this paper, we investigate an optimal control
problem of linear quantum systems despite feedback delays.
The optimal controller, which is of the Smith predictor form,
and an analytical expression of the best achievable performance
are derived by applying existing results for control of classi-
cal (non-quantum) I/O delay systems. Then, we analyze the
performance degrading effect caused by feedback delays in an
illustrative example of a quantum free particle. In particular,
we give a new insight for a typical experiment setup. This
is accomplished by using the performance limit expression
mentioned above.

I. INTRODUCTION

Control of quantum systems is of significance for realizing

quantum and nano technologies such as quantum computer.

In particular, recent technological advances in quantum op-

tics and atomic physics enable us to implement real-time

feedback control of quantum systems. This has given birth

to wide-ranging theoretical studies on quantum feedback

control [2], [3], [5], [7]-[9], [11], [14] [16]-[18].

In this paper, we investigate feedback control of quantum

systems whose dynamics are described by linear quantum

stochastic differential equations. For this problem, Belavkin

has derived the optimal filter and LQG controller; see e.g.,

[3]. Similarly to non-quantum cases, robust performance

analysis/synthesis is necessary to implement control systems

in a realistic environment. An important feature of control

problems of linear quantum systems lies on the fact we can

directly apply control theory for classical linear stochastic

systems. In fact, H∞ control theory [9], LEQG [8] and

robust LQG control [16] have already been extended to

quantum control problem settings.

Ideally we would design a controller based on these

theoretical result. However, in the actual implementation,

there are some drawbacks to be taken into account. For

example, nano-mechanical dynamic systems have very fast

dynamics, with time constants orders of magnitude less than

the time necessary to compute the control input. From a

practical viewpoint, this means that we need to formulate

the control problem stated above taking feedback delays into

consideration. The authors have analyzed the effect of delays

in quantum spin control systems [11]. However, there exists

no result which investigate the effect of delays in linear

quantum feedback control systems.

In view of this, we solve an optimal control problem

for linear quantum systems despite feedback delays. To be

more precise, the optimal controller, which is of the Smith
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predictor form, is derived by using existing results for control

of classical (non-quantum) I/O delay systems [12], [13].

It should be mentioned that an analytical expression of

the performance degradation effect due to the delay can

be achieved for some linear optimal control problems [12],

[13]. In the classical case, this expression is often useful

for characterizing easily controllable plants [6], [10]. By

applying this way of thinking to quantum cases, we analyze

the effect of the tuning of a parameter in a measurement

apparatus. In [17], an optimal tuning policy was proposed for

the delay free case. However the performace limit analysis

enables us to conclude that the parameter tuning is not

effective for some systems when the delay length is large.

This paper is organized as follows: linear quantum systems

are introduced in the next section. In Section III, we state

the control problem dealt with in this paper, and derive its

optimal solution. In Section IV, we give numerical simula-

tions and performance limitation analysis for the control of

a quantum free particle.

NOTATION: Let L2
n×m be the set of R

n×m-valued

function f such that
∫ ∞

0

trace(fTf)(t)dt < ∞.

The subscript n×m is omitted as it is clear from the context.

Function space L2 is Hilbert space with the inner product

defined by

(f, g)L2 :=

∫ ∞

0

trace(gTf)(t)dt. (1)

II. LINEAR QUANTUM SYSTEMS

A. Quantum probability

To define the stochastic behavior of quantum systems, we

need to introduce quantum probability space (A , P), which

is a noncommutative generalization of classical probability

space (Ω,F ,P). Here, A is a von Neumann algebra and P

is a state, a linear functional on A . In the following sections,

we treat composite systems of a target quantum system and

an environmental field. Physically interesting operators are

defined as quantum random variables in (A , P), and the

statistical argument is taken by the state P. For instance,

we define the expectation by

E[x] = P[x]. (2)

For any self-adjoint operators, E[x] is a real number. Also,

E[x] is positive for any positive operator.

The main difference between quantum and classical proba-

bility spaces is that the quantum probability space can define
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random variables which do not commute. It is well-known

that position and momentum operators in quantum mechanics

satisfy the canonical commutation relation [q, p] = qp−pq =
i. This equality corresponds to the fact we cannot determine

both values simultaneously according to the Heisenberg

uncertainty principle. This implies that position and momen-

tum operators as random variables cannot be modeled in a

common classical probability space. For details of quantum

probability and stochastic calculus, see the review paper [1].

B. Linear quantum systems

The state variable

xt := [x1,t, · · · , xn,t]
T

is a vector consisting of self-adjoint operators xk,t and the

initial state x0 = x satisfies the commutation relation

[x, xT] := xxT − (xxT)T = iΘ, (3)

where i =
√
−1 and Θ is a real antisymmetric matrix.

Further, assume the state variables satisfy

[xt, x
T

t ] = iΘ (4)

for any t. This always holds for real physical systems which

do not interact with other environmental fields. Then, a

large class of linear quantum systems is described by linear

quantum stochastic differential equations

dxt = Axtdt + B1dwt + B2utdt

dyt = Cxtdt + Ddwt (5)

where A is a real R
n×n matrix and B1, B2, C and D

are all real matrices of proper dimension. Moreover, wt

is a quantum noise vector consisting of quantum Wiener

processes and satisfies

dwtdwT

s =

{

Fwdt, if s = t
0, otherwise

(6)

with a non-negative Hermitian matrix Fw such that

1

2
(Fw + FT

w ) = I (7)

and E[wi,t] = 0 for each element wi,t of wt. See [9] for an

equivalent algebraic condition on system matrices for (4) to

hold. In the following sections, we attempt to control this

linear quantum system by using controllers implemented by

classical devices1.

C. Physical example

Let us give an illustrative example to provide a concrete

image of our control systems. A system to be considered is

a single one-dimensional free particle trapped in a harmonic

potential. The quantum state of this particle is represented

by the position operator q and momentum operator p. These

noncommutative operators satisfy the canonical commutation

relation

[q, p] = i. (8)

1A mathematical representation for this assumption is [ys, yT
t
] =

0, [ys, xT
s
] = 0 for any s ≤ t; see e.g., [1], [9].

The particle interacts with a vacuum electromagnetic field

to extract a position information by homodyne detection.

When we input a linear potential to control, the system

Hamiltonian is given by

H =
1

2m
p2 +

1

2
mω2q2 − utq, (9)

where m and ω are the mass of the particle and an angular

frequency of the harmonic potential, respectively. When

the interaction between the system and the probe field is

described by the Hudson-Parthasarathy equation [1], the time

evolution of the operators q and p is given by

d

[

qt

pt

]

=

[

0 1
m

−mω2 0

] [

qt

pt

]

dt

+

[

0 0

0 −
√

M

]

dwt +

[

0
1

]

utdt. (10)

The output equation with perfect detection efficiency is

dyt =
[

2
√

M 0
]

[

qt

pt

]

dt +
[

1 0
]

dwt. (11)

Here, a real constant M is a measurement strength and the

quantum noise vector satisfies

dwtdwT

s =







[

1 i
−i 1

]

dt, if s = t

0, otherwise.

We can see equation (7) holds.

III. OPTIMAL CONTROLLER AND PERFORMANCE LIMIT

A. Problem statement

As depicted in Figure 1, we investigate the feedback loop

consisting of a plant, which is a quantum mechanical system,

and a controller implemented by classical (non-quantum)

devices. Due to the reason described in Section I, we consider

the optimal control problem of linear quantum systems taking

into account feedback delays. The real constants h1 and h2

are the length of the time delays in the input and output path

of the physical controller.

To evaluate the system performance, we define an evalu-

ation output zt. Note that we can encompass the two delays

into one delay with the length h = h1 + h2. Then, we give

a solution for the following:

Problem 1: Consider the linear quantum system

dxt = Axtdt + B1dwt + B2ut−hdt

zt = C1xt + D12ut−h (12)

dyt = C2xtdt + D21dwt

where h ≥ 0 is the delay length and quantum Wiener

process wt is independent of the initial condition. Then,

find the causal, linear and time-invariant controller (from

{ys}s≤t to ut) which makes limt→∞ E
[

ξT

t ξt

]

exist for any

internal variable ξt (hereafter we say internally stabilizing)

and minimizes the cost functional

J := lim
t→∞

E
[

zT

t zt

]

. (13)

We impose the following standard assumption:
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Fig. 1. Control of quantum systems by classical (non-quantum) controllers

Assumption 1:

1) (A, B2) is stabilizable and (A,C2) is detectable.

2) For any ζ ∈ R,
[

A − jζI B2

C1 D12

]

,

[

A − jζI B1

C2 D21

]

are row- and column-full rank, respectively.

3) E1 := DT

12D12 and E2 := D21D
T

21 are nonsingular.

B. Optimal control

When the time delay can be neglected, the problem is

called LQG optimal control problem and the optimal con-

troller has been solved in both classical and quantum cases

[3], [19]. To solve Problem 1, we first derive suboptimal

controllers for the delay free case.

Theorem 1: Consider Problem 1 with h = 0. Let X , Y
be the solutions of matrix Riccati equations

XA + ATX + CT

1 C1 − FTE1F = 0, (14)

Y AT + AY + B1B
T

1 − LE2L
T = 0 (15)

with

F := −E−1
1 (BT

2 X + DT

12C1) (16)

L := −(Y CT

2 + B1D
T

21)E
−1
2 (17)

such that A+B2F and A+LC2 are stable. Then, the optimal

value of cost functional E∗ := minJ is given by

E∗ = tr(B1B
T

1 X) + tr(FTDT

12D12FY ). (18)

Let γ > E∗ be any prespecified performance level. Then, all

controllers satisfying J < γ are given by

dx̂t = (A + LC2 + B2F )x̂tdt − Ldyt + B2ξtdt (19)

ut = Fx̂t + uK,t (20)

dηt = −C2x̂tdt + dyt (21)

ξt =

∫ t

0

ψ(t − τ)dητ (22)

where ψ is any function in L2 such that

‖ψ‖2
L2 < γ − E∗. (23)

Proof: In the non-quantum case, the standard H2

control problem is usually proven via frequency domain

approach. In order to avoid naive discussion on Lapalace

transformability of quantum variables, we prove this theo-

rem within the time-domain framework. For simplicity, we

consider finite-dimensional controllers only.

Since the linearity of the plant and controller dynamics,

zt can be represented by

dxcl,t = Aclxcl,tdt + Bcldwt (24)

zt = Cclxcl,t (25)

where xcl,t :=
[

xt xK,t

]T

with the internal state xK,t of

the controller and Acl, Bcl, Ccl are real matrices of appro-

priate dimensions. Therefore,

xcl,t = eAcltxcl,0 +

∫ t

0

K̄(t − s)dws (26)

with

K̄(t) := eAcltBcl.

It should be emphasized that zt is a quantum (noncommu-

tative operator valued) stochastic process.

By using quantum Ito’s rule (6) and (7), we obtain

E[xT
cl,txcl,t] = E

[

xT

cl,0e
AT

cl
teAcltxcl,0

]

+E

[
∫ t

0

∫ t

0

dwT

s K̄T(t − s)K̄(t − τ)dwτ

]

= tr
(

eAcltE[xcl,0x
T

cl,0]e
AT

cl
t
)

+

∫ t

0

tr
(

(K̄TK̄)(s)Fw

)

ds

= tr
(

eAcltE[xcl,0x
T

cl,0]e
AT

cl
t
)

+
1

2

∫ t

0

trace((K̄TK̄)Fw + (K̄TK̄)FT

w )(s)ds

= tr
(

eAcltE[xcl,0x
T

cl,0]e
AT

cl
t
)

+

∫ t

0

tr
(

K̄TK̄
)

(s)ds.

Clearly, the system is internally stable if and only if eAclt →
0 and K̄ ∈ L2. Thus, since the cost functional is

lim
t→∞

E[zT

t zt] = lim
t→∞

tr
(

Ccle
AcltE[xcl,0x

T

cl,0]e
AT

cl
tCT

cl

)

+ lim
t→∞

∫ t

0

tr
(

KTK
)

(s)ds

with

K(t) = CclK̄(t).

Problem 1 is equivalent to that of finding the controller which

minimizes ‖K‖L2 subject to the constrain eAclt → 0. The

latter problem is free from any noncommutative variables,

and exactly the same as the standard control problem for the

classical case. Hence, the remaining of the proof is the same

as that in [19].

The obtained suboptimal controller parameterization is

exactly the same as that for classical linear systems. By
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Fig. 2. Parametrization of all suboptimal controllers

choosing free L2 function ψ appropriately, we can obtain

controllers which are implementable inspite of the I/O delay.

Theorem 2: Consider Problem 1. With the same notation

as that in Theorem 1, the optimal value of the cost functional

J is given by

Eh := E∗ +

∫ h

0

tr(FeAτLLTeATτFT)dτ

Let γ > Eh be any prespecified performance level. Then, all

controllers satisfying J < γ are given by

dx̂t = (A + B2F + eAhLC2e
−Ah)x̂tdt

−eAhL(dyt + πtdt) + B2ξtdt (27)

ut = Fx̂t + ξt (28)

dηt = −C2e
−Ahx̂tdt + (dyt + πtdt) (29)

ξt =

∫ t

0

Ξ(t − τ)dητ (30)

and the finite-time integration system

πt = C2

∫ t

t−h

eA(t−h−τ)B2uτdτ (31)

where Ξ ∈ L2 is any function satisfying

‖Ξ‖2
L2 < γ − Eh.

The optimal controller which satisfies J = Eh is given by

Ξ = 0.

Proof: It is known ([12]) that the suboptimal controllers

are causal despite feedback delay if and only if ψ satisfies

ψ(t) = FeAtL, 0 ≤ t < h. (32)

When ψ ∈ L2 satisfies (32), the suboptimal controllers given

in Theorem 1 can be rewritten in the desired form.

IV. CONTROL OF ONE-DIMENSIONAL FREE PARTICLE

A. Simulation

In this section, we consider feedback control of a single

one-dimensional free particle given in Section II-C, the

system with the matrices

A =

[

0 1
m

−mω2 0

]

, B1 =

[

0 0

0 −
√

M

]

, B2 =

[

0
1

]

,

C2 =
[

2
√

M 0
]

, D21 =
[

1 0
]

. (33)

The control objective is to stabilize the particle position and

momentum at the origin with small error variance. We apply

the optimal control law derived in Section III-B with

C1 =

[

1 0
0 1

]

, D12 =

[

1
1

]

. (34)

and with the time delay of the length h in the output path

of the physical controller.

Since it is impossible to perform numerical simulation

of noncommutative operator-valued dynamics, we use the

so-called stochastic master equation. According to [1], the

equation is given by

dρt = −i

[

p2

2m
+

1

2
mω2q2, ρt

]

dt + iut−h[q, ρt]dt

+M

(

qρtq −
1

2
q2ρt −

1

2
ρtq

2

)

dt

+
√

M{qρt + ρtq − 2tr(qρt)ρt}dWt, (35)

where ρt is a conditional density operator which has the

best statistical information available of the quantum systems

and Wt is a one-dimensional classical Wiener process. The

output equation of the system is given by

dyt = 2
√

Mtr(qρt)dt + dWt. (36)

Note that ρt is an operator, and that the simulation of (35)

is still complex. However, since the system Hamiltonian

is quadratic in terms of position and momentum operators

and (35) preserves the Gaussian nature of the state, the

conditional expectations q̂t = tr(qρt), p̂t = tr(pρt) and error

covariances Σt = (Σij
t ):

Σij
t :=

1

2
tr

(

ρt(x
ixj + xjxi)

)

− x̄i
tx̄

j
t (37)

suffice to describe the system state with x1 := q and

x2 := p. Using (35), we obtain the following linear equation

describing the time evolution of q̂t and p̂t.

d

[

q̂t

p̂t

]

= A

[

q̂t

p̂t

]

dt + B2ut−hdt + ΣCT

2 dWt (38)

Here Σ is the best achievable error covariance and is the

stabilizing solution of the matrix Riccati equation

AΣ + ΣAT + B1B
T

1 − ΣCT

2 C2Σ
T = 0. (39)

In the simulation, q̂t, p̂t are considered as the plant variables.

Under the above setting, the simulation results are shown

in Fig. 3. We chose the system parameters as m = ω =
α = 1, h = 0.8. In Fig. 3, the solid and dot line represent

the state trajectories with respect to the optimal controllers

in Theorem 2 and 1, respectively. When the controller (19)-

(20) is used, while it is optimal one for delay free case, the

stabilization fails. On the other hand, the controller (27)-(28)

guarantees the stability to the origin. Thus we can see the

effectiveness of the delay compensating controller.
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Fig. 3. Time evolution of the (a) expected position and (b) expected
momentum of the free particle subject to feedback delay. Solid line and
dashed line represent the state trajectories when using the optimal controller
(27)-(28) and (19)-(20), respectively.

B. Optimization of a parameter in detector device

First, we provide a parameter adjustable measurement

scheme. Homodyne detector is a measurement apparatus

which enables to measure the field quadratures, in our case,

of a probe lazer. In Section II-C, the measurement process

was implicitly assumed to be the homodyne detection with

a special parameter (φ = 0 defined below). In more general

settings, the output equation of (11) is given by ([1], [18])

dyt =
[

2
√

M 0
]

[

qt

pt

]

dt +
[

1 0
]

dw̃t (40)

where

dw̃tdw̃T

s =







[

1 ie−iφ

−ieiφ 1

]

dt, if s = t

0, otherwise.
(41)

Here φ ∈ [0, 2π) is a detector parameter which designers can

change. Since the quantum noise matrix satisfies

Sφ :=
1

2

(

[

1 ie−iφ

−ieiφ 1

]

+

[

1 ie−iφ

−ieiφ 1

]T
)

=

[

1 sin φ
sin φ 1

]

, (42)

the quantum noise dw̃t introduce here does not satisfy (7)

when φ 6= 0 because Sφ 6= I . However, all of the results in

Section III are applicable to the general homodyne detection

scheme by modifying the system matrices as follows [16]:

B1,φ = B1S
1/2
φ , D21,φ = D21S

1/2
φ . (43)

where S
1/2
φ is the square matrix of the positive semi-definite

matrix Sφ.

In the paper [17], it was shown that the achievable

performance in the quantum LQG control depends on the

measurement, and that the optimal measurement can be

identified by solving a semidefinite program. This fact is

distinctive in feedback control of quantum systems and is

a consequence of the property of the quantum noise. The

following theorem clarifies the effect of the feedback delays

on the optimal homodyne detection.

Theorem 3: Consider Problem 1 with the system matrices

defined by (33), (43). Then there exist constants A,B,E and

ϑ such that the best achievable performance Eh,φ is given

by

Eh,φ = E + Bh + A sin(ωh + ϑ). (44)

Moreover, A and B are independent of the choice of φ.

Proof: Notice that we have

B1,φDT

21,φ =

[

0

−
√

M sinφ

]

,

B1,φBT

1,φ = B1B
T

1 ,

D21,φDT

21,φ = 1.

Let Yφ be the stabilizing solution to

Y T

φ + AYφ + B1B
T

1 − LφLT

φ = 0 (45)

with

Lφ := −(YφC2 + B1,φDT

21,φ).

Then, by Theorem 2, the best achievable performance is

given by

Eh,φ := E∗
φ +

∫ h

0

(FeAτLφ)2dτ (46)

where E∗
φ is the positive constant defined by (18) with Y =

Yφ. On the other hand, direct computation yields

FeAτLφ

=

√

√

√

√

{

l21 +

(

l2
mω

)2
}

{f2
1 + (mωf2)2} sin(ωτ + θ), (47)

where

F =
[

f1 f2

]

, Lφ =

[

l1
l2

]

and θ satisfies

tan θ =
mω(f1l1 + f2l2)

f1l2 − (mω)2f2l1
.

By combining this and (46), we obtain the first claim.

It should be emphasized that φ contribute to A and B only

through

l21 +

(

l2
mω

)2

. (48)
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Hence, it is sufficient to show the second claim that (48)

does not depend on φ. From the definition of Lφ,

l1 = −2
√

My11, l2 = −
√

M(2y12 − sinφ)

where

Yφ =

[

y11 y12

y12 y22

]

.

Simple calculation yields

y2
11 = ȳ2

11 −
1

2mM

{(

ȳ12 +
mω2

4M

)

− 1

2
sinφ

}

± 1

2mM
∆

y12 −
1

2
sinφ = −mω2

4M
± ∆

∆ =

√

(

ȳ12 +
mω2

4M

)2

− mω2

4M
sinφ

where

Y0 =

[

ȳ11 ȳ12

ȳ12 ȳ22

]

.

Here the symbol ± represents that these equalities hold for

+ or −. Then, we obtain the following:

l21 +

(

l2
mω

)2

= 4My2
11 +

(

2
√

M

mω

)2
(

y12 −
1

2
sinφ

)2

= 4M

{

ȳ2
11 +

( ȳ12

mω

)2
}

This completes the proof.

To illustrate this theorem, performance limit Eh,φ is illus-

trated in Fig. 4 for m = ω = α = 1 and φ = 0, π/9, π/6.

Roughly speaking, the first statement says that Eh,φ increases

linearly with respect to the delay length h. This is a natural

result of the fact that A has only pure imaginary eigenvalues.

Since E and θ depend on φ, we can improve the performance

limit for any fixed delay (including delay free case). For

example, φ = π/6 achieves better performance than φ = 0
for any h.

However, the second statement give us a new and nontriv-

ial insight: the growth rate B is independent of a homodyne

detector parameter φ. This implies that the benefits of the

optimal measurement is lost when the delay length h is much

larger than 1/ω.

V. CONCLUSION

In this paper, we investigated optimal control problem of

linear quantum systems despite feedback delays. The optimal

controller and an analytical expression of the best achievable

performance are derived by applying existing results for con-

trol of classical (non-quantum) I/O delay systems. Based on

this result, we gave a new insight for a typical experimental

setup of controlling quantum free particles.

Eh,φ

h
0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

Fig. 4. Optimal performance deterioration with different detector param-
eters. The solid line, dashed and dotted line represent the optimal control
performance when φ = 0, φ = π/9 and φ = π/6, respectively.
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