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Abstract— This paper deals with an MIMO feedback control
system that has two channels with additive noise and studies
the effects of the noise on the input and output signals of
the plant. We derive integral-type limitations for sensitivity-
like properties of the feedback system based on an information
theoretic approach. It is shown that they are generalizations of
Bode’s integral formula for the case that the feedback system
includes nonlinear elements.
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I. INTRODUCTION

The rapid development in communication technologies

and the growth of computer networks have enabled us to

implement feedback control systems utilizing communica-

tion channels. Research on such networked control systems

has recently attracted much attention; see, e.g., [1] and the

references therein. A typical system setup can be found

in Fig. 1. Here, for the communication between the plant

and the controller, various constraints may arise including

time delays, data losses, quantization/coding errors. Such

constraints may be harmful and cause degradation in per-

formance and even instability of the closed-loop system.

To deal with these issues, it is important to evaluate

the amount of information that the communication signals

contain regarding the plant and the controller. This view has

motivated analyses of networked control systems based on

notions and results from information theory. For example,

channels can be characterized by their capacity and rate of

communication, which represent the numbers of bits that can

be transferred at each time step. The results in [6], [14] give

conditions on the channels in terms of the communication

rate for the existence of stabilizing controllers, encoders, and

decoders.

Furthermore, in the approach based on information theory,

the focus is on signals rather than on systems representing

input-output relations. Hence, in certain cases, we may

relax the assumptions on systems and extend prior results

in control theory which have been limited to linear time-

invariant systems to systems with nonlinear elements.
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Fig. 1. Networked control system.

One such result can be found in [5]; in this work, a

sensitivity property of feedback systems with linear plant and

nonlinear controllers is analyzed by measuring the entropy

of the signals. In particular, it provides a lower bound on the

gain of a sensitivity-like function which is expressed by the

unstable poles of the plant. On the other hand, a well-known

relation between a sensitivity property and the unstable

poles of the plant is given by Bode’s integral formula [2],

[4], [12]. While Bode’s integral formula deals only with

linear systems, the result in [5] extends it to systems with

nonlinear controllers. In our prior work [7], this approach has

been followed to characterize a complementary sensitivity

property by the unstable zeros and the direct feedthrough

term of the plant. Though only linear systems are considered

there, by employing an information theoretic approach, it has

shown the possibility of extending Bode’s integral formula

for complementary sensitivity functions [13] to nonlinear

systems. From the viewpoint of networked control systems,

these results show certain limitations on the reduction of the

effects of channel noises.

In this paper, we consider networked control systems

based on the approach of [5], [7]; for the full-paper version,

see [8]. Specifically, we analyze the effects of channel noises

on the input and output signals of the plant in a unified

manner. These effects are measured by four sensitivity-

like functions including those for the sensitivity and the

complementary sensitivity properties. We derive constraints

on these functions described by the plant properties such

as the unstable poles/zeros and direct feedthrough terms.

Moreover, the constraints are extensions of the results in [5],

[7] to multi-input multi-output (MIMO) systems and a class

of nonlinear controllers.

This paper is organized as follows: We first introduce some

notions and results in information theory in Section II. Then,

in Section III, we formulate the problem of the paper and

introduce related previous works. The main results of the
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paper are given in Section IV. This is followed by Section V,

where important properties required to derive the results are

presented. In Section VI, we illustrate the results through a

numerical example. Finally, we state concluding remarks in

Section VII.

Notation: We represent random variables using boldface

letters such as x. Consider a discrete-time stochastic process

{x(k)}∞k=0
. We denote a sequence of random variables from

k = l to k = m (m ≥ l) by xm
l := {x(k)}m

k=l. In particular,

when l = 0, we write xm
l simply as xm. We use x instead of

{x(k)}∞k=0
when it is clear from the context. The operation

E[·] denotes the expectation of a random variable.

II. ENTROPY AND MUTUAL INFORMATION

In this section, we introduce some notation and basic

results from information theory that we use in the paper.

Entropy is a notion widely used as a measure of uncer-

tainty contained in a random variable. It is defined as follows.

Definition 1: The (differential) entropy h(x) of a contin-

uous random variable x ∈ R
m with the (joint) probability

density px is defined as

h(x) := −

∫

Rm

px(ξ) log px(ξ)dξ.

Next, we introduce mutual information, which is a mea-

sure of the amount of information that one random variable

possesses about another random variable.

Definition 2: The mutual information I(x;y) between

x ∈ R and y ∈ R is defined as

I(x;y) = h(x) − h(x|y),

where h(·|·) represent the conditional entropy.

Note that in the above definitions, we assume the existence

of the probability density functions and the joint probability

density functions of the random variables.

We now list some of the basic properties of entropy and

mutual information which are required in the paper. Their

proofs can be found in, e.g., [3], [9], [10].

• Symmetry and nonnegative property:

I(x;y) = I(y;x)

= h(x) − h(x|y) = h(y) − h(y|x) ≥ 0 (1)

• Entropy and conditional entropy: From the above

property, the following holds:

h(x|y) ≤ h(x). (2)

• Chain rule:

h(x,y) = h(x) + h(y|x) (3)

• Data processing inequality: Suppose that f is a mea-

surable function on the appropriate space. Then, the

following holds:

h(x|y) ≤ h(x|f(y)). (4)

We have equality if f is invertible.

• Transformations of random variables and their entropy:

Suppose that f is a piecewise C1-class injective func-

tion and x and y = f(x) take continuous values. Then,

the following holds:

h(y) = h(x) + E [log |Jf (x)|] , (5)

where Jf is the Jacobian of the transformation f .

• Suppose that f is any given function on the appropriate

space. Then, the following holds:

h(x − f(y)|y) = h(x|y). (6)

Next, we turn our attention to stochastic processes and

introduce some notions. The entropy rate is an asymptotic

time average of the entropy of a process and plays an

important role in our analysis.

Definition 3: The entropy rate h∞(x) of a stochastic

process x is defined as

h∞(x) := lim sup
k→∞

h(xk−1)

k
.

The stochastic processes appearing in this paper are of

weak stationarity as defined below. For such processes, their

power spectral densities can be obtained.

Definition 4: A zero-mean stochastic process x (x(k) ∈
R

m) is weakly stationary if for every γ ∈ Z, the following

equations hold:

E[x(k + γ)] = E[x(γ)],

E[x(k + γ)x(k)⊤] = E[x(γ)x(0)⊤].

For a weakly stationary process x, we can define the power

spectral density Φx using Rx(γ) := E[x(γ)x(0)⊤] =
E[x(k + γ)x(k)⊤] as

Φx(ω) :=
∞
∑

γ=−∞

Rx(γ)e−jγω.

The following lemma gives an explicit relation between

the entropy rate and the power spectral density.

Lemma 1 ([9], [15]): If x is a weakly stationary process,

then the following equation holds:

h∞(x) =
1

2
log(2πe)m +

1

4π

∫ π

−π

log det Φx(ω)dω.

III. PROBLEM SETTING

In this section, we formulate the problem considered in

this paper and present several related works in the literature.

As a model of networked control systems in Fig. 1, we

consider the feedback system depicted in Fig. 2. The system

has two analog channels with additive noises w and d.

We assume that the noises w and d are weakly stationary

stochastic processes. The plant P is an m-input m-output

discrete-time linear time-invariant system which consists of

a discretized continuous-time system and some time delays.

Let a state-space representation of P be given by

P :

[

x(k + 1)
y(k)

]

=

[

AP BP

CP 0

] [

x(k)
u(k)

]

,
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Fig. 2. Model of a networked control system.

where x(k) ∈ R
n is the state, u(k) ∈ R

m is the input, and

y(k) ∈ R
m is the output. It is assumed that there exists

ν ∈ N such that

CP Ai−1

P BP = 0, for i = 1, 2, · · · , ν − 1,

det CP Aν−1

P BP �= 0. (7)

Then, let DP := CP Aν−1

P BP . It is known that when a

continuous-time system is discretized with sampling period

τ , this assumption is satisfied with ν = 1 for almost all τ .

We should take an appropriate ν when P has time delays

due to communication and/or computation in the controller.

The controller K is an m-input m-output dynamical

nonlinear system represented as

K :
z(k + 1) = f(z(k), e(k)),

v(k) = g(z(k)) + φ(e(k)),
(8)

where z(k) ∈ R
nK is the state, e(k) ∈ R

m is the input,

and v(k) ∈ R
m is the output. Here, f and g are arbitrary

nonlinear functions, and φ : R
m → R

m is a piecewise C1-

class injective function.

Regarding the random variables in the system, we assume

that (i) x(0), wk, and dk are mutually independent for every

k ∈ Z+ and that (ii) |h(x(0))| < ∞. In particular, the

second assumption implies that the initial condition x(0)
is neither completely known nor completely unknown. As

we will see later, this assumption is characteristic to the

information theoretic approach.

In this paper, we analyze the effects of the noises w and

d on the input u and the output y of the plant. These effects

are measured by the sensitivity-like functions defined in the

following.

Definition 5: Consider the system depicted in Fig. 2.

Assume that u and y are weakly stationary processes. Denote

by Φs and Φt the power spectral densities of the signals

s ∈ {w,d} and t ∈ {u,y}. The sensitivity-like function

Tts(ω) from s to t is the ratio of these power spectral

densities given by

Tts(ω) :=

√

det Φt(ω)

det Φs(ω)
, s = w,d, t = u,y. (9)

We now show that the sensitivity-like function Tts is

closely related to the transfer function from s to t. If the

controller K is linear, we can define the corresponding

transfer functions Tts(z) as

Tuw(z) := (I − K(z)P (z))−1,

Tyw(z) := P (z)(I − K(z)P (z))−1,

Tud(z) := (I − K(z)P (z))−1K(z),

Tyd(z) := P (z)(I − K(z)P (z))−1K(z).

When we consider a transfer function, we implicitly assume

that its initial state is zero. We note that, under this assump-

tion, if a transfer function G(z) is stable, then the following

equation holds:

(

det G(ejω)
)2

=
det Φy(ω)

det Φx(ω)
,

where x, y are the input and output signals of G(z), and

Φx, Φy are their power spectral densities, respectively [9].

Thus, in the special case that, in the system in Fig. 2, the

initial state x(0) is zero, the following relation holds:

Tts(ω) = |det Tts(e
jω)|, s = w,d, t = u,y. (10)

In general, this equality is important since it clarifies the

relation between the ratio of power spectral densities and

the transfer function.

We however note that, in a transfer function, it is implicitly

assumed that the initial condition is zero. In this case, x(0) is

deterministic and thus h(x(0)) = −∞. This means that the

assumption |h(x(0))| < ∞ is not satisfied. In this respect,

the problem setup of this paper is different from that based

on transfer functions.

In the analysis of this paper, the plant properties of poles

and zeros are important.

Definition 6: Let UPP and UZP represent the sets of

unstable poles and unstable zeros of P , respectively:

UPP := {z | |z| ≥ 1, det(AP − zI) = 0} ,

UZP :=

{

z | |z| ≥ 1, FP (z) < max
λ∈C

FP (λ)

}

,

where

FP (z) := det

[

AP − zI BP

CP Aν
P DP

]

.

We next present previous works related to the analysis of

this paper. First, in the work of Martins et al. [5], for the

case m = 1, the sensitivity property Tuw is analyzed based

on an information theoretic approach. They have focused on

the entropy and mutual information of w and u and have

clarified a relation between Tuw and the unstable poles of

P . The following theorem holds by applying the result in [5]

to our problem.

Theorem 1 ([5]): Consider the system depicted in Fig. 2.

Suppose that P is a single-input single-output (SISO)

discrete-time linear time-invariant system, and K is an

arbitrary causal system. If u and y are weakly stationary

and supk E[x(k)⊤x(k)] < ∞, then the following holds:

1

2π

∫ π

−π

log
∣

∣

∣
Tuw(ω)

∣

∣

∣
dω ≥

∑

λ∈UPP

log |λ| .
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Next, in our prior paper [7], we have followed the ap-

proach of [5] and have analyzed the complementary sensi-

tivity property Tyd for the special case of m = 1 and linear

K, i.e., the controller K is in the form as

K :

[

z(k + 1)
v(k)

]

=

[

AK BK

CK DK

] [

z(k)
e(k)

]

. (11)

The following theorem has been shown.

Theorem 2 ([7]): Consider the system depicted in Fig. 2.

Suppose that P and K are SISO discrete-time linear time-

invariant systems. If supk E[x(k)⊤x(k)] < ∞, then the

following relation holds:

1

2π

∫ π

−π

log
∣

∣

∣
Tyd(ω)

∣

∣

∣
dω ≥

∑

β∈UZP

log |β| + log |DK |.

We remark that Theorems 1 and 2 are similar to Bode’s

integral formula for the sensitivity and complementary sen-

sitivity functions, Tuw(z) and Tyd(z) (see [12], [13], and

Theorem 4 in this paper). The formula has given a well-

known trade-off property, i.e., the water-bed effects on the

gains of Tuw(z) and Tyd(z) in the frequency domain. In our

problem, the gain of Tuw(z) corresponds to the effect of the

noise w on the input u of plant P , and the gain of Tyd(z)
corresponds to the effect of the noise d on the output y.

Theorems 1 and 2 have been derived based on an in-

formation theoretic approach. In contrast, Bode’s integral

formula has been shown using complex analysis. Moreover,

Theorem 1 extends Bode’s formula in the sense that the

theorem deals with an arbitrary causal nonlinear controller,

while Bode’s formula treats only linear controllers.

In this paper, we follow the approach in [5], [7], and

extend Theorems 1 and 2 to square MIMO systems which

includes a nonlinear controller K represented in (8). In

addition, we discuss all four properties of the feedback

system for the noises defined in (9) in a unified manner.

IV. SENSITIVITY ANALYSIS OF NETWORKED CONTROL

SYSTEMS

A. Main result

In this subsection, we present the main result of this paper.

Let Jφ be the Jacobian of the function φ in the controller K

in (8), and let

DK := lim inf
k→∞

∑k

i=0
E [log |Jφ(e(i))|]

k
.

Here, DK represents (the logarithm of) the gain of K. If K

is a linear system such as that in (11), this DK is reduced to

the simpler form DK = log |det DK |, which is determined

by the direct feedthrough term DK .

The following theorem provides integral-type constraints

on the sensitivity-like functions Tts, s = w,d, t = u,y.

Theorem 3: Consider the system depicted in Fig. 2. If u

and y are weakly stationary and supk E[x(k)⊤x(k)] < ∞,

then the following relations hold:

i)
1

2π

∫ π

−π

log
∣

∣

∣
Tuw(ω)

∣

∣

∣
dω ≥

∑

λ∈UPP

log |λ| , (12)

ii)
1

2π

∫ π

−π

log
∣

∣

∣
Tyw(ω)

∣

∣

∣
dω ≥

∑

β∈UZP

log |β|

+ log |det DP |, (13)

iii)
1

2π

∫ π

−π

log
∣

∣

∣
Tud(ω)

∣

∣

∣
dω ≥

∑

λ∈UPP

log |λ| + DK , (14)

iv)
1

2π

∫ π

−π

log
∣

∣

∣
Tyd(ω)

∣

∣

∣
dω ≥

∑

β∈UZP

log |β|

+ log |det DP | + DK .

(15)

The four inequalities can be obtained from Proposition 1

and Lemma 3 presented in Section V.

Several remarks regarding this result are in order. First,

Theorem 3 shows that there are lower bounds on the reduc-

tion of the effects of the noises w and d. Furthermore, these

bounds can be expressed by the unstable poles/zeros of P

and the direct feedthrough terms of P and K. Second, in

Theorem 3, the relations in (12) and (15) extend those in

Theorems 1 and 2 to a more general setup and in particular

to a class of m-input m-output nonlinear controllers. It is

also noted that similarly to Theorem 1, the bound in (12)

holds for any nonlinear controller that is causal and hence is

not restricted to K in the form of (8). Third, we obtain the

constraints on Tyw and Tud in (13) and (14), respectively,

which are similar to the those on Tuw and Tyd.

B. Comparison with Bode’s integral formula

As we have described in Section III, the sensitivity-like

function Tts is the ratio of power spectral densities and

corresponds to the transfer function Tts from s to t. Here,

we present a result on Tts(z) based on a complex analysis

approach. This is a generalization of Bode’s integral formula.

Suppose that in Fig. 2, the plant is SISO (m = 1) and

also that K is a linear time-invariant system as in (11). The

following theorem provides the constraint on Tts(z).
Theorem 4: Consider the system depicted in Fig. 2. If the

feedback system is stable, then the following equalities hold:

i)
1

2π

∫ π

−π

log
∣

∣Tuw(ejω)
∣

∣ dω

=
∑

λ∈UPP

log |λ| +
∑

λ∈UPK

log |λ| , (16)

ii)
1

2π

∫ π

−π

log
∣

∣Tyw(ejω)
∣

∣ dω

=
∑

β∈UZP

log |β| +
∑

λ∈UPK

log |λ| + log |DP | , (17)

iii)
1

2π

∫ π

−π

log
∣

∣Tud(ejω)
∣

∣ dω

=
∑

λ∈UPP

log |λ| +
∑

β∈UZK

log |β| + log |DK | , (18)

iv)
1

2π

∫ π

−π

log
∣

∣Tyd(ejω)
∣

∣ dω

=
∑

β∈UZP

log |β| +
∑

β∈UZK

log |β|
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+ log |DK | + log |DP | . (19)

We have independently obtained two similar theorems,

Theorems 3 and 4. Note that Theorem 3, our main result,

shows inequality constraints, while in Theorem 4 the con-

straints are in equalities. From our analysis, it is unclear

when the equalities hold and moreover whether we can show

a condition for the equality to hold. However, as described in

Section IV-A, Theorem 3 can deal with more general systems

than Theorem 4.

Also, in Theorem 3, the unstable poles and zeros of

the controller K do not appear in the constraints. This is

due to the assumption that the initial state z(0) of K is

deterministic. Although, this assumption is the reason for

the inequalities as we mentioned above, it enables us to deal

with the nonlinear controller K in (8).

V. THE ENTROPY RATES OF INPUT AND OUTPUT SIGNALS

In this section, we give some results which are required

for the derivation of Theorem 3.

We note that because of the relation given by Lemma 1,

the ratio Tts of power spectral densities can be expressed as

the difference in the entropy rates. Hence, in this section, we

analyze the entropy rates of the input signal s and the output

signal t to evaluate the ratio Tts of power spectral densities.

The following proposition gives the relation between the

entropy rates h∞(s) and h∞(t).
Proposition 1: Consider the system depicted in Fig. 2.

The following inequalities hold:

i) h∞(u) − h∞(w) ≥ lim inf
k→∞

I(uk;x(0))

k
, (20)

ii) h∞(y) − h∞(w) ≥ lim inf
k→∞

I(yk+ν
ν ;x(0))

k

+ log |det DP |, (21)

iii) h∞(u) − h∞(d) ≥ lim inf
k→∞

I(uk;x(0))

k
+ DK , (22)

iv) h∞(y) − h∞(d) ≥ lim inf
k→∞

I(yk+ν
ν ;x(0))

k

+ log |det DP | + DK . (23)

This proposition gives the relation between the entropy

rates of the input signal s and the output signal t. Note that

no assumption is made on stability of the feedback system.

Proposition 1 can be proven by a conservation law between

the entropies of s and t shown below.

Lemma 2: Consider the system depicted in Fig. 2. The

following relations holds:

i) h(uk) = h(wk) + I(uk;x(0))

+
k

∑

i=0

I(u(i);di−1|x(0),ui−1), (24)

ii) h(yk+ν
ν ) = h(wk) + I(yk+ν

ν ;x(0))

+ (k + 1) log |det DP |

+

k
∑

i=0

I(u(i);di−1|x(0),ui−1), (25)

iii) h(uk) = h(dk) + I(uk;x(0)) +
k

∑

i=0

E [log |Jφ(e(i))|]

+

k
∑

i=0

I(u(i);wi−1|x(0),ui−1), (26)

iv) h(yk+ν
ν ) = h(dk) + I(yk+ν

ν ;x(0))

+ (k + 1) log |det DP |

+

k
∑

i=0

E [log |Jφ(e(i))|]

+
k

∑

i=0

I(u(i);wi−1|x(0),ui−1). (27)

Lemma 2 indicates that a conservation law of entropy

holds in the feedback system in Fig. 2. For example,

(27) shows such a law between the entropies of d and

y. Other terms in (27) can be explained as follows.

The terms log |det DP | and E[log |Jφ|] reflect the scaling

caused by the direct feedthrough terms of P and K (see

(5)). The terms of mutual information I(yk+ν
ν ;x(0)) and

I(u(i);wi−1|ui−1,x(0)) show the effects of x(0) and w;

these can be viewed as external inputs to the system other

than d, which is the input signal we focus on.

We next show as a lemma that the lower bounds in

Proposition 1 can be further bounded by the unstable poles

or the unstable zeros of the plant P .

Lemma 3 ([5], [7]): Consider the system depicted in

Fig. 2. If the signals u and y are weakly stationary and

supk E[x(k)⊤x(k)] < ∞, then the following hold:

lim inf
k→∞

I(uk;x(0))

k
≥

∑

λ∈UPP

log |λ| , (28)

lim inf
k→∞

I(yk+ν
ν ;x(0))

k
≥

∑

β∈UZP

log |β| . (29)

In general, from the viewpoint of the open-loop system,

when the system is unstable, the system amplifies the initial

state at a level depending on the size of the unstable poles.

Hence, we can say that in systems having more unstable

dynamics, the signals contain more information about the

initial state. Therefore, in Fig. 2, we can expect the mutual

information between the input u and x(0) to be a function

of the unstable poles. The relation (28) corresponds to

this observation. Similarly, (29) corresponds to the same

observation about the inverse system of P . In fact, such an

inverse system plays a crucial role in the proof, and this is

the reason that the results in this paper are limited to square

MIMO systems.

VI. NUMERICAL EXAMPLE

We illustrate the results through a numerical example.

Consider the system shown in Fig. 2. Suppose that m = 1
and P is an unstable non-minimum phase system given by

the transfer function

P (z) =
0.01005z − 0.01026

z2 − 2.031z + 1.03
.
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TABLE I

INTEGRALS OF RATIOS OF POWER SPECTRAL DENSITIES VERSUS THEIR

THEORETICAL LOWER BOUNDS.

K = K1
1

2π

R

log |Tts(ω)|dω LBBode LBTh.3

Tuw 1.3794 0.1553 0.0721

Tyw −5.2786 −6.5243 −6.6075

Tud 1.4182 0.7487 0.7487

Tyd −5.2398 −5.9309 −5.9309

K = K2
1

2π

R

log |Tts(ω)|dω LBBode LBTh.3

Tuw 6.2312 0.5929 0.0721

Tyw −0.4484 −6.0867 −6.6075

Tud 6.2319 6.2305 6.2305

Tyd −0.4477 −0.4491 −0.4491

We consider two systems K1, K2 as stabilizing controllers

for the plant P . The transfer functions of K1 and K2 are

given as follows:

K1(z) =
−1.598z3 + 1.414z2 + 1.595z − 1.418

z3 − 2.72z2 + 2.444z − 0.7248
,

K2(z) =
−71.43z3 + 212z2 − 209.7z + 69.16

z3 − 3.423z2 + 3.842z − 1.418
.

It is noted that both controllers have one unstable pole and

no non-minimum phase zero.

We take x(0), w(k), and d(k) as Gaussian random

variables with mean 0 and variance 1, and compute u and

y from time 0 to 100 [sec] with sampling period 0.01 [sec].

Then, we calculate the ratios Tts of power spectral densities

and examine the inequalities in Theorem 3.

In Table I, we show the results of the simulations. Here,

LBTh.3 and LBBode denote the lower bounds given by Theo-

rems 3 and 4, respectively. Note that although Table I shows

the data for certain samples of random variables x(0), w,

and d, we have repeated the simulation for various samples

and have obtained similar data.

In the table, we observe that all inequalities in Theorems 3

and 4 hold for both cases K = K1 and K = K2. Moreover,

the lower bounds given by these theorems are fairly close to

the values obtained by the simulations. This shows that the

results are not conservative for these systems.

We note that the properties of K1 and K2 are significantly

different. The controller K1 aims at achieving high stability

with small gain, while K2 aims at assuring not stability but

agility. Fig. 3 shows the difference between K1 and K2 in

the sample paths of the output signal y. Here, the solid line

is the response of y for K = K1 and the dotted line is for

K = K2. Clearly, the signal changes rapidly for K = K2.

Despite this difference, Table I shows that the inequalities in

Theorem 3 hold for both controllers.

VII. CONCLUSION

In this paper, we have considered a class of networked con-

trol systems and have analyzed the effects of channel noises

on the input and the output of the plants by evaluating the

entropy of the signals. The main result is the constraints on

the sensitivity-like functions expressed by the plant unstable

Fig. 3. Sample paths of y for K1 and K2 (solid line: K = K1, dotted
line: K = K2).

poles and zeros and direct feedthrough terms in a uniform

fashion. The result extends Bode’s integral formula to more

general systems. Future research will deal with conditions

for the equalities to hold in Theorem 3.
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