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Abstract— Long length-scale structural deformations of DNA
play a central role in many biological processes including gene
expression. While all-atom based Molecular Dynamics (MD)
tools fall short to simulate the long-length and time scale
mechanics of DNA, continuum rod model of DNA has emerged
as a viable tool. The continuum rod model predictions are
however very sensitive to the constitutive law (material proper-
ties) of the molecule which, in turn, vary along the molecule’s
length according to its base-pair sequence. Identification of the
sequence-dependent constitutive law from experimental data
and feasible all-atom MD simulations remains a significant
challenge. The primary goal of the paper is to formulate the
general identification problem in a form that is amenable
to system identification/estimation methods. To this end, we
suggest several simplifications to the continuum rod model of
DNA. Finally, we suggest a possible approach to solving the
identification problem for a simplified case with a nonlinear
constitutive law. A secondary goal of this paper is to bring this
important problem to the attention of the system identification
community.

I. INTRODUCTION

DNA is a long chain biopolymer molecule that is a central

substance in the working of all life [1]. Located within

the nucleus of our cells, DNA contains the coded (genetic)

information needed to synthesize proteins and thus sustain

life. Replication and segregation of DNA enable the transfer

of this genetic information from one cellular generation to the

next. These biological functions are significantly influenced

by the structural deformation of the molecule which is tied

to its chemical structure, the base-pair sequence. How these

structural deformations originate from the chemical make-

up of the molecule is an open and active area of research.

To elucidate this connection, we begin by summarizing the

basic chemistry and structure of DNA, the multiple length-

scales involved, and the major biological functions that DNA

performs.

Figure 1 illustrates a DNA molecule on three different

length scales as reproduced from several sources [1-3]. The

smallest length scale (far left) shows a segment of the fa-

miliar ‘double-helix’ which has a diameter of approximately

2 nanometers (nm). One complete helical turn is depicted

here and this extends over a length of approximately 3.6

nm. The double helices, which wind like the supports of a

spiral staircase, are composed of two polynucleotide chains

which in turn are made up of four different nucleotides.
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Each nucleotide is made from a five-carbon sugar to which

one or more phosphate groups and a nitrogen containing

base are attached. There are four types of bases that include

adenine (A), guanine (G), cytosine (C) and thymine (T). The

four bases bond in only two, complementary pairs, namely

A with T and C with G. The sugar-phosphate groups of

the nucleotides are covalently linked into long chains (high-

lighted in orange) that form the backbone of DNA. Pairing

of the two polynucleotide strands is achieved by hydrogen

bonding between the nucleotide bases (highlighted in blue)

that fill the small voids between the single DNA strands. It is

this linear sequence of base-pairs that constitutes the genetic

code. This chemical structure and the rules for ‘base-paring’

follow from the seminal discoveries of Franklin and Gosling

[4] and Watson and Crick [5]. There are approximately 10.5

base-pairs in one helical turn for the common “B” form of

DNA which also forms a right-handed helix as depicted in

figure 1.

On an intermediate spatial scale (middle of figure 1), the

double helix appears as a solid “strand” of DNA that might

extend over tens to hundreds of helical turns (approximately

tens to hundreds of nanometers). This is the approximate

length scale of a ‘gene’ which is a portion of a DNA

strand (i.e. a specific base-pair sequence) that controls a

discrete hereditary characteristic. The base-pair sequence

within a gene constitutes a chemical code for the production

of a specific protein elsewhere within the cell. The major

biological function of DNA is to store these chemical codes

and to make them available for protein production through

a process known as transcription. In addition, the same

chemical codes are passed from one cellular generation to the

next through a process known as replication. These biological

processes are strongly influenced by the structure of the

molecule on even longer length scales.

The longer-length scale structures of DNA are illustrated

to the far right in figure 1. Here, the long DNA strand may

contain thousands to millions of base-pairs and resemble

a highly curved and twisted filament with lengths ranging

from micron to millimeter scales. The long-length scale

curving/twisting of this strand is called supercoiling and two

generic types of supercoils are illustrated to the far right of

figure 1. One type, referred to as an interwound supercoil

(or plectoneme), leads to an interwoven structure where

the strand wraps upon itself with many sites of apparent

‘self-contact’. By contrast, a solenoidal supercoil possesses

no self-contact and resembles a coiled spring or telephone

cable. With the aid of proteins, DNA must supercoil for

several key reasons. First, supercoiling provides an organized
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means to compact these very long molecules (by as much

as 105) enabling them to fit within the small confines of the

cell nucleus. An unorganized compaction would hopelessly

tangle the strand and render it useless as a medium for

storing the coded information. Second, supercoiling plays an

important role in transcription and replication. For instance,

the formation of simple loops of DNA on long-length scales

is known to regulate the transcription of certain genes, for

example refer to Schleif [6], Semsey et al. [7] and other

citations in Goyal et al. [8].

The long-length scale looping of DNA is dominated by the

bending and torsion of the molecule. Many ‘coarse-grain’

models of DNA have emerged as efficient computational

tools to simulate these large (nonlinear) deformations as

discussed in Goyal [9]. The coarse-grain models can also

be combined with all-atom molecular dynamics (MD) sim-

ulations by multi-scale techniques to capture the fine-length

scale descriptions of the molecule’s conformation. One of

the most computationally efficient coarse-grain models for

simulating DNA deformations is an elastic rod. The use of

rod theory is reasonably well-established in the literature

on DNA modeling as reviewed by Schlick [10] and Olson

[11]. Rod models approximate DNA as a continuum with

prescribed elasticity properties which ultimately vary with

length according to the local base-pair sequence of the

molecule. In particular, the stiffness variation may arise due

to the fact that G≡C pairs possess three hydrogen-bonds

while A=T pairs possess only two hydrogen bonds. Thus,

one may expect G≡C rich regions of DNA to be stiffer than

A=T rich regions. Moreover, the base-pairs in general do

not stack in a straight line. Their stacking gives rise to a

sequence-dependent ‘intrinsic curvature’ to the molecule that

also affects its structural behavior.

A detailed review of rod models of DNA is provided

in Goyal et al. [9, 12] which often begin by assuming

homogeneous and isotropic elasticity. The use of an isotropic

(circular) rod to represent the structure of the double helix is

specifically addressed by Maddocks and co-workers [13, 14]

who conclude that bending anisotropy at the base-pair scale

quickly averages to an effective isotropic rod on long-length

scales due to the high intrinsic twist (10.5 base-pairs/per

helical turn) of the double-helix. The majority of rod models

also employ equilibrium formulations and hence can not

capture dynamic transitions as described in Goyal et al. [9,

15] where the influences of non-homogenous stiffness and

intrinsic curvature are also studied.

In this paper, we use the continuum rod model equations

developed in [9, 15] to formulate the problem of estimating

the constitutive law governing DNA. Since both static and

dynamic structural deformations of DNA molecules play a

crucial role in biological activity, the continuum rod model is

a set of partial differential equations with both time and space

as the independent variables. Therefore, we make suitable

assumptions to simplify the continuum rod model and then

cast it in state-space form, thus enabling us to use techniques

from system identification and Estimation literature.

Furthermore, by considering a simplified case of homo-

Fig. 1. Three different length scales of the DNA molecule. The smallest
scale (left) shows double-helix structure (sugar-phosphate chains and base-
pairs). Intermediate scale (middle) shows how multiple double-helices form
a continuous molecule of double-stranded DNA (ds-DNA). Largest scale
(right) shows how the molecule curves and twists in forming supercoils
including the idealized plectonemic and solenoidal supercoils depicted here.
(Courtesy: Branden and Tooze, 1999, From Introduction to Protein Structure
by Carl Branden & John Tooze (reproduced by permission of Garland
Science/Taylor & Francis, LLC) [2] and Lehninger et al. (copied with
permission from W.H. Freeman) [3]).

geneous DNA, we show that the problem of estimating the

nonlinear constitutive law can be treated as the problem of

estimating unknown inputs to a state-space model. Thus by

using input-reconstructions methods [45-48], we demonstrate

the viability of this approach for a simplified case.

II. PROBLEM STATEMENT AND BROADER IMPACT

The elastic properties of DNA follow from its interatomic

interactions and must define a base-pair sequence-dependent

constitutive law for the bulk (continuum) model. The basic

form of this constitutive law and its sequence-dependent

mapping is an open and highly active area of research.

The continuum rod behavior has been shown to be highly

sensitive to the variations in the constitutive law [8, 15,

38]. Thus the experimentally observable behaviors which

are highly sensitive to the constitutive law can be leveraged

to calibrate the the constitutive law using system identifica-

tion/ inverse modeling techniques. Some useful calibration

experiments are cyclization (DNA loop closure) experiments

as described in Goyal et al. [38] and Manning et al. [16].

These experiments give an estimate of the elastic energy of

deformation of the DNA.

In addition, the fact that the constitutive law conspires

from the interatomic interactions, motivates the concept of

mapping the material law from all atom details using Molec-

ular Dynamics (MD) simulations. MD tools can capture

ab initio calculations by accurately modeling interatomic

potentials, but their viability is limited to only short length

and time scale simulations. Nevertheless, MD simulations

could also serve as data for calibrating the constitutive law

for continuum (bulk) models. In particular, MD simulations

solve for positions of each atom and forces on each atom

under various loading conditions which can in principle be

mapped into the stress distribution and geometry of the

continuum model. This mapped data then could perhaps be
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used to calibrate the constitutive law. The utility of this

approach extends beyond DNA molecules to the whole area

of material science where now-a-days researchers are trying

to map constitutive laws of various materials form all-atom

MD simulations and also trying to design detailed atomic

structures to achieve desired material behavior.

We begin by summarizing the computational rod model

of Goyal et al. [9, 15] in Section 2.

III. COMPUTATIONAL ROD MODEL

Fig. 2. Dynamical rod model of double stranded DNA on long-length
scales. Helical axis of duplex defines the rod centerline which forms a
three-dimensional space curve located by R (s, t).

The dynamics of a flexible rod can be represented by the

rigid-body dynamics of a local, cross-section fixed frame

as illustrated in figure 2. The orientation of the body-fixed

frame {ai(s, t)} varies with both position s and time t.

The deformation of the rod centerline, which represents the

helical axis of the molecule, is determined by the curvature

and twist vector κ(s, t). This vector defines the rotation of

the body-fixed frame with length s. In a stress-free state,

DNA conforms to its natural geometry represented by κ0(s),
which is also called its intrinsic curvature.

The rigid-body dynamics of the body-fixed frame is

described by its translational velocity vector v(s, t) and

its angular velocity vector ω(s, t). The stress distribution

across the cross-section results in a net internal (tensile

and shear) force vector f(s, t) and (bending and torsional)

moment vector q(s, t). As described in Goyal et al. [15],

the governing equations for the rod dynamics can be derived

from the first principle by looking at a free body diagram of

an infinitesimal rod segment and they are written as

∂v

∂s
+ κ × v = ω × t̂ (III.1)

∂ω

∂s
+ κ × ω =

∂κ

∂t
(III.2)

∂q

∂s
+ κ × q = I

∂ω

∂t
+ ω × Iω + f × t̂ − Q (III.3)

∂f

∂s
+ κ × f = m

(

∂v

∂t
+ ω × v

)

− F (III.4)

where t̂(s, t) denotes the unit tangent vector, m(s) denotes

the mass of the rod per unit arc length and I(s) denotes

the tensor of principal mass moments of inertia per unit

arc length. The computational rod model [15] in general

Fig. 3. Block diagrams illustrating the various components in DNA
experiments and the estimation procedure. The block diagram on top
illustrates an DNA experiment, while the block-diagram on the bottom
illustrates the estimation of the DNA material law.

can also capture interactions of the rod with the external

environment via the external forces F(s, t) and moments

Q(s, t) distributed per unit arc length. The partial deriva-

tives are all relative to the body-fixed frame {ai(s, t)}.

Equation (III.1) represents inextensibility and unshearability

constraints; Eq. (III.2) is a constraint on the curvature/twist

and angular velocity vectors that ensures continuity of cross-

section orientation; Eqs. (III.4,III.3) are the Newton-Euler

equations for an infinitesimal rod element.

IV. SEQUENCE-DEPENDENT CONSTITUTIVE LAW

The internal moment q(s, t) is a restoring moment that

results from the deformation (κ(s, t) − κ0(s)). The re-

lationship between the deformation (κ(s, t) − κ0(s)) and

the restoring moment q(s, t) is governed by interatomic

interactions/ material properties and is called the constitutive

law. A conceivable form of the nonlinear constitutive law can

be written as:

κ(s, t) − κ0(s) = g(q(s, t), s) (IV.1)

Observe that the non-homogenous intrinsic curvature

κ0(s) and the explicit dependence of the function g on

s captures the non-homogenous nature of the constitutive

law. The non-homogenous nature (dependence on s) of the

constitutive law maps from the varying sequence of base-

pairs along the length of the DNA. The various components

of the continuum rod model are seen in Figure 3. Many

experimental and computational efforts are underway to

determine the sequence-dependence of the constitutive law

for DNA; see, for example [17, 18]. All of the efforts, so

far assume a linear approximation of the constitutive law.

But it should also be noted that the assumption of linear

material law has been recently questioned and debated [19-

21]; and therefore even the identification of the functional

form is an open area of research. Nevertheless, even the

linear approximation of the material law is not yet well

characterized.

V. PROBLEM FORMULATION

To estimate the constitutive law, we first note that most

DNA experiments measure steady-state characteristics of

the molecules [16, 38]. Therefore we first consider spatial

variations alone by freezing time. Thus equations (1)-(4)

can be simplified by eliminating the time-variable. Note that

in the steady-state configuration v = ω = 0, and partial

derivative with respect to t are zero. Hence (1)-(4) reduce
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to the following two ordinary differential equations in terms

of the spatial variable s.

dq

ds
+ κ × q = f × t̂. (V.1)

df

ds
+ κ × f = 0, (V.2)

With the independent variable as s, we can now write these

equations in the state-space form by defining the state vector

x(s) to be x(s) ∈
[

q(s) f(s)
]T

∈ R
6.

Typically measurements in DNA experiments are bulk

properties of the molecules such as the elastic strain energy

which can be expressed as

U =

∫

L

0

∫

κ(s)

κ0(s)

q(s) · dk ds. (V.3)

Note that (V.3) is a function of the states at several values of

the independent variable s. Therefore, this does not fit into

the traditional state-space formulation where measurements

are available for all values of the independent variable.

Since this is a sizeable challenge, we first consider a

simpler case and demonstrate that the above problem can

in-principle be solved.

A. DNA Cantilever Experiment

We first consider a simple fictitious cantilever experiment

with a DNA molecule clamped at one end and a constant

shear force applied at the free end. We assume that the

DNA molecule is uniform and thus has intrinsic curvature

κ0(s) ≡ 0. Moreover, we assume that the material behavior

of DNA is decoupled in the principal directions of bending

and torsion. Therefore, by choosing the body-fixed frame

along these principal directions, the vector material law

(IV.1) is decoupled into the following scalar material laws

κ1(s) = g1(q1(s)), (V.4)

κ2(s) = g2(q2(s)), (V.5)

κ3(s) = g3(q3(s)). (V.6)

Finally, we assume that measurements are available at all

values s.

Let the first two axes in the body-fixed frame a1(s) and

a2(s) correspond to the principal bending axes and the third

axis a3(s) correspond to the principal torsion axis. Now, if

the applied shear force is acting along axis a1, then the DNA

molecule bends in-plane about axis a2. Thus the first and

third components of κ(s) and q(s) along with the second

component of f are zero. Thus the elastic rod model reduces

to the following three equations

dq2

ds
= −f1(s), (V.7)

df1

ds
= −f3(s)κ2(s), (V.8)

df3

ds
= f1(s)κ2(s), (V.9)

with the material-law equation (V.5).
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Fig. 4. Actual and estimated deformation κ2(s) for a
cantilever DNA molecule with in-plane deformations.

By treating the free end as the origin and prescribing the

boundary conditions at the free end, the above problem can

be treated as an initial value problem. Moreover, as seen

from (V.7) - (V.9), when the material law is unknown κ2(s),
which is an unknown function of q2, can be treated as an

unknown input to the elastic rod model.

Note that (V.7) - (V.9) are a set nonlinear state space

equations with states x(s) =
[

q2(s) f1(s) f3(s)
]T

∈
R

3. Next, since κ2(s) is an unknown function of q2(s),
we cannot use standard state estimation techniques as the

dynamics itself is unknown.

Alternatively, we treat κ2(s) as an input to the system.

Therefore, we can use unknown-input estimation such as the

unscented unbiased minimum variance filter [46-48].

We assume that measurements of f(s) and q(s) are avail-

able. We then use the unscented unbiased minimum-variance

(UUMV) filter [47] with s as the independent variable, to

estimate κ2(s). As a second step we use standard least-

squares fitting to estimate the functional relationship between

κ2(s) and q2(s).

VI. RESULTS

For simulation we choose g2(·) to be an arctangent func-

tion and set the initial conditions to be x(0) =
[

1 2 0
]

,

where all numbers are dimensionless.

As κ2(s) appears twice in the state equations (V.7) - (V.8),

there are two ways to estimate κ2(s) using the UUMV filter.

Figure 4 shows actual κ2(s) and two independent estimates.

Although, the independent variable is the length coordinate

s, it is treated as an initial value problem, and as seen from

the Figure 4, the estimate converges to the actual value in

the first few steps. Also, around s = 0.35, a spike is seen

in one of the estimates because the value of f3(s), which

is the coefficient of κ2(s) in (V.8), crosses zero. Thus there

is a loss of input observability and hence the error in the

estimate.

Once κ2(s) is estimated, the function g2(·) can be es-

timated by treating the unknown function as an expansion

of sinusoidal basis functions and using a standard least-

squares to fit the unknown coefficients of the basis function
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expansion. Figure 5 shows the actual and estimate of the

constitutive law g2(·), when an arctangent function was used

for simulations. Figure 6 shows the actual and estimate of

the constitutive law g2(·), when a saturation function is used

for simulations.

Finally, we note that by running three separate experiments

with excitation along one principal axis at a time, we can

use the same procedure above to estimate all three material

laws (V.4) - (V.6), and thus the complete nonlinear material

law. The estimated material law can then be used to predict

deformations for any general loading configuration.
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Fig. 5. Actual and estimated arctangent material law for a
DNA Molecule with the in-plane cantilever deformation.
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Fig. 6. Actual and estimated saturation material law for a
cantilever beam with the in-plane cantilever deformation.

VII. CONCLUSION

In this paper, using a continuum rod model for DNA,

we considered identification of the sequence-dependent con-

stitutive law from experimental data and feasible all-atom

MD simulations. We reformulated the problem in a form

that is amenable to system identification/estimation methods.

Furthermore, by making suitable assumptions, we derived

several simplifications to the continuum rod model of DNA.

Finally, we considered a possible approach to estimating the

nonlinear constitutive law for a simplified case.
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