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Abstract— Voltage instability impacts power system transfer
limits and its reliability. This paper presents an approach
to determine a voltage control scheme based on the Model
Predictive Control (MPC) theory. MPC is used to develop an
optimal control strategy, consisting of a sequence of amounts
of the shunt capacitors to switch. The resulting control strategy
prevents voltage instability and maintains a desired amount of
post-transient voltage stability margin (an index of system se-
curity). The objective of optimization is to minimize a weighted
sum of the cumulative voltage deviations and the cumulative
cost of capacitive controls. The effect of the capacitive control on
voltage behavior is computed by means of trajectory sensitivity.
The sensitivity of voltage stability margin with respect to the
capacitive control is used to construct a security constraint for
post-fault operation in the MPC formulation. The efficacy of
the proposed approach is illustrated through applications to the
39-bus New England system for preventing voltage collapse.

Index Terms— Model predictive control, trajectory sensitiv-
ity, voltage stabilization, voltage stability margin, switching
control, power system

I. INTRODUCTION

Voltage instability takes the form of a dramatic drop in

bus voltages in a transmission system, which may result in

system collapse. Voltage control is accomplished by adjust-

ing the production, absorption, and flow of reactive power at

various locations in a power system. Reactive power com-

pensation devices including shunt capacitors, shunt reactors,

synchronous condensers, and static var compensators (SVCs)

can be used to control voltage. Several prior works, such as

[1], [2], [3], [4], [5], have studied the problem of determining

locations and amounts of reactive power compensation de-

vices to maintain voltage stability while minimizing the cost.

The above works, however, are based on static analysis. They

assume that a post-contingency stable equilibrium point can

be reached. However, if disturbances are severe, the power

system may not reach a post-contingency stable equilibrium

point since the post-contingency trajectory may deviate out

of the stability region. In this case, dynamic analysis is

needed to ensure stable post-contingency trajectories. For

example, in the 39-bus New England system considered

in Section IV.B, the post-fault power system, according to

a static analysis, has a voltage stability margin of 32.4%.

However as can be seen from simulation (which considers
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the dynamic evolution), the system is unable to reach the

associated post-fault equilibrium point. This illustrates the

limitation of the control design based on a purely static

analysis.

In this paper, we design a control scheme to restore voltage

following a contingency and to maintain a pre-specified

amount of post-transient voltage stability margin. Voltage

stability margin is an indication of how far the post-transient

operating point is from the voltage collapse point. It is an

index of system security. The derived control strategy not

only considers the dynamic performance of voltages after

a contingency, but also takes into account the degree of

post-transient power system security. The computation of

the control strategy is based on model predictive control

(MPC). Shunt capacitors are adopted as reactive power

compensation devices because they have been widely used

to enhance voltage stability. The control design problem is to

determine a capacitor switching sequence and amounts given

their locations and capacities to satisfy the requirements

of voltage performance and voltage stability margin. The

objective of optimization is to minimize a weighted sum

of the cumulative voltage deviations and the cumulative

cost of capacitive controls. Trajectory sensitivities are used

to estimate the effect of controls on voltage trajectories,

whereas voltage stability margin sensitivities are applied to

estimate the effect of controls on the voltage stability margin.

The paper is organized as follows. Some fundamental

concepts about model predictive control (MPC), trajectory

sensitivity as well as voltage stability margin sensitivities

are introduced in Section II. The procedure to determine and

implement the control strategy is proposed in section III. In

Section IV a test case is provided to illustrate the efficacy of

the proposed algorithm. Section V provides some discussions

and the conclusions.

II. BACKGROUND

A. Model predictive control

Model Predictive Control (MPC) is a class of algorithms

that compute a sequence of control variable adjustments in

order to optimize the future behavior of a plant (system).

In [6], [7], an emergency voltage control scheme using

tree search and model predictive control is presented. The

problem is formulated as a nonlinear optimization problem

with discrete control variables. Exhaustive tree search is used

to solve this problem. MPC is also employed in [8], where
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an optimal coordinated voltage control for voltage stability

is proposed and solved by a pseudo gradient evolutionary

programming (PGEP) technique. In [9], [10], the authors

present a method to compute an emergency voltage control

strategy based on MPC. In these works the authors employ

a simplified version of model predictive control, which only

has one control step in the control horizon. A voltage

stabilization control strategy is also proposed in [11] based

on load shedding, where the objective function is to minimize

the amount of load shedding required to restore the voltages.

[12] presents a MPC based voltage control design. The

controls are reference voltage of automatic voltage regulators

and load shedding.

An introduction to the basic concepts and formulations

of MPC can be found in [13]. The principle of MPC is

graphically depicted in Fig. 1. Here x represents the state

variable that needs to be controlled to a specific range. The

available control is represented by variable u.

Predicted state 

Manipulated input
State trajectory

 until current time, xk

Time 

Magnitude

Input until 
current time, uk

tk tk + Ts tk + Tc tk + Tp
Control horizon Tc

Prediction horizon Tp

Fig. 1. Principle of MPC

At a current time tk, the MPC solves an optimization

problem over a finite prediction horizon [tk, tk + Tp] with

respect to a predetermined objective function such that the

predicted state variable x̂(tk+Tp) can optimally stay close to

a reference trajectory. The control is computed over a control

horizon [tk, tk + Tc], which is smaller than the prediction

horizon (Tc ≤ Tp). If there were no disturbances, no model-

plant mismatch and the prediction horizon is infinite, one

could apply the control strategy found at current time tk for

all times t ≥ tk. However, due to the disturbances, model-

plant mismatch and finite prediction horizon, the true system

behavior is different from the predicted behavior. In order to

incorporate the feedback information about the true system

state, the computed optimal control is implemented only until

the next measurement instant (tk + Ts), at which point the

entire computation is repeated.

In a MPC, the optimization problem to be solved at time

tk can be formulated as follows:

minû

∫ tk+Tp

tk

F (x̂(τ), û(τ))dτ (1)

subject to

˙̂x(τ) = f(x̂(τ), û(τ)), x̂(tk) = x(tk) (2)

umin ≤ û(τ) ≤ umax, ∀τ ∈ [tk, tk + Tc] (3)

û(τ) = û(tk + Tc), ∀τ ∈ [tk + Tc, tk + Tp] (4)

xmin(τ) ≤ x̂(τ) ≤ xmax(τ), ∀τ ∈ [tk, tk + Tp] (5)

Here, Tc and Tp are the control and prediction horizon with

Tc ≤ Tp. x̂ denotes the estimated state and û represents

“estimated” control (The true state may be different and the

true control matches the estimated control only during the

first sampling period).

Equation (1) represents the cost function of the MPC opti-

mization. Equation (2) represents the dynamic system model

with initial state x(tk). Equations (3) and (4) represent the

constraints on the control input during the prediction horizon.

Equation (5) indicates the state operation requirement during

the prediction horizon.

B. Trajectory sensitivity

Consider a differential algebraic equation (DAE) of a

system,

ẋ = f(x, y, u), x(0) = x0 (6)

0 = g(x, y, u) (7)

where x is a vector of state variables, y is a vector of

algebraic variables, and u is a vector of control variables.

Trajectory sensitivity considers the influence of small varia-

tions in the control u (and any other variable of interest) on

the solution of the state equations (6) and (7). Let u0 be a

nominal value of u, and assume that the nominal system in

(8) and (9) has a unique solution x(t, x0, u0) over [t0, t1].

ẋ = f(x, y, u0), x(0) = x0 (8)

0 = g(x, y, u0) (9)

Then the system in Equations (6) and (7) has a unique

solution x(t, x0, u) over [t0, t1] that is related to x(t, x0, u0)
as:

x(t, x0, u) = x(t, x0, u0) + xu(t)(u − u0) + high-order terms

y(t, x0, u) = y(t, x0, u0) + yu(t)(u − u0) + high-order terms

Here xu(t) = ∂x(t,x0,u)
∂u

is called the trajectory sensitivities

of state variables with respect to variable u and yu(t) =
∂y(t,x0,u)

∂u
is the trajectory sensitivities of algebraic variables

with respect to variable u.

The evolution of trajectory sensitivities can be obtained

by differentiating Equations (6) and (7) with respect to the

control variables u and is expressed as:

ẋu(t) = fx(t)xu(t) + fy(t)yu(t) + fu(t)

0 = gx(t)xu(t) + gy(t)yu(t) + gu(t)

The trajectory sensitivity can be solved numerically. An

efficient methodology is presented in [14] for the compu-

tation of trajectory sensitivities for a system represented by

DAE equations. When time domain simulation of a power
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system is based on trapezoidal numerical integration, the

calculation of trajectory sensitivity requires solving a set of

linear equations, thus costing a little time. In our work, we

extended the Power System Analysis Tool [15] (a MATLAB

based tool) to do trajectory sensitivity calculation and the

MPC optimization.

C. Voltage stability margin sensitivity

Consider a system with DAE model

ẋ = f(x, y, u, λ)

0 = g(x, y, u, λ)

where x represents a vector of state variables, y represents a

set of algebraic variables, u is a vector of control variables

and λ is a parameter.

Let r(λ) ∈ ℜN×1 be a vector of variables which are

parameterized by λ and a change in which (due to a change

in λ) affects the system stability. (For the power system

application, this will consist of load and generation power.)

The lth component of r(λ) is denoted as rl(λ) which

increases linearly with λ as:

rl(λ) = (1 + Klλ)rl(0)

Here, Kl is a constant and rl(0) represents the base case

value of the lth component of r(λ).
If λ increases slowly and continuously, a bifurcation point

is reached beyond which the system loses stability. Let λ∗

be the value of λ at this point, then this implies that

0 = f(x, y, u, λ), 0 = g(x, y, u, λ)

has no solution when λ > λ∗. The stability margin is defined

as

SM =
l=L∑

l=1

(rl(λ
∗) − rl(0)) = λ∗

l=L∑

l=1

Klrl(0)

The rate change of stability margin with respect to the control

variable u is known as the margin sensitivity with respect to

u

SMu =
∂SM

∂u
=

∂λ∗

∂u

l=L∑

l=1

Klrl(0)

[16] presented a detailed derivation of the sensitivity calcu-

lation.

III. PROBLEM FORMULATION AND IMPLEMENTATION

A. Problem formulation

The purpose of this work is to determine an optimal

capacitor switching sequence and amounts given their loca-

tions and capacities to satisfy the requirements of voltage

performance and voltage stability margin. Detect whether

a certain pre-identified contingency has occurred (Note the

approach can also work for contingencies that are not nec-

essarily pre-identified, as long as they can be detected in

real-time.). If the system performance is not satisfactory,

for instance, voltages are out of the their limits or voltage

collapse happens, an optimal control strategy is identified

based on a decreasing horizon MPC algorithm consisting of

the amount and sequence of shunt capacitor switching. This

control strategy not only stabilizes system voltages within

acceptable ranges following the contingency, but also ensures

a desired voltage stability margin. The control changes only

at the sampling instants. Let Tp be the prediction horizon, Tc

be the control horizon, Ts be the control sampling interval,

and N = Tc

Ts
be the total number of control steps. The

procedure to determine the control strategy at time tk based

on MPC is as follows:

(1) At time tk (i.e. the (k + 1)th sampling instant), an

estimate of the current state x(tk) is obtained. The

nominal power system evolves according to Equations

(6) and (7). Here, u = {B0
m +

∑k−1
i=0 ∆Bi

m1}
m=M
m=1 is

the control variable (i.e. amounts of shunt capacitors

currently in use). B0
m is the amounts of shunt capacitors

that exist at time 0.
∑k−1

i=0 ∆Bi
m1 is the amounts of

shunt capacitors that were added over time [0, tk −Ts].
Time domain simulation is used to obtain the trajectory

of the nominal system (6) and (7), starting from the

state x(tk) at time tk to the end of prediction horizon

tk + Tp. At the same time, the trajectory sensitivity of

bus voltages with respect to the shunt capacitors to be

added at instants tk + (n − 1)Ts, n = 1 . . . N − k is

obtained and denoted as V
kj
Bmn

(t) (see below for the

explanation of notation).

Also the sensitivity of voltage stability margin with

respect to shunt capacitor at location m is calculated

based on a continuation power flow program. It is

expressed as SMk
Bm

in the optimization.

(2) At time tk, solve the optimization problem over the

prediction horizon [tk, tk + Tp] and a control horizon

[tk, tk +(N−k)Ts] as stated in (10)-(15). The objective

of optimization is to minimize a weighted sum of

the cumulative voltage deviations and the cumulative

cost of capacitive controls as shown in Equation (10).

Equation (11) constraints the amount of control m

to be added at time tk + (n − 1)Ts. Equation (12)

constraints the total amount of control m to be added

over [tk, tk +(N − k)Ts]. Equation (13) constraints the

voltage fluctuation at time t ∈ [tk, tk + Tp]. Equation

(15) constraints the voltage stability margin.

Minimize (with respect to ∆Bk
mn)

∫ tk+Tp

tk

(V̂ k(t) − Vref )′R(V̂ k(t) − Vref )dt

+
∑

mn

Wmn∆Bk
mn (10)

Subject to

∆Bmin
m ≤ ∆Bk

mn ≤ ∆Bmax
m (11)

Bmin
m ≤ B0

m +
k−1∑

i=0

∆Bi
m1 +

N−k∑

n=1

∆Bk
mn

≤ Bmax
m (12)
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V
kj
min(t) ≤ V kj(t) +

M∑

m=1

N−k∑

n=1

V
kj
Bmn

(t)∆Bk
mn

≤ V kj
max(t) (13)

SMk−1 +
M∑

m=1

SMk
Bm

(
N−k∑

n=1

∆Bk
mn) ≥ SMD (14)

∆Bk
mn ≥ 0 (15)

Here,

– R is the weighting matrix. V̂ k(t) is the voltage

vector at time t ∈ [tk, tk + TP ] as predicted at the

sampling instant tk.

– Wmn is the weight for the cost of control m to be

added at time tk + (n − 1)Ts.

– M is the total number of control variables, i.e. the

number of shunt capacitor locations.

– N is the total number of control steps.

– ∆Bk
mn is the amount of control m to be added at

time tk + (n − 1)Ts in iteration k.

– ∆Bmin
m ∈ ℜ is the minimum amount of control m

to be added at any step, typically 0.

– ∆Bmax
m ∈ ℜ is the maximum amount of control

m to be added at any step.

– ∆Bi
m1 is the amount of control m implemented at

the control sampling point ti, i = 0, ...k − 1.

– Bmin
m ∈ ℜ is the minimum amount of control m

that must be used, typically 0.

– Bmax
m ∈ ℜ is the maximum available amount of

control m.

– V kj(t) ∈ ℜ is the voltage of bus j at time t(tk ≤
t ≤ tk + Tp) of the nominal system at time tk.

– V
kj
min(t) is the minimum voltage at bus j desired

at time tk ≤ t ≤ tk + Tp.

– V kj
max(t) is the maximum voltage at bus j desired

at time tk ≤ t ≤ tk + Tp.

– V
kj
Bmn

(t) is the trajectory sensitivity of voltage at

bus j at time tk ≤ t ≤ tk + Tp with respect to

control m added at time tk + (n − 1)Ts.

– SMk−1 is the voltage stability margin at time tk −
Ts.

– SMk
Bm

is the stability margin sensitivity with re-

spect to capacitor m at time tk.

– SMD is the desirable stability margin for the

system.

(3) At time tk, a solution of the optimization problem

(10)-(15) computes a sequence of controls ∆Bk
mn. Add

only the first control ∆Bk
m1 at time tk and observe

or estimate the system state x(tk+1) at time tk+1 =
tk + Ts.

(4) Increase k to k + 1 and repeat steps (1)-(3) until the

k = N − 1.

B. Implementation

The functional structure of implementing the MPC based

coordinated voltage control is shown in Figure 2. Line flow,

bus voltage information, switch status as well as phase

measurement unit (PMU) measurements are sent to a control

center through communication channels of a SCADA system.

These measurements plus a network model are used by

the state estimator (SE) for filtering out the noise and

making best use of the measured data. The results from

the state estimator are used for power flow analysis. A

power flow solution is then used by an on-line dynamic

security assessment program to initialize the state variables

of the dynamic models. Further, it uses system models and

disturbance information to perform the contingency analysis

to evaluate the security margins of the power system. If

a contingency is identified where the system will becomes

unstable, the MPC based voltage control computation will get

triggered at the time an identified critical contingency occurs.

The steps of the MPC computation in the kth iteration

include:

• Estimate static variables such as voltage magnitudes and

angles at time tk as well as the dynamic variables x(tk)
such as generator angles, velocities and real and reactive

load recovery.

• Run time-domain simulation to compute the system

trajectory given the current state. This step also requires

the knowledge of a complete system model (including

both dynamic and static components).

• Obtain trajectory sensitivities of voltage with respect

to the control variables and the sensitivities of voltage

stability margin with respect to the control variables.

• Solve the quadratic programming optimization problem

and implement the first step of the control.

• Repeat the above steps at each sampling point until the

end of control horizon.

PMU 
measurements

Power and switch 
measurement

State estimator

Power flow 
analysis System model 

Disturbance 
Recorder

On-line dynamic 
security program

System 
secure?

MPC based voltage 
controller

Disturbance 
happens?

End
Yes

No

Yes

No

Control signal to 
power system

Fig. 2. Structure of implementing a MPC based Voltage stabilization

Remark: While we have suggested an on-line computation

of MPC based voltage stabilization control, it is also possible

to do the computation off-line based on the predicted (rather

estimated) values of the states and trajectory sensitivities.
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IV. APPLICATION TO NEW ENGLAND SYSTEMS

The proposed voltage stabilization control method is illus-

trated by applying to the New England 39-bus system. The

desired voltage stability margin is chosen to be 35%. The

exponential recovery load model is used in both cases. The

parameters of the load model are chosen as following:

TP = TQ = 30, αs = 0, αt = 1, βs = 0, βt = 4.5.

The parameters in MPC optimization are determined based

on the following considerations. Any voltage instability

following a contingency must be stabilized in a certain time

duration (typically the time in which voltage will decrease by

15%). This is the prediction horizon Tp. The control should

be exercised on a time horizon Tc, which is shorter than the

prediction horizon, typically the time in which voltage will

decrease by 10% (if no control is applied). A discrete-time

control must be applied within this duration Tc at a sample-

rate high enough to adequately react to the changing voltage

trajectory, as well as to allow accurate enough predictions

of the voltage trajectory based on the linearization of the

trajectory-sensitivity. This dictates the sampling duration Ts.

The number of sampling point N is then determined as the

ratio of Tc and the sampling duration Ts.

A. New England 10-generator 39-bus test system

1) System description: Fig. 3 shows the New England 10-

generator 39-bus system. A fourth-order generator model is

used with the exception that a third-order model is used for

the generator at bus 39. In addition, all generators excluding

those at buses 34, 37 have automatic voltage regulators

(AVRs), which are represented by fourth-order models. The

loads are represented by the exponential recovery dynamic

models. The control variables are the shunt capacitors at

buses 16, 17, 19, 21 and 24. Under normal conditions, none

of the shunt capacitors are in use.
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Fig. 3. New England 10-generator 35-bus test system

2) Fault scenario: The contingency considered here is a

three-phase-to-ground fault at bus 21 at t = 1.0 second,

which is cleared at t = 1.02 second by tripping of the

transmission line between buses 21 and 22. Bus voltages

drop dramatically when the fault occurs as shown in Fig.

4. After the fault is cleared at 1.02 second, the voltages

recover around 0.95 p.u, although some oscillations follow.

About 20 seconds later, the oscillations are damped out,

but the voltages start to decline slowly because of the

exponential recovery of the loads. Around 2 minutes later, the

voltages collapse. According to a continuation power-flow

based analysis, the post-fault power system has a voltage

stability margin of 32.4%. However as can be seen from

simulation (which considers the dynamic evolution), the sys-

tem is unable to reach the associated post-fault equilibrium

point. This illustrates the limitation of the control design

based on a purely static analysis. Through our MPC based

approach (which incorporates the dynamic analysis) we are

able to ensure that the post-fault system has a desired voltage

stability margin of 35%, and the system is able to reach the

associated post-fault equilibrium point.
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Fig. 4. New England system voltage behavior without MPC control

3) Simulation result: In this example, we have chosen

prediction horizon Tp to be 130 seconds (the time in which

voltage drops by nearly 15% at bus 20). Tc has been chosen

to be 120 seconds. We found that a sample duration of Ts =

20 seconds works well for this example, and so we have

the number of control steps: N = Tc

Ts
= 120

20 = 6. An

optimal control strategy that stabilizes voltage and ensures

the security of post-transient power system is found based

on the algorithm introduced in Section III. The final control

strategy is indicated in Table I. Fig. 5 shows the voltage

response with the security constrained control strategy. The

post-fault power system has a voltage stability margin of

35.0%, which is the required value.
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Time(second) 1.2 21.2 41.2 61.2 81.2 101.2

Capacitor at bus 16 (p.u.) 0 0.2 0.2 0 0.025 0.1

Capacitor at bus 17 (p.u.) 0.2 0 0 0 0.025 0

Capacitor at bus 19 (p.u.) 0 0.1919 0.0556 0 0.2 0

Capacitor at bus 21 (p.u.) 0.2 0.0200 0 0.2 0.025 0

Capacitor at bus 24(p.u.) 0.0333 0.2 0.15 0.1 0.025 0.2

TABLE I

CONTROL STRATEGY FOR NEW ENGLAND SYSTEM
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Fig. 5. New England voltage behavior with security constrained MPC
control

V. CONCLUSION

This paper proposes a model predictive control design

scheme to restore voltage following a contingency and to

maintain a pre-specified amount of post-transient voltage

stability margin. The distinguishing contribution of our MPC

formulation is as follows:

• The proposed MPC approach involves a dynamic anal-

ysis for the computation of a desired control. This is

important since as the 39-bus New England system

example considered in section IV.B illustrates, a de-

sign based on a purely static (power flow) analysis is

inadequate.

• The control strategy not only prevents voltage instabil-

ity, but also maintains a desired amount of post-transient

voltage stability margin. Voltage stability margin sen-

sitivities are used to characterize the effect of control

variables on stability margin enhancement. Prior works

involving dynamic analysis for voltage stabilization did

not include voltage stability margin as part of the control

objective.

• Use of trajectory sensitivities for determining the effect

of control on voltage, which is a more accurate way

of determining the effectiveness of control (as opposed

to the less accurate linerarization around an operating

point or more time-consuming computations based on

time-domain simulations).

• A decreasing horizon MPC is used. The control horizon

decreases from one iteration to the next. This modifi-

cation not only reduces the computation time, but also

helps the convergence of the optimization process. This

feature of MPC has not been explored in prior works

on stabilization of power systems.

• Optimization performed at each step involves a

quadratic cost function together with linear constraints,

which makes the formulation scalable to large-sized

practical systems. This is evident by the application to

the 39-bus New England system.

• The iterative optimization process helps ensure that

errors introduced by sensitivities based computation and

model inaccuracies are minimized.
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