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Abstract— In [1], Sinopoli et al. analyzed the problem of
optimal estimation for linear Gaussian systems where packets
containing observations are dropped according to an i.i.d.
Bernoulli process, modeling a memoryless erasure channel. In
this case the authors showed that the Kalman Filter is still the
optimal estimator, although boundedness of the error depends
directly upon the channel arrival probability, p. In particular
they also proved the existence of a critical value, pc, for such
probability, below which the Kalman filter will diverge. The
authors were not able to compute the actual value of this critical
probability for general linear systems, but provided upper and
lower bounds. They were able to show that for special cases, i.e.
C invertible, such critical value coincides with the lower bound.
This paper computes the value of the critical arrival probability,
under minimally restrictive conditions on the matrices A and
C. This paper also gives an example to illustrate that the lower
bound is not always tight.

I. INTRODUCTION

A large wealth of applications demand wireless communi-
cation among small embedded devices. Wireless Sensor Net-
work (WSN) technology provides the architectural paradigm
to implement systems with a high degree of temporal and
spatial granularity. Applications of sensor networks are be-
coming ubiquitous, ranging from environmental monitoring
and control to building automation, surveillance and many
others. Given their low power nature and the requirement
of long lasting deployment, communication between devices
is power constrained and therefore limited in range and
reliability. Changes in the environment, such as the simple
relocation of a large metal object in a room or the presence
of people, will inevitably affect the propagation properties
of the wireless medium. Channels will be time-varying
and unreliable. Spurred by this consideration, our effort
concentrates on the design and analysis of estimation and
control algorithms over unreliable networks. A substantial
body of literature has been devoted to such issues in the
past few years. In this paper we want to revisit the paper of
Sinopoli et al. [1]. In that paper, the authors analyzed the
problem of optimal state estimation for discrete-time linear
Gaussian systems, under the assumption that observations
are sent to the estimator via a memoryless erasure channel.
This implies the existence of a non-unitary arrival probability
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associated with each packet. Consequently some observations
will inevitably be lost. In this case although the Kalman
Filter is still the optimal estimator, the boundedness of its
error depends on the arrival probabilities of the observation
packets. In particular the authors proved the existence of a
critical arrival value pc, below which the Kalman filter will
diverge. The authors were not able to compute the actual
value of this critical probability for general linear systems,
but provided upper and lower bounds. They were able to
show that for special cases such critical value coincides with
the lower bound.

A fair amount of research effort has been made toward
finding the critical value. In [1], the author proved that the
critical value coincides with the lower bound in a special
case when the system observation matrix C is invertible. The
condition was further weakened by Plarre and Bullo [2] to
C only invertible on the observable subspace. Other schemes
were also considered. In [3], the authors introduced smart
sensors, which send the local Kalman estimation instead of
raw observation. In [4], a similar scenario was discussed
where the sensor sends a linear combination of the current
and previous measurement. A Markovian packet dropping
model was introduced in [5] and a stability criterion was
given.

However, in all the above work, the critical value was
derived under the condition that C is either invertible or
invertible on the observable subspace and the critical value
always coincides with the lower bound. In this paper, we
characterize the critical value under more general conditions
showing that it meets the lower bound in most cases. We
also provide an example where the lower bound is not tight.

The paper is organized in the following manner. Section II
states the problem; Section III derives the critical value under
restrictive assumptions on the system structure; Section IV
relaxes these assumptions to take into account a larger class
of systems. Section V gives an example to show that in
general the critical value is not the lower bound. Finally
Section VI concludes the paper.

II. PROBLEM FORMULATION

Consider the following linear system

xk+1 = Axk + wk,

yk = Cxk + vk,
(1)

where xk ∈ Rn is the state vector, yk ∈ Rm is the output
vector, wk ∈ Rn and vk ∈ Rm are Gaussian random vectors
with zero mean and covariance matrices Q > 0 and R >
0, respectively. Assume that the initial state, x0 is also a
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Gaussian vector of mean Ex0 and covariance matrix Σ0 > 0.
Let wi, vi, x0 be mutually independent. Note that we assume
the covariance matrices of wi, vi, x0 to be strictly positive
definite. Define |λ1| ≥ |λ2| ≥ · · · ≥ |λn| as the eigenvalues
of A.

Consider the case where observations are sent to the esti-
mator via a memoryless erasure channel, i.e. where the arrival
of the observations is modeled by a Bernoulli independent
process γk. According to this model, the measurement yk

sent at time k reaches its destination if γk = 1; it is
lost otherwise. Let γk be independent of wk, vk, x0, i.e. the
communication channel is independent of both process and
measurement noises and let P (γk = 1) = p.

The Kalman Filter equations for this system were derived
in [1] and take the following form:

x̂k|k = x̂k|k−1 + γkKk(yk − Cx̂k|k−1),
Pk|k = Pk|k−1 − γkKkCPk|k−1,

where

x̂k+1|k = Ax̂k|k, Pk+1|k = APk|kAT + Q,

Kk = Pk|k−1C
T (CPk|k−1C

T + R)−1,

x̂0|−1 = Ex0, P0|−1 = Σ0.

In the hope to improve the legibility of the paper we will
slightly abuse the notation, by substituting Pk|k−1 with
Pk. The equation for the error covariance of the one-step
predictor is the following:

Pk+1 = APkAT +Q− γkAPkCT (CPkCT +R)−1CPkAT .
(2)

If γks are i.i.d. Bernoulli random variables, the following
theorem holds [1]:

Theorem 1: If (A,Q
1
2 ) is controllable, (A,C) is de-

tectable, and A is unstable, then there exists a pc ∈ [0, 1)
such that 1 2

lim
t→∞

EPk = +∞ for 0 ≤ p ≤ pc and ∃P0 ≥ 0 (3)

EPk ≤ MP0 ∀t for pc < p ≤ 1 and ∀P0 ≥ 0, (4)

where MP0 > 0 depends on the initial condition P0 ≥ 0.
For simplicity, we will say that EPk is unbounded if

limt→∞EPk = +∞ or EPk is bounded if there exists a
uniform bound independent of k.

It is also quite simple to prove the following theorem.
Theorem 2: If R, Σ0, Q > 0, then the critical value of a

system is a function of just A,C, which is independent of
R,Q, Σ0.

Proof: Since R, Σ0, Q > 0, we can find uniform upper
and lower bounds α, β > 0, such that αIm ≤ R ≤ βIm,
αIn ≤ Σ0 ≤ βIn and αIn ≤ Q ≤ βIn. Let Pk, P k, P k, P ∗k
be the error covariance matrices of systems (A, C,R, Σ0, Q),

1We use the notation limt→∞Ak = +∞ when the sequence Ak ≥ 0
is not bounded; i.e., there is no matrix M ≥ 0 such that Ak ≤ M, ∀t.

2Note that all the comparisons between matrices in this paper are in the
sense of positive definite if without further notice

(A,C, αIm, αIn, αIn), (A,C, βIm, βIn, βIn) and
(A,C, Im, In, In) at time k respectively3. Since
Pk+1 = APkAT + Q− γkAPkCT (CPkCT + R)−1CPkAT

is monotonically increasing with respect to R, Q,Pk, we
know that

P k ≤ Pk ≤ P k. (5)

Since the initial condition satisfies P 0 = αIn = αP ∗0 , and if
P k = αP ∗k , then

AP kAT + αIn − γkAP kCT (CP kCT + αIm)−1CP kAT

= α[AP ∗k AT + In − γkAP ∗KCT (CP ∗k CT + Im)−1CP ∗k AT ]
= P k+1 = αP ∗k+1.

Thus, by induction we can conclude that P k = αP ∗k and
P k = βP ∗k ,∀k. By inequality (5), αP ∗k ≤ Pk ≤ βP ∗k , which
shows that EPk is bounded if and only if EP ∗k is bounded.
Thus, we have proved that the critical value is independent
of R,Q, Σ0 if they are all positive definite.

Since we have already assumed that R, Q,Σ0 are strictly
positive definite, by Theorem 2, we can let R = Im, Q =
In, Σ0 = In for convenience.

III. CRITICAL VALUE UNDER RESTRICTIVE CONDITIONS

In this section we will show that

pc = 1− 1
|λ1|2 , (6)

if the system of equations (1) satisfies the following condi-
tions:

1) (C, A) is detectable,
2) |λ1| > |λ2| > · · · > |λn| > 1.

In Section IV we will be able to relax these conditions to
include a wider class of systems. Since all the eigenvalues
of A are different, without loss of generality, we will restrict
our analysis to systems with diagonal A. Also by Theorem 2,
we will assume that R = Im, Q = Σ0 = In.

A. Equivalent Conditions for Boundedness
This subsection is devoted to the derivation of equivalent

conditions for boundedness of the Kalman Estimation. We
will use the fact that the Kalman filter is the optimal unbiased
filter for (1).

First consider the case where no packets are lost. We can
write the estimation problem in the following form:



yk

...
y1

Ex0


 =




CA−1

...
CA−k

A−k−1


 xk+1 +




vk

...
v1

Ex0 − x0




−




CA−1 · · · 0 0
...

. . .
...

...
CA−k · · · CA−1 0
A−k−1 · · · A−2 A−1







wk

...
w1

w0


 .

(7)

3Pk, P k, P k, P ∗k are random matrices which depend on the random
variables γ0, . . . , γk−1
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Let us define the following quantities:

Fk ,




A−1 · · · 0 0
...

. . .
...

...
A−k · · · A−1 0

A−k−1 · · · A−2 A−1




∈ Rn(k+1)×n(k+1),

(8)

Gk , diag(C,C, . . . , C︸ ︷︷ ︸
k

, I) ∈ R(n+mk)×n(k+1), (9)

ek , −GkFk




wk

...
w1

w0


 +




vk

...
v1

Ex0 − x0


 ∈ R

n+mk, (10)

Tk ,




CA−1

...
CA−k

A−k−1


 ∈ R

(n+mk)×n, (11)

Yk ,




yk

...
y1

Ex0


 ∈ R

n+mk. (12)

Equation (7) can be written in a more compact form as

Yk = Tkxk+1 + ek. (13)

When the observation packets travel through a lossy net-
work, equation (7) will be modified in the following way:




γkyk

...
γ1y1

Ex0


 =




γkCA−1

...
γ1CA−k

A−k−1


 xk+1 +




γkvk

...
γ1v1

Ex0 − x0




−




γkCA−1 · · · 0 0
...

. . .
...

...
γ1CA−k · · · γ1CA−1 0
A−k−1 · · · A−2 A−1







wk

...
w1

w0


 .

(14)

The rows where γis are zero can be deleted, since they do
not contribute any information to improve the estimate of
xk+1.

Define Γk as the matrix of all non zero rows of
diag(γkIm, . . . , γ1Im, In). Thus Γk is (m

∑k
i=1 γi + n) by

(n + mk) matrix. Also define

Ỹk , ΓkYk, G̃k , ΓkGk, T̃k , G̃kFk, ẽk , Γkek.

Ỹk, T̃k, ẽk are now stochastic matrices as they are functions
of γk, γk−1, . . . , γ1.

We can rewrite (13) as

Ỹk = T̃kxk+1 + ẽk. (15)

We are now ready to prove the following theorem to bound
the error covariance of the Kalman filter.

Theorem 3: The error covariance matrix of the Kalman
Filter is bounded by

α(T̃T
k T̃k)−1 ≤ Pk+1 ≤ α(T̃T

k T̃k)−1, (16)

where α, α ∈ R are constant and independent of both γi and
k.

Before we can prove this theorem, we need the following
lemmas.

Lemma 1: If A is invertible, then the Kalman filter satis-
fies the following equation:

Pk+1 = (T̃T
k Cov(ẽk|Γk)−1T̃k)−1. (17)

Due to space constraints, we refer the interested readers
to [6].

Lemma 2: If A = diag(λ1, λ2, · · · , λn), where |λ1| ≥
|λ2| ≥ · · · ≥ |λn| > 1, then FkFT

k is bounded by

1
(|λ1|+ 1)2

In(k+1) ≤ FkFT
k ≤ 1

(|λn| − 1)2
In(k+1), (18)

where Fk is defined in (8).
Proof: Notice that

F−1
k =




A

−I
. . .
. . . A

−I A




.

Therefore,

(FkFT
k )−1 =




AAT + I −A

−AT . . . . . .
. . . AAT + I −A

−AT AAT




.

By Gershgorin’s Circle Theorem [7], we know that all the
eigenvalues of (FkFT

k )−1 are located inside one of the
following circles:|ζ − |λi|2 − 1| = |λi|, |ζ − |λi|2 − 1| =
2|λi|, |ζ − |λi|2| = |λi|, where ζs are the eigenvalues of
(FkFT

k )−1.
Since |λ1| ≥ |λ2| ≥ · · · ≥ |λn| > 1, we know that for

each eigenvalue of (FkFT
k )−1 the following holds:

ζ ≥ min{|λi|2+1−|λi|, |λi|2+1−2|λi|, |λi|2−|λi|}, (19)

and

ζ ≤ max{|λi|2+1+|λi|, |λi|2+1+2|λi|, |λi|2+|λi|}. (20)

Thus, (|λn| − 1)2 ≤ ζ ≤ (|λ1|+ 1)2, which in turn gives

1
(|λ1|+ 1)2

In(k+1) ≤ FkFT
k ≤ 1

(|λn| − 1)2
In(k+1).

We are now ready to prove Theorem 3.
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Proof: Since wi, vj , x0 are mutually independent,

Cov(ek) =

Cov(GkFk[wk, . . . , w0]T ) + Cov([vk, . . . , v1, x0]T )

= GkFkdiag(Q,Q, . . . , Q)FT
k GT

k + diag(R, R, . . . , R, Σ0).

Since we assume that Q = Im, R = In,Σ0 = In, it is
easy to show that:

GkFkFT
k GT

k + In+mk ≤ Cov(ek)

= GkFkdiag(Q,Q, . . ., Q)FT
k GT

k + diag(R,R, . . . , R, Σ0)

≤ GkFkFT
k GT

k + In+mk.

Using Lemma 2,

GkFkFT
k GT

k + In+mk ≤ 1
(|λn| − 1)2

GkGT
k + In+mk,

and

GkFkFT
k GT

k + In+mk ≥ 1
(|λ1|+ 1)2

GkGT
k + In+mk.

Since GkGT
k = diag(CCT , . . . , CCT , In), we define nG ,

min(λmin(CCT ), 1) and nG , max(λmax(CCT ), 1). We
know that nGIn+mk ≤ GkGT

k ≤ nGIn+mk, which gives

αΓkΓT
k ≤ Cov(ẽk|Γk) = ΓkCov(ek)ΓT

k ≤ αΓkΓT
k ,

where α = nG

(|λ1|+1)2 + 1, α = nG

(|λn|−1)2 + 1. Notice that
ΓkΓT

k = I . Therefore,

αI ≤ Cov(ẽk|Γk) ≤ αI.

The above bound is independent of k and γi, which proves

α(T̃T
k T̃k)−1 ≤ Pk+1 = (T̃T

k Cov(ẽk|Γk)−1T̃k)−1

≤ α(T̃T
k T̃k)−1.

B. Derivation of the Critical Value
In this subsection we will derive the actual critical value

for systems satisfying the assumptions mentioned before
on A,C. We will first find a uniform upper bound for
E(T̃T

k T̃k)−1.
Theorem 4: If E(

∑∞
i=1 µiA

−iT CT CA−i)−1 exists, then
the following inequality holds:

E(T̃T
k T̃k)−1 ≤ βE(

∞∑

i=1

µiA
−iT CT CA−i)−1, (21)

where µis are i.i.d. Bernoulli random variables with the same
distribution as γis, and β is a constant.

Proof: Rewrite T̃T
k T̃k as

T̃T
k T̃k =

k∑

i=1

γk+1−iA
−iT CT CA−i + A−(k+1)T A−(k+1).

We know that T̃T
k T̃k will have the same distribution

as
∑k

i=1 µiA
−iT CT CA−i + A−(k+1)T A−(k+1) , because

µ1, . . . , µk have the same distribution as γk, . . . , γ1.

Since all the eigenvalues of A are unstable,∑∞
i=0 A−iT CT CA−i ≤ αI , where α > 0 is a constant.

Thus

A−(k+1)T A−(k+1)

≥ A−(k+1)T

(
α−1

∞∑

i=0

A−iT CT CA−i

)
A−(k+1)

= α−1
∞∑

i=k+1

A−iT CT CA−i ≥ α−1
∞∑

i=k+1

µiA
−iT CT CA−i.

Also,
k∑

i=1

µiA
−iT CT CA−i + A−(k+1)T A−(k+1)

≥
k∑

i=1

µiA
−iT CT CA−i + α−1

∞∑

i=k+1

µiA
−iT CT CA−i

≥ min(1, α−1)
∞∑

i=1

µiA
−iT CT CA−i,

and

E(T̃T
k T̃k)−1 ≤ max(1, α)E(

∞∑

i=1

µiA
−iT CT CA−i)−1

for all k, which proves the inequality (21).
The upper bound for E(T̃T

k T̃k)−1 we derived is an ex-
pectation of an infinite sum. In the following part we will
use only n terms of the infinite summ. We will show that
by careful choice of these n terms, we can derive an upper
bound of EPk whose critical arrival possibility meets the
lower bound in [1].

Lemma 3: Define ∆i1 = i1 and ∆ij = ij − ij−1, j =
2, 3, . . . , n. If |λ1| > |λ2| > · · · > |λn| and li,i = 1, i =
1, . . . , n, then the determinant

D ,

∣∣∣∣∣∣∣∣∣

l1,1λ
−i1
1 l1,2λ

−i2
1 · · · l1,nλ−in

1

l2,1λ
−i1
2 l2,2λ

−i2
2 · · · l2,nλ−in

2
...

...
. . .

...
ln,1λ

−i1
n ln,2λ

−i2
n · · · ln,nλ−in

n

∣∣∣∣∣∣∣∣∣

is asymptotic to
∏n

k=1 λ−ik

k , i.e.

lim
∆i1,∆i2,...,∆in→∞

D∏n
k=1 λ−ik

k

= 1 (22)

Proof: The determinant is the summation of n! terms.
It is easy to compute the limit for each term and find that
(22) holds. For a more rigorous proof please refer to [6].

We are now ready to establish the main result.
Theorem 5: The critical value of the arrival probability for

system (1) is

pc = 1− 1
|λ1|2 ,

if the system satisfies the following properties:
1) (C, A) is detectable.
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2) |λ1| > |λ2| > · · · > |λn| > 1.
If the arrival probability p > pc, then for all initial conditions,
EPk will be bounded for all k. Else if p < pc, for some initial
conditions, EPk is unbounded.

Proof: Since A is a diagonal matrix with all unstable
eigenvalues and (C,A) is detectable, we know that for each
column of C, there exists at least one element which is not
zero. Thus, there exist row vectors L1, L2, · · · , Ln, such that
LiC = [li,1, . . . , li,n] is a row vector with li,i = 1. For
example, if

C =
[

2 0 1
1 1 1

]

we could then choose L1 = [0.5, 0], L2 = [0, 1], L3 = [1, 0].
Also define matrix

U ,




l1,1λ
−i1
1 l1,2λ

−i1
2 · · · l1,nλ−i1

n

l2,1λ
−i2
1 l2,2λ

−i2
2 · · · l2,nλ−i2

n
...

...
. . .

...
ln,1λ

−in
1 ln,2λ

−in
2 · · · ln,nλ−in

n


 . (23)

By Lemma 3, we know that

lim
∆i1,∆i2,...,∆in→∞

det(U)∏n
k=1 λ−ik

k

= 1.

Thus, there exists ξi > 0, such that if ∆ij ≥ ξj , j =
1, 2, . . . , n, then |det(U)| ≥ 0.5|∏n

k=1 λ−ik

k | > 0. Define
the stopping time i1 , inf{i ≥ ξ1|µi = 1} and ij , inf{i ≥
ξj + ij−1|µi = 1}, j = 2, 3, . . . , n. Basically ij is the index
of the first occurrence of µi = 1 after ij−1 + ξi.

From the definition of ij , it is easy to show that:
∞∑

i=1

µiA
−iT CT CA−i ≥

n∑

j=1

A−ijT CT CA−ij . (24)

Define nl , max(λmax(LT
1 L1), . . . , λmax(LT

nLn)).
Thus, LT

i Li ≤ nlIm, and
n∑

j=1

A−ijT CT CA−ij ≥
n∑

j=1

1
nl

A−ijT CT LT
j LjCA−ij

=
1
nl

[
A−i1T CT LT

1 · · · A−inT CT LT
1

]



L1CA−i1

...
LnCA−in




=
1
nl

UT U.

Define O , U−1. We know that
( ∞∑

i=1

µiA
−iT CT CA−i

)−1

≤ nlOOT , (25)

which implies that if E(OOT ) is bounded, then EPk is
bounded. We also know that

trace(OOT ) =
∑

i,j

Oi,j(OT )j,i =
∑

i,j

O2
i,j .

Since the boundedness of a positive semidefinite matrix is
equivalent to the boundedness of the trace, we only need to
check whether E(

∑
i,j O2

i,j) is bounded.
Now by using Lemma 3, we can compute the cofactor

matrix of U and hence O = U−1. Define the minor Mi,j of
U as the (n− 1)× (n− 1) matrix that results from deleting
row i and column j. Thus

Oi,j =
(−1)i+j det(Mj,i)

det(U)
.

From the definition of the random variable ij , we know that
∆ij ≥ ξi, which shows that | det(U)| ≥ 0.5

∏n
k=1 |λ−ik

k |.
And since Mi,j has the same structure as U , it is easy to
show that |Mi,j | is always bounded by |ρi,j |

∏n
k=2 |λ−ik−1

k |,
where ρi,j is a constant.

Thus,

|Oi,j |2 ≤ |2ρi,j

∏n
k=2 λ

−ik−1
k∏n

k=1 λ−ik

k

|2 = 4ρ2
i,j |

n∏

k=1

λ2∆ik

k |. (26)

Therefore, E[
∑

i,j O2
i,j ] is bounded if E

∏n
k=1 |λ2∆ik

k | is
bounded. From the definition of random variable ij , we know
that ∆ijs are independent of each other. Also

P (µij−1+ξj = 0, . . . , µij−1+ξj+k−1 = 0, µij−1+ξj+k = 1)

= P (∆ij = k) = (1− p)k−ξj−1p, k ≥ ξi.

Now we can compute the expectation

E

n∏

j=1

|λ2∆ij

j | =
n∏

j=1

E|λj |2∆ij =
n∏

j=1

∞∑

k=ξj

|λj |2kP (∆ij = k)

=
n∏

j=1

∞∑

k=ξj

|λj |2k(1− p)k−ξj−1p,

which is bounded if and only if

|λj |2(1− p) < 1, j = 1, 2, . . . , n

Since the boundedness of E
∏n

k=1 |λ2∆ik

k | implies the bound-
edness of E(T̃T

k T̃k)−1, we immediately know that the upper
bound for the critical value is 1 − |λ1|−2. Combining such
bound with the lower bound given in [1], we complete the
proof.

IV. BOUNDEDNESS UNDER WEAKER CONDITIONS

In this section we give a theorem to show that the result
in Section IV holds even if A has stable eigenvalues. Due to
space constrains, we have to omit the proof. Please refer to
[6] for the proof.

Theorem 6: For systems satisfying:
1) (C, A) detectable,
2) |λ1| > |λ2| > · · · > |λi| ≥ 1 > |λi+1| ≥ · · · ≥ |λn| ,
3) A can be diagonalized,

the critical value of the system is 1− |λ1|−2.
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V. EXAMPLE

In this section we want to give an example to show that,
if some unstable eigenvalues of A have the same absolute
value, then in general the critical value is not 1− |λ1|−2.

Consider the following system:

xk+1 =
[

2 0
0 −2

]
xk + wk

yk =
[

1 1
]
xk + vk.

(27)

By Theorem 3, we know that the Kalman Estimation Error
will be bounded if and only if E(T̃T

k T̃k)−1 is bounded. We
can rewrite T̃T

k T̃k as

T̃T
k T̃k =

k∑

i=1

γk+1−i4−i

[
1 (−1)i

(−1)i 1

]
+ 4−(k+1)I2

=
[

α + β + δ β − α
β − α α + β + δ

]
,

where δ = 4−(k+1), α = 4
∑dk/2e

j=1 γk+2−2j16−j , β =∑bk/2c
j=1 γk+1−2j16−j , with dxe = inf{z ∈ Z|z ≥ x} and

bxc = sup{z ∈ Z|z ≤ x}.
It is easy to see that

tr(T̃T
k T̃k) = 2(α + β + δ)

det(T̃T
k T̃k) = 4αβ + 2(α + β)δ + δ2,

Since the boundedness of a positive definite matrix is
equivalent to the boundedness of its trace, we can just study
the trace.

tr[(T̃T
k T̃k)−1] = σ−1

1 + σ−1
2 =

σ1 + σ2

σ1σ2
=

tr(T̃T
k T̃k)

det(T̃T
k T̃k)

=
2(α + β + δ)

4αβ + 2(α + β)δ + δ2
=

1
2α + δ

+
1

2β + δ
,

where σ1, σ2 are eigenvalues of T̃T
k T̃k.

Since α, β have the same structure, we just need to study
the expectation of the first term. Define α∗ , 4

∑∞
i=1 µi16−i,

where µi are i.i.d. Bernoulli random variables with the same
distribution as γi. Thus 4

sup
k

E(2α + δ)−1 = sup
k

E(2
dk/2e∑

i=1

µi16−i + δ)−1

≥ sup
k

E(2α∗ + δ)−1 = lim
k→∞

E(2α∗ + δ)−1

= E( lim
k→∞

(2α∗ + δ)−1) = E(2α∗)−1.

The above inequality indicates that E(2α∗)−1 is a lower
bound for E(2α + δ)−1. Define stopping time ts = inf{i >
0|µi = 1}. We know that

16−ts ≤
∞∑

i=0

µi16−i =
1
4
α∗ ≤

∞∑

i=ts

16−i =
16
15

16−ts .

4By Monotone Convergence Theorem, we can exchange the limit and
expectation since (2α∗ + δ)−1 is monotonically increasing with respect to
k.

Thus, E(2α∗)−1 will be bounded if and only if
E(16−ts)−1 = E(16ts) is bounded. From the definition of
ts, it is easy to show that the arrival probability p needs to
be greater than 15/16 in order to make E(16ts) bounded.
Thus, 15/16 will be a lower bound for critical value because
E(2α∗)−1 is a lower bound for E(2α + δ)−1. Since we
already know from [1] that 1 − |2 × (−2)|−2 = 15/16 is
an upper bound, we can conclude that 15/16 is the critical
value, which is different from the lower bound 1−2−2 = 3/4
given in [1].

VI. CONCLUSIONS AND FUTURE WORK

In this paper we address the problem of state estimation
for a discrete-time linear Gaussian system where observations
are sent to the estimator via a memoryless erasure channel.
Following the work of Sinopoli et al. [1], we were able to
compute the critical arrival value for a very general class
of linear systems. The boundedness analysis in this paper
can be easily generalized to general Markovian packet loss
models and to the boundedness of higher moments of the
error covariance. Future work will attempt at determining
the complete statistics of the error covariance matrix of the
Kalman Filter under Bernoulli losses.
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