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Abstract— A class of unknown nonlinear systems subject to
uncertain actuator faults and external disturbances will be
studied in this paper with the help of fuzzy approximation
theory. Using backstepping technique, a novel adaptive fuzzy
control approach is proposed to accommodate the uncertain
actuator faults during operation and deal with the external
disturbances. The considered faults are modeled as both loss of
effectiveness and lock-in-place (stuck at some unknown place).
It is proved that the proposed control scheme can guarantee
all signals of the closed-loop system semi-globally uniformly
ultimately bounded and the tracking error between system
output and reference signal converge to a small neighborhood
of zero, though the nonlinear functions of the controlled system
as well as the actuator faults and the external disturbances are
all unknown. Simulation results demonstrate the effectiveness
of the control approach.

I. INTRODUCTION

Since adaptive fuzzy systems are proved to be universal

approximators [1], and stable adaptive fuzzy control was

proposed in [2], many researchers have been interested in

studying nonlinear systems with unknown system functions.

Adaptive fuzzy control in the existing literature is designed

by using fuzzy logic systems to approximate the unknown

nonlinear functions adaptively, the corresponding adaptive

laws for updating the parameters of the fuzzy systems online

can be developed on the basis of Lyapunov stability theory

[3]-[13]. In the earlier years, several stable adaptive fuzzy

control schemes were introduced for single-input-single-

output (SISO) systems [2]-[6], then, [7] extends the corre-

sponding results to multiple-input-multiple-output (MIMO)

systems. However, the early works have the restriction that

the controlled system is feedback linearizable. Later, [8]-

[11] combined adaptive fuzzy control with backstepping

technique to control SISO nonlinear systems without the
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restriction of feedback linearizable. And [12]-[13] developed

control method for unknown MIMO nonlinear systems which

cannot be feedback linearized with the help of backstepping

adaptive fuzzy approach. Although much progress has been

achieved in this field, there are still few results on adaptive

fuzzy control of nonlinear systems with actuator faults except

[14] studied feedback linearizable nonlinear system with

additive faults.

Recently, adaptive control has been widely used to deal

with actuator faults in various systems. In [15], actuator

lock-in-place (stuck at some unknown place) problem is

accommodated by adaptive redundant control structure for

linear and nonlinear SISO systems. Then [16] extended

the results to MIMO parametric-strict-feedback nonlinear

systems. Loss of effectiveness of actuator is considered in

[17]-[18] for linear systems in the framework of linear matrix

inequality (LMI) to guarantee not only the stability, but also

the robust performance of the failed system. The common

advantage of these adaptive control approach against ac-

tuator fault is that they are independent of fault detection

and diagnosis (FDD). With the development of intelligent

control, some researcher employ neural networks to design

control scheme for accommodating some kinds of system

faults. [19] presented a general framework for constructing

fault diagnosis and accommodation architectures using on-

line approximators and adaptive schemes, then [20] designed

an adaptive neural network fault tolerant flight control in the

framework proposed in [19]. Also, [21]-[23] gave several

adaptive neural network control approaches to construct

fault tolerant control. However, the existing results based on

neural network need FDD subsystems for fault information.

Compared with neural networks, fuzzy logic systems can

achieve faster convergence because they are capable of

accommodating both numerical data and expert knowledge.

So adaptive fuzzy fault tolerant control will be studied in

this paper.

A novel robust adaptive fuzzy control scheme for a class

of nonlinear systems against both lock-in-place and loss of

effectiveness faults of actuators without resorting to FDD

mechanism is presented in this paper. The controlled system

cannot be feedback linearizable and the nonlinear system

functions are unknown, besides there are external distur-

bances enter into system. With a special control structure

inspired by [15], the fault-tolerant controller can be designed

in a systematic backstepping procedure, where fuzzy logic

systems are employed to approximate the unknown part of

the ideal virtue or real control in each step. Additional control

effort is designed to deal with the influences of the external
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disturbances by the help of a hyperbolic tangent function.

With the proposed control scheme, the following control

objects can be achieved though there actuator faults and

large uncertainties in system: 1) all signals of the closed-loop

system are guaranteed semi-globally uniformly ultimately

bounded; 2) the control performances can be shaped as

desired by properly choosing the design parameters. Besides,

this approach avoided perfectly the controller singularity

problem which may happen in some existing adaptive fuzzy

control. The corresponding nonlinear systems without exter-

nal disturbances are considered in another paper of ours.

This paper is organized as follows. The problem formu-

lation and preliminaries are presented in Section II. Then,

a systematic backstepping procedure for synthesis of the

adaptive fuzzy fault tolerant controller along with some

analysis is given in Section III. In Section IV, a simulation

example demonstrates the effectiveness of the proposed

scheme. Finally, Section V concludes the paper.

II. PROBLEM FORMULATION AND PRELIMINARIES

Consider the following nonlinear system with m inputs:

ẋi = fi(x̄i)+gi(x̄i)xi+1 +di(t) 1 ≤ i ≤ n−1

ẋn = fn(x̄n)+ ḡT
n (x̄n)u+dn(t) n ≥ 2

y = x1

(1)

where x̄i = [x1,x2, · · · ,xi]
T ∈ Ri, i = 1, · · · ,n, u =

[u1,u2, · · · ,um]T ∈ Rm is the input vector whose component

may fail during the system operation, y ∈ R is the system

output, ḡn(x̄n) = [gn1(x̄n),gn2,(x̄n), · · · ,gnm(x̄n)]
T ∈ Rm, fi,

gi, fn and gn j for i = 1, · · · ,n−1, j = 1, · · · ,m are unknown

continuous nonlinear functions, besides, gi, gn j are smooth.

di i = 1,2, · · · ,n are bounded external disturbances. The

state variables xi are measurable and the reference output ym

is sufficiently derivable. This is a multi-input-single-output

(MISO) system with all the inputs contributed to a common

control object like stabilizing the closed-loop system,

tracking a reference signal of the system output or both.

There are many such systems in our real life. The provided

approach is also effective for multi-input multi-output

systems. We only consider a simple case to simplify the

presentation. The actuator faults considered in this paper are

lock-in-place and loss of effectiveness which are modeled

as follows respectively.

Lock-in-place model:

u j(t) = ū j t ≥ t j, j ∈ { j1, j2 · · · , jp} ⊂ {1,2, · · · ,m} (2)

Loss of effectiveness model:

ui(t) = ρiui(t) t ≥ ti i ∈ { j1, j2, · · · , jp}∩{1,2, · · · ,m}

ρi ∈ [ρ
i
,1], 0 < ρ

i
≤ 1

(3)

where ū j is the constant value where the actuator stuck at, t j

and ti are the time when some faults take place. ρi is the still

active proportion of the actuator after loss of effectiveness,

ρ
i

is the lower bound of ρi. When ρ
i

is 1, the respective

actuator is normal (that is completely active). In fact, lock-

in-place fault of actuator brings some disturbance into system

if u j 6= 0 besides complete loss of effectiveness. So, taking

the actuator faults (2) and (3)into account, the input vector

u(t) can be written as

u(t) = ρv(t)+σ(ū−ρv(t)) (4)

where v(t) = [v1(t),v2(t), · · · ,vm(t)]T is the applied control

inputs vector, ū = [ū1, ū2, · · · , ūm]T with ū j, j = 1,2, · · · ,m,

being a constant value, and

ρ = diag{ρ1,ρ2, · · · ,ρm}
σ = diag{σ1,σ2, · · · ,σm}

σi =

{

1 i f the ith actuator f ails as (2) i.e., ui = ūi

0 otherwise

(5)

The control objective of this paper is to design a state

feedback adaptive control law for the system (1) with the

actuator faults (2) and (3) to ensure that all signals in the

closed-loop system are bounded and the output y(t) can

track the given reference signal ym(t) as closely as possible,

though there are large uncertainties in the controlled system

concerned about the unknown nonlinear system functions,

the pattern of actuator faults, the values of the faults and

the instants at which the faults take place. From the faults

model (2) and (3), it is reasonable that there is at least one

actuator still active for the control purpose, however, it can

lose some effectiveness only if ρi ≥ ρ
i
. Of course there

can be more actuators active partly or completely. For the

accomplishment of control task, the proposed control design

needs the following assumptions.

Assumption 1:The system (1) is so constructed that for

any up to m−1 actuators fail as (2) and the remaining active

proportion of the others meet ρ ∈ [ρ
i
,1], the resulted system

can still be controllable.

Assumption 2: There exist some constants gi0 > 0 such

that |gi(·)| ≥ gi0, ∀x̄i ∈Ωi ⊂Ri, i = 1,2, · · · ,n−1 and gn j0 > 0

such that
∣

∣gn j(·)
∣

∣ ≥ gn j0, ∀x̄n ∈ Ωn ⊂ Rn, j = 1,2, · · · ,m.

We can see from Assumption 2 that the smooth functions

gi(·) are strictly either positive or negative. Without loss of

generality, it can be assumed that gi(·) ≥ gi0, ∀x̄i ∈ Ωi ⊂
Ri, i = 1,2, · · · ,n−1 and gn j(·) ≥ gn j0, ∀x̄n ∈ Ωn ⊂ Rn, j =
1,2, · · · ,m. Ωi is a sufficient large compact set in Ri where

x̄i is included.

Assumption 3: There exist constants gid > 0 such that

|ġi(·)| ≤ gid , ∀x̄i ∈ Ωi ⊂ Ri, i = 1,2, · · · ,n− 1 and gn jd > 0

such that
∣

∣ġn j(·)
∣

∣ ≤ gn jd , ∀x̄n ∈ Ωn ⊂ Rn, j = 1,2, · · · ,m.

Assumption 4: The external disturbances are bounded,

that is, |di(t)| ≤ d̄i where d̄i i = 1,2, · · · ,n are known con-

stants.

The designed control scheme employs fuzzy logic systems

to approximate the unknown part of the virtue controller in

each step for it had been proved that fuzzy logic systems are

universal approximators [1]. We can design adaptive fuzzy

control scheme with the help of the following lemma.

Lemma 1: For any given real continuous function F(x),
on a compact set Ω ⊆ Rn, there exits a fuzzy logic system
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Y (x) = θ T ξ (x) such that ∀ε > 0,
∣

∣F(x)−θ T ξ (x)
∣

∣ < ε (6)

where θ = (θ1,θ2, · · · ,θM)T is the estimate parameter vector,

and ξ (x) = (ξ1(x),ξ2(x), · · · ,ξM(x))T is the vector of fuzzy

basis functions, M is the number of fuzzy rules.

The optimal parameter vector θ ∗ is defined as:

θ ∗ = arg min
θ∈Rn

{sup
x∈Ω

∣

∣F(x)−θ T ξ (x)
∣

∣} (7)

which makes the fuzzy logic system approximate the un-

known function closest. The fuzzy membership functions are

usually chosen as the Guassian functions, which are located

on a regular grid that contains the subset of interest of the

state space.

III. CONTROLLER SYNTHESIS PROCEDURE AND

STABILITY ANALYSIS

Because in this single output system, all the inputs are

contributed to stabilize the closed-loop system and make

the output track a reference signal, we can choose a special

control structure as

v j = b j(x̄n)u0 (8)

where 0 < b j ≤ b j(x̄n) ≤ b̄ j, ∀x̄n ∈ Ωn ⊂ Rn, j = 1,2, · · · ,m,

b j and b̄ j are the lower and upper bounds of b j(x̄n) respec-

tively. u0 is the designed adaptive fuzzy controller by the

following backstepping procedure to accommodate uncertain

actuator faults for nonlinear system (1).

Step 1: Let x1d = ym, e1 = x1 − x1d , we have

ė1 = f1(x1)+g1(x1)x2 − ẋ1d +d1(t)

= g1(x1)[g
−1
1 (x1) f1(x1)+ x2 −g−1

1 (x1)ẋ1d ]+d1(t)
(9)

If the external disturbance d1(t) = 0, virtual controller can

be assumed to be x∗2d as follows

x∗2d = −g−1
1 (x1) f1(x1)+g−1

1 (x1)ẋ1d − k1e1 (10)

k1 > 0 is a constant. Take (10) into (9), we can get ė1 =
−g1(x1)k1e1, and there is a Lyapunov function V1 = 1

2
e2

1 that

from (9) V̇1 = −g1(x1)k1e2
1 ≤ −g10k1e2

1 ≤ 0. So we can see

that e1 is asymptotically stable. Unfortunately, the nonlinear

functions f1(x1) and g1(x1) are all unknown, and d1(t) 6= 0,

we can not get the virtual controller. So fuzzy logic system

is used to approximate the unknown nonlinear part of (10),

from Lemma 1, we have

−g−1
1 (x1) f1(x1)+g−1

1 (x1)+g−1
1 (x1)ẋ1d = θ ∗T

1 ξ1(x1)+ω1

with |ω1| ≤ ε1. And there also needs additional control to

deal with d1(t), then the applied virtual control is designed

as

x2d = α1(x1 | θ1) = θ T
1 ξ1(x1)− k1e1 −δ1tanh

e1δ1

η1
(11)

where tanh the hyperbolic tangent function, δ1 = ε1 + d̄1
g10

.

Let e2 = x2 − x2d , and rewritten (9)

ė1 = f1(x1)+g1x1e2 +g1(x1)(x2d − x∗2d)+g1(x1)x
∗
2d − ẋ1d

= g1(x1)(e2 + θ̃ T
1 ξ1(x1)−ω1 − k1e1 −δ1tanh

e1δ1
η1

)+d1

(12)

where θ1 is the estimate of θ ∗
1 and θ̃1 = θ1 −θ ∗

1 . Design the

parameter updating law as

θ̇1 = −γ1e1ξ1(x1)− r1θ1 (13)

Then consider Lyapunov function candidate

V1 =
1

2g1(x1)
e2

1 +
1

2γ1
θ̃ T

1 θ̃1 (14)

The derivative of V1 is

V̇1 = 1
g1(x1)e1ė1 −

ġ1(x1)

2g2
1(x1)

e2
1 + 1

γ1
θ̃ T

1 θ̇1

= e1e2 − k1e2
1 −

ġ1(x1)

2g2
1(x1)

e2
1 − e1ω1 + e1

d1
g1(x1)

− e1δ1tanh
e1δ1
η1

+ θ̃ T
1 (ξ1(x1)e1 + 1

γ1
θ̇1)

≤ e1e2 − (k1 + ġ1(x1)

2g2
1(x1)

)e2
1 + |e1δ1|− e1δ1tanh

e1δ1
η1

− r1
γ1

θ̃ T
1 θ1

(15)

where ˙̃θ1 = θ̇1 is considered. γ1 > 0, r1 > 0 are design

constants. From the fact that 0 ≤ |q|− qtanh( q
ε ) ≤ κε with

κ = e−(κ+1) (i.e.κ ≈ 0.2785) for any ε > 0 and any q ∈ R,

and choosing k1 such that k∗1 = k1 −
g1d

2g2
10

≥ c
2g10

for a given

positive constant c, (15) can be expressed as

V̇1 ≤ e1e2 − k∗1e2
1 −

r1
2γ1

θ̃ T
1 θ̃1 + r1

2γ1
θ ∗

1
T θ ∗

1 +κη1 (16)

where − r1
γ1

θ̃ T
1 θ1 =− r1

γ1
θ̃ T

1 (θ̃1 +θ ∗
1 )≤− r1

2γ1
θ̃ T

1 θ̃1 + r1
2γ1

θ ∗
1

T θ ∗
1

is taken into account.

Step 2: This step is to make the error e2 as small as

possible.

ė2 = ẋ2 − ẋ2d

= f2(x̄2)+g2(x̄2)x3 − ẋ2d +d2(t)
(17)

Similarly, if d2(t) = 0, the virtual controller in this step is

assumed to be

x∗3d = −g−1
2 (x̄2) f2(x̄2)+g−1

2 (x̄2)ẋ2d − e1 − k2e2 (18)

The applied virtual control is

x3d = α2(x̄2|θ2) = θ T
2 ξ2(x̄2)− e1 − k2e2 −δ2tanh

e2δ2

η2
(19)

where k2 > 0, δ2 = ε2 + d̄2
g20

with ε2 is the upper bound of

the fuzzy logic approximation error for −g−1
2 (x̄2) f2(x̄2) +

g−1
2 (x̄2)ẋ2d . Define e3 = x3 − x3d , (17) can be rewritten as

ė2 = g2(x2)(e3 + θ̃ T
2 ξ2(x̄2)−ω2 − k2e2

− e1 −δ2tanh
e2δ2
η2

)+d2
(20)

Let

θ̇2 = −γ2e2ξ2(x̄2)− r2θ2 (21)

Consider the Lyapunov function candidate as

V2 = V1 +
1

2g2(x̄2)
e2

2 +
1

2γ2
θ̃ T

2 θ̃2 (22)
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The derivative of (22) has the form of

V̇2 = V̇1 + 1
g2(x̄2)e2ė2 −

ġ2(x̄2)

2g2
2(x̄2)

e2
2 + 1

γ2
θ̃ T

2 θ̇2

= V̇1 − e1e2 + e2e3 − k2e2
2 −

ġ2(x̄2)

2g2
2(x̄2)

e2
2 − e2ω2 + e2

d2
g2(x̄2)

− e2δ2tanh
e2δ2
η2

+ θ̃ T
2 (ξ2(x̄2)e2 + 1

γ2
θ̇2)

(23)

where (16) and (21) are used, and γ2 > 0, r2 > 0. Choose k2

so that k∗2 = k2 −
g2d

2g2
20

≥ c
2g20

for c, the following inequality

can be obtained

V̇2 ≤ e2e3 −
2

∑
i=1

(k∗i e2
i +

ri

2γi

θ̃ T
i θ̃i)+

2

∑
i=1

(
ri

2γi

θ ∗
i

T θ ∗
i +κηi)

(24)

Step i: ith (2 ≤ i ≤ n−1) step is to make ei = xi − xid as

small as possible with x(i+1)d . Conduct the similar procedure,

we can get the following expressions

x∗(i+1)d = −g−1
i (x̄i) fi(x̄i)+g−1

i (x̄i)ẋid − ei−1 − kiei (25)

x(i+1)d = αi(x̄i|θi) = θ T
i ξi(x̄i)− ei−1 − kiei −δitanh

eiδi

ηi

(26)

where ki > 0, δi = εi +
d̄i
gi0

with εi is the upper bound of

the fuzzy logic approximation error for −g−1
i (x̄i) fi(x̄i) +

g−1
i (x̄i)ẋid .

θ̇i = −γieiξi(x̄i)− riθi (27)

Choose Lyapunov function in this step as

Vi = Vi−1 +
1

2gi(x̄i)
e2

i +
1

2γi

θ̃ T
i θ̃i (28)

It can be deduced that

V̇i ≤ eiei+1 −
i

∑
l=1

(k∗l e2
l +

rl

2γl

θ̃ T
l θ̃l)+

i

∑
l=1

(
rl

2γl

θ ∗
l

T θ ∗
l +κηl)

(29)

where ei+1 = xi+1 − x(i+1)d , γl > 0, rl > 0, kl is selected to

meet k∗l = kl −
gld

2g2
l0

≥ c
2gl0

for c.

Step n: Suppose p actuators stuck at some unknown

places at time t j, that is, u j(t) = ū j, j = j1, j2, · · · , jp, 0≤ p≤
m− 1, and the others may lose effectiveness or be normal,

during (t j, t j+1), there will be no actuator fault. With the

control signal and the parameter updating law

u0 = αn(x̄n|θn) = θ T
n ξn(x̄n)− en−1 − knen −δntanh

enδn

ηn

(30)

θ̇n = −γnenξn(x̄n)− rnθn (31)

with γn > 0 and rn > 0 are design constants, and kn is selected

so k∗n = kn −
∑

j 6= j1··· jp

ρ̄ jgn jd b̄ j

2( ∑
j 6= j1··· jp

ρ
j
gn j0b j)

2 ≥ c
2 ∑

j 6= j1··· jp

ρ
j
gn j0b j

for c. Then

the following theorem is ready to presented.

Theorem 1:The adaptive fuzzy control structure (8) con-

sisting of the state feedback law (30) and the parameter

updating laws (13), (21), (27) and (31) ensures the following

properties of system (1) which subject to actuator faults (2)

and (3), if the initial conditions are bounded.

1) All signals in the closed-loop system remain bounded;

2) the output tracking error e = y(t)−ym(t) converges to a

small neighborhood around zero by appropriately choosing

the design parameters.

Proof: With the input vector (4) and the control structure

(8), the derivative of en = xn − xnd can be written as

ėn = fn(x̄n)+ ∑
j 6= j1··· jp

ρ jgn j(x̄n)v+ ∑
j= j1··· jp

ρ jgn j(x̄n)ū j

− ẋnd +dn

= ∑
j 6= j1··· jp

ρ jgn jb j[( ∑
j 6= j1··· jp

ρ jgn jb j)
−1 fn +u0 +( ∑

j 6= j1··· jp

ρ jgn jb j)
−1 ∑

j= j1··· jp

gn jū j − ( ∑
j 6= j1··· jp

ρ jgn jb j)
−1ẋnd ]+dn

(32)

where gn j, fn and b j are short for gn j(x̄n), fn(x̄n) and b j(x̄n)
respectively. Because gn j > 0 and b j > 0, ∀x̄n ∈ Ωn ⊂ Rn,

it is obvious that ( ∑
j 6= j1··· jp

ρ jgn jb j)
−1 > 0. The idealized

controller when neglect dn(t) is

u∗0 = −( ∑
j 6= j1··· jp

ρ jgn jb j)
−1 fn − ( ∑

j 6= j1··· jp

ρ jgn jb j)
−1 ∑

j= j1··· jp

gn jū j +( ∑
j 6= j1··· jp

ρ jgn jb j)
−1ẋnd − en−1 − knen

(33)

Since fn, gn j, dn(t), ρ j and ū j are all unknown, the controller

(30) is employed, then (34) can be rewritten as

ėn = ∑
j 6= j1··· jp

ρ jgn jb j(θ̃
T
n ξn(x̄n)−ωn − knen

− en−1 −δntanh enδn
ηn

)+dn

(34)

where kn > 0, δn = εn + d̄n

min
j=1,··· ,m

{ρ
j
gn j0b j}

with εn is the

upper bound of the fuzzy logic approximation error for

−( ∑
j 6= j1··· jp

ρ jgn jb j)
−1 fn − ( ∑

j 6= j1··· jp

ρ jgn jb j)
−1 ∑

j= j1··· jp

gn jū j +

( ∑
j 6= j1··· jp

ρ jgn jb j)
−1ẋnd .

Consider the Lyapunov function candidate as

V = Vn−1 +
1

2 ∑
j 6= j1··· jp

ρ jgn jb j

e2
n +

1

2γn

θ̃ T
n θ̃n (35)

Differentiating V one can obtain

V̇ = V̇n−1 + en ėn

∑
j 6= j1··· jp

ρ jgn jb j
−

∑
j 6= j1··· jp

ρ j ġn jb je
2
n

2( ∑
j 6= j1··· jp

ρ jgn jb j)2 + 1
γn

θ̃ T
n θ̇n

= V̇n−1 − en−1en − kne2
n −

∑
j 6= j1··· jp

ρ j ġn jb je
2
n

2( ∑
j 6= j1··· jp

ρ jgn jb j)2 − enωn

− enδntanh enδn
ηn

+ θ̃ T
n (ξ (x̄n)en + 1

γn
θ̇n)

(36)

where ˙̃θn = θ̇n is considered.
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From (31), and by substituting V̇n−1 by (29) with i = n−1

in (36), V̇ can be expressed as

V̇ ≤−
n

∑
i=1

(k∗i e2
i + ri

2γi
θ̃ T

i θ̃i)+
n

∑
i=1

( ri
2γi

θ ∗
i

T θ ∗
i +κηi) (37)

From the definition of k∗i and by choosing ri > c for i =
1,2, · · · ,n, we can get the following expression.

V̇ ≤−cV +b (38)

with b =
n

∑
i=1

( ri
2γi

θ ∗
i

T θ ∗
i +κηi). Then it can be obtained that

V ≤ (V (0)−
b

c
)e−ct +

b

c
(39)

Then ei, θi (i = 1,2, · · · ,n) are bounded and belong to the

compact set Ω = {(ei,θi)|V ≤ ( b
c
)}. Furthermore, e2

1 ≤V1 ≤

(V (0)− b
c
)e−ct + b

c
, which implies that lim

t→∞
e2

1 ≤
b
c
. Some

actuator faults will occur at time t j+1, then V will change its

value because the change of θ ∗
n , however, since V is bounded

in (t j, t j+1), and its changed value is finite, so the initial value

of V in the interval (t j+1, t j+2) is bounded, then from the

above analysis, V is also bounded in (t j+1, t j+2). Because

the actuators subject to only finite faults during operation,

so it can be concluded that V (t) is always bounded. Thus,

Theorem 1 has been proved.

IV. SIMULATION EXAMPLE

A simple example is given to show the effectiveness of the

proposed adaptive fuzzy backstepping fault tolerant control

structure in this paper. The controlled system is

ẋ1 = 0.5x1 +(1+0.1x2
1)x2 +d1(t)

ẋ2 = x1x2 +(2+ cos(x1))u1 +(2+ sin(x1))u2 +d2(t)
y = x1

(40)

where x1 and x2 are states, and y is the output of the system,

respectively. The external disturbances are chosen as d1(t) =
0.1sint, d2(t) = d(t) for simulation, where d(t) is a square

wave with the amplitude 0.05 and the period 2. The initial

conditions is x(0) = [1,0]T and the desired reference signal

of the system is ym(t) = sin(t).
Selecting fuzzy membership functions as µF1

i
(xi) =

1/(1 + exp(5(xi + 2))), µF2
i
(xi) = exp(−(xi + 1.5)2),

µF3
i
(xi) = exp(−(xi + 0.5)2), µF4

i
(xi) = exp(−x2

i ),

µF5
i
(xi) = exp(−(xi − 0.5)2), µF6

i
(xi) = exp(−(xi − 1.5)2),

µF7
i
(xi) = 1/(1+ exp(−5(xi −2))).

Defining fuzzy basis functions

ξ j
1 (x1) =

µ
F

j
1

(x1)

7

∑
j=1

µ
F

j
1

(x1)

, ξ l
2(x̄2) =

µ
Fi

1
(x1)µ

F
j

2

(x2)

7

∑
i=1

7

∑
j=1

µ
Fi

1
(x1)µ

F
j

2

(x2)

i = 1,2, · · · ,7, j = 1,2, · · · ,7

ξ1(x1) = [ξ 1
1 (x1),ξ

2
1 (x1), · · · ,ξ

7
1 (x1), ], ξ2(x̄2) =

[ξ 1
2 (x̄2),ξ

2
2 (x̄2), · · · ,ξ

49
2 (x̄2)], then the fuzzy logic systems

θ T
1 ξ1(x1) and θ T

2 ξ2(x̄2) can be obtained for constructing the

adaptive fuzzy controller (30).

The design parameters ki = 25, γi = 0.2, ri = 5, for i =
1,2 and b1 = 0.1, b2 = 0.2. The initial parameters of the

fuzzy approximate systems are θ1 = 07×1 and θ2 = 01×49.

The actuator faults introduced for simulation are u1 = 2 when

t ≥ 4, and u2 = 0.6u2 for t ≥ 12. Here we consider a case that

the both types of actuator faults will occur during operation.

It is obviously easier to deal with just one type of them in the

system as long as Assumption 1 is satisfied. The simulation

results are given in Fig. 1-Fig. 3, where Fig. 1 shows the

output of the system tracking the reference signal ym closely

and smoothly, Fig. 2 shows the curve of the state variable

x2, and from Fig. 3 we can see the control signals of the

system. Simulation results of applying the proposed control

scheme to system (40) show that good tracking performance

is obtained though there are large uncertainties in nonlinear

system functions and actuator faults.
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Fig. 1. The curves of x1 (dash) and ym (solid)
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Fig. 2. The curve of x2

V. CONCLUSION

A novel robust adaptive fuzzy controller is proposed

by using backstepping design technique in this paper to

accommodate actuator faults as well as external disturbances

for unknown nonlinear systems which cannot be feedback

linearized. The considered systems are multi-input single
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output and subject to both lock-in-place and loss of effective-

ness actuator faults. With all the input signals are contributed

to the same control objective, a special control structure is

employed. It has been proved in theory and demonstrated

in simulation results that the designed control scheme can

guarantee that all signals in the closed-loop system are re-

main bounded and tracking error between the system output

and the reference signal converges to a small neighborhood

around zero, though the nonlinear system functions and the

information about the faults are all unknown. Desired control

performance can be obtained by appropriately choosing the

design parameters despite there are external disturbances, and

the controller singularity problem is avoided perfectly. This

control approach can also be applied to MIMo systems.
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