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Abstract— This paper presents some results on the local
exponential convergence of the Polynomial Extended Kalman
Filter (PEKF, see [14]) used as a state observer for deterministic
nonlinear discrete-time systems (Polynomial Extended Kalman
Observer, PEKO). A new compact formalism is introduced for
the representation of the so called Carleman linearization of
nonlinear discrete time systems, that allows for the derivation
of the observation error dynamics in a concise form, similar to
the one of the classical Extended Kalman Filter. The stability
analysis performed in this paper is also important in the
stochastic framework, in that the exponential stability of the
error dynamics can be used to prove that the moments of the
estimation error, up to a given order, remain bounded over time
(stability of the PEKF).

I. INTRODUCTION

This paper considers the state observation problem for

nonlinear discrete-time systems of the type

xt+1 = f(xt, ut), (1)

yt = h(xt, ut), (2)

where xt ∈ R
n is the system state, yt ∈ R

q is the

measured output, ut ∈ R
p is the sequence of known inputs.

f(·, ·) and h(·, ·) are analytic functions of the first argument

(the state). Many approaches have been explored in the

literature for the derivation of asymptotic state observers,

and many types of solutions exist for classes of systems. An

approach widely investigated is to find a nonlinear change of

coordinates and, if necessary, an output transformation, that

transform the system into some canonical form suitable for

the observer design using linear methodologies. Some papers

on the subject are [9],[21],[22], [26],[27], for autonomous

systems, and [6] for nonautonomous systems. These papers

study the conditions for the existence of the coordinate trans-

formation that allows the observer design with linearizable

error dynamics. The drawback of this approach is that in

general the computation of the coordinate transformation,

when existing, is a very difficult task. Another approach

consists in designing observers in the original coordinates,

finding iterative algorithms, typically based on the Newton

method, that asymptotically solve a suitable extension of

the state-output map, [10], [11], [23]. Sufficient conditions

of local convergence are provided, in general, under the

assumption of Lipschitz nonlinearities. Many authors restrict

This work is supported by MiUR (Italian Ministry of University and
Research) and by CNR (National Research Council of Italy).

A. Germani and C. Manes are with the Department of Electrical and
Information Engineering, University of L’Aquila, Poggio di Roio, 67040
L’Aquila, Italy, germani@ing.univaq.it, manes@ing.univaq.it. They are also
with the Istituto di Analisi dei Sistemi ed Informatica del CNR “A. Ruberti”,
Viale Manzoni 30, 00185 Roma, Italy.

the attention to the class of systems characterized by nonlin-

ear dynamics and linear output map (see, e.g. [1], [5], [28]).

The cases of bilinear dynamics and polynomial and rational

output maps are considered in [15],[17].

Although so many different approaches have been studied,

the most popular algorithm of state estimation for nonlinear

system is the Extended Kalman Filter (EKF), see e.g. [2].

The main reasons of the popularity of the EKF is its

simplicity of implementation and its good behavior in most

applications. The use of the Extended Kalman Filter as

a local observer in the deterministic framework has been

investigated [3], [4], [24] and [25].

This paper aims to extend the existing results of local

convergence of the EKF to the Polynomial Extended Kalman

Filter (PEKF) presented in [14]. The same approach used in

[24] for the study of the exponential error convergence of

the EKF has been used in this paper.

The paper is organized as follows. In section II the

EKF equations and the convergence theorem of [24] are

briefly recalled. The PEKO is presented in section III and

the convergence property is discussed in section IV. Some

elements of Kronecher algebra, used throughout the paper,

are briefly reported in the Appendix.

II. THE EKF AS AN OBSERVER

Before to proceed with the construction of a PEKO (Poly-

nomial Extended Kalman Observer), let us briefly recall the

standard form of the EKF and its use as an Observer (EKO:

Extended Kalman Observer), and discuss the convergence

properties following the approach of [24]. From now on, the

following more compact notation will be used for the system

(1)–(2):

xt+1 = fut
(xt), (3)

yt = hut(xt). (4)

Global or local assumptions on the uniform boundedness

of the derivatives of the functions fu(x) and hu(x) can

be made. Local assumptions are sufficient in the proof of

convergence of the EKO if the system (3)–(4) is input-state

stable. For this reason the following assumption is made:

Assumption A0. There exist a compact set U ⊂ R
p and

bounded open sets Ω0 and Ω, with Ω0 ⊂ Ω ⊂ R
n, such that

for any input sequence with ut ∈ U , ∀t ≥ t0, if xt0 ∈ Ω0

then xt ∈ Ω, ∀t ≥ t0. Moreover, ∀u ∈ U , fu(x) and hu(x)
are analytical functions in Ω.

Let Ω denote the closure of Ω.
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In order to apply the standard Kalman Filter to the

nonlinear system (3)–(4), it is useful to represent the state

transition map fu(x) and the output map hu(x) using a first

order Taylor expansion around the best estimates available:

the observation x̂t for fu(x) and the prediction x̃t for hu(x):

xt+1 = fut(x̂t) + At(xt − x̂t) + ϕf (xt, x̂t), (5)

yt = hut
(x̃t) + Ct(xt − x̃t) + ϕh(xt, x̃t), (6)

where Ct and At are the Jacobians of hut
(x) and fut

(x)
computed at the predicted and estimated state, rspectively.

Using the notation introduced in the Appendix, eq. (88),

At = ∇x ⊗ fut(x)|x̂t , Ct = ∇x ⊗ hut(x)|x̃t . (7)

The remainders ϕf and ϕh are such that there exist positive

εf , εh, γf , γh such that

‖ϕf (x, x̄)‖ ≤ γf‖x − x̄‖2, ∀‖x − x̄‖ ≤ εf ,

‖ϕh(x, x̄)‖ ≤ γh‖x − x̄‖2, ∀‖x − x̄‖ ≤ εh.
(8)

(In [24] the inequalities (8) are assumed to hold for all

x̄ ∈ R
n and u ∈ R

p.) The EKO approach consists in

neglecting the remainders in the representation (5)–(6), so

that it appears as a linear system with known forcing terms,

and in applying the standard Kalman Filter equations. An

initial state estimation x̄0 is needed as a starting value of the

EKO. Also a positive definite (PD) matrix P 0 is needed to

inizialize the Riccati equations that provide the Kalman gain

Kt. The EKO algorithm is reported below. The symbol In

denotes the identity matrix of dimension n.

Extended Kalman Observer (EKO)

Starting values: x̃t0 = x̄0, P̃t0 = P 0, t = t0,

ỹt = hut
(x̃t), output prediction (9)

Ct = ∇x ⊗ hut

∣∣
x̃t

, (10)

Kt = P̃tC
T
t (CtP̃tC

T
t + Rt)−1, (11)

x̂t = x̃t + Kt(yt − ỹt), state observation (12)

Pt = (In − KtCt)P̃t, (13)

x̃t+1 = fut(x̂t), state prediction (14)

At = ∇x ⊗ fut

∣∣
x̂t

, (15)

P̃t+1 = α2AtPtA
T
t + Qt. (16)

Qt and Rt are known sequences of PD matrices that act as

forcing terms in the Riccati equations, and must be chosen

uniformly upper and lower bounded over t ∈ Z (in fact, in

[24] they are chosen constant). In the EKO such sequences

are free design parameters, while in the stochastic framework

(EKF) they are the covariances of the state and output

noises. The constant coefficient α ≥ 1 has the meaning of

a forgetting factor and provides exponential data weighting

when α > 1.

The convergence analysis of the EKO in [24] has been

pursued by studying the stability of the recursive equation

that governs the prediction error xt − x̃t. This equation is

obtained subtracting the prediction x̃t+1 given by (14) from

xt+1 as given by (5):

xt+1 − x̃t+1 = At(xt − x̂t) + ϕf (xt, x̂t), (17)

and then finding a suitable expression for the estimation error

xt− x̂t. Considering the two identities below, obtained using

(12) and (9),

xt − x̂t = xt − x̃t − Kt(yt − ỹt), (18)

yt − ỹt = Ct(xt − x̃t) + ϕh(xt, x̃t), (19)

the following recursion can be easily obtained

xt+1 − x̃t+1 = At(In − KtCt)(xt − x̃t) + ϕ0, (20)

where ϕ0 = ϕf (xt, x̂t) − Ktϕh(xt, x̃t). (21)

The convergence result in [24] is based on the proof of

asymptotic stability of equation (20), and is summarized

below:

Theorem 1. Consider the EKO equations (9)–(16), and let
the following assumptions hold

i) There are positive numbers a, c̄, p̄, p such that for all
t ≥ t0 ‖At‖ ≤ a, ‖Ct‖ ≤ c̄, (22)

pIn ≤ P̃t ≤ p̄In pIn ≤ P̃t ≤ p̄In. (23)

ii) At is nonsingular ∀t ≥ t0.
iii) There are positive real numbers εf , εh, γf , γh, such

that inequalities (8) hold.
Then, there exist positive real numbers η, ε0, θ, with θ > α,
such that, if ‖xt0 − x̃t0‖ < ε0, then

‖xt − x̃t‖ ≤ η‖xt0 − x̃t0‖θ−(t−t0), (24)

that means that the EKO is a local exponential observer.

Remark 1. The parameter α ≥ 1, that appears in equation

(16), can be tuned to assign the error convergence rate.

However, in the proof of Theorem 1 in [24] it appears that

the larger is chosen α, the smaller is the convergence region

ε0.

Remark 2. The existence of lower and upper bounds for the

PD matrices P̃t and Pt can only checked on line, and is

ensured if the pair (At, Ct) satisfies a uniform observability

condition (see e.g. [12]).

Remark 3. It is important to stress that the proof reported in

[24], based on the bounds (8) on the norms of the remainders

ϕf and ϕh, can be easily modified to deal with bounds of

higher order, i.e. of the type

‖ϕf‖ ≤ γf‖x − x̄‖k, ‖ϕh‖ ≤ γh‖x − x̄‖k, (25)

for k > 2.

Remark 4. The bounds (8) assumed in Theorem 1, in [24] are

formulated in a global form, i.e. the inequalities are assumed

to hold for all x̄ ∈ R
n and for all u ∈ R

p. This can be a too

strong assumption. However, the proof of Theorem 1 can be

suitably modified when inequalities (8) hold only on bounded

sets. In this case the additional assumption A0 is required,

so that it is sufficient that properties (8) on the remainders

are true for all x̄ ∈ Ω.
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III. POLYNOMIAL EXTENDED KALMAN OBSERVER

The PEKF algorithm presented in [14] is based on the

polynomial approximation of the state transition map fu(x)
and of the output map hu(x) of the system (3)–(4). The use

of the filter in [14] as an Observer for deterministic systems

is denoted PEKO in this paper.

The formalism of the Kronecker algebra is used in this

paper for the efficient manipulation of multivariate polyno-

mials. The definition of the Kronecker product ⊗ of matrices

is given in the Appendix, together with other relevant defini-

tions and properties used throughout this work. The symbol

v[k] denotes the Kronecker power of a vector v ∈ R
n. For the

kind of computations carried out in this paper, it is extremely

useful the definition of a symbol for the vector that collects

all the Kronecker powers of a given vector from 1 up to a

given degree m. The symbol chosen is [ · ]m, and operates

on vectors v ∈ R
n as follows

[v]m =

⎡⎢⎢⎢⎣
v
v[2]

...

v[m]

⎤⎥⎥⎥⎦ ,
v[0] = 1,

v[k+1] = v[k] ⊗ v.
(26)

Recalling that v[k] ∈ R
nk

, then [v]m ∈ R
nm , with nm =∑m

k=1 nk. A property of the symbol [·]m repeatedly used

throughout the paper is the following (see Lemma (3)) in

the Appendix)

[v − v̄]m = Im(−v̄)
(
[v]m − [v̄]m

)
, ∀v, v̄ ∈ R

n, (27)

where the matrix Im(−v̄) is defined in the Appendix,

eq. (81).

The PEKF in [14] is based on the Taylor polynomial

approximation of a chosen degree m > 1 of both maps

fut(x) and hut(x). The convergence of the PEKF used as

an observer (PEKO) requires the assumption A0, in order to

ensure the existence of uniform upper bounds on the norms

of the remainders of the Taylor approximation. The Taylor

expansion of degree m of the output map hut(xt) around

the prediction x̃t is

hut(xt) =
m∑

j=0

1
j!

(∇[j]
x ⊗ hut(x)

)∣∣
x̃t

(xt − x̃t)[j]

+ ϕh(xt, x̃t).
(28)

where the differential symbol ∇[j]
x ⊗ is defined in the Ap-

pendix, eq. (88). Based on the Lagrange remainder formula,

the following bound can be given, for all (x, x̄, u) ∈ Ω ×
Ω × U

‖ϕh(x, x̄)‖ ≤ γh‖x − x̄‖m+1, (29)

where γh = sup
(x,u)∈Ω×U

∥∥∇[m+1]
x ⊗ hu(x)

∥∥
(m + 1)!

. (30)

Using the symbol [ · ]m, the Taylor formula (28) can be

written in the compact form

hut(xt) = hut(x̃t) + Hm(x̃t)[xt − x̃t]m + ϕh, (31)

where matrix Hm(x̃t) ∈ R
q×nm has a row-block structure

Hm(x) =
[[Hm(x)

]
1

· · · [Hm(x)
]
m

]
(32)

where
[Hm(x)

]
j

=
1
j!

(∇[j]
x ⊗ hut

(x)
)
, (33)

(for a simpler notation, the dependence of Hm on ut is not

shown). Using the identity (27), equation (31) can be written

as

hut
(xt) = hut

(x̃t) + Ct

(
[xt]m− [x̃t]m

)
+ ϕh, (34)

where Ct = Hm(x̃t)Im(−x̃t). (35)

Now define the polynomial extended state Xt ∈ R
nm and

the selection matrix Σ ∈ R
n×nm as follows

Xt = [xt]m, Σ =
[
In 0n×(nm−n)

]
, (36)

so that x = Σ[x]m, ∀x ∈ R
n, and in particular

xt = ΣXt. (37)

The use of Xt in (34), allows to write the output equation

(4) as

yt = hut(x̃t) + Ct

(
Xt − [x̃t]m

)
+ ϕh, (38)

where ϕh = ϕh(ΣXt, x̃t). In this form the output equation

depends linearly on the extended state Xt. In order to use

this linear form in a linear filter, a linear transition function

is needed for the extended state. Consider the transition map

of the extended state

Xt+1 = [xt+1]m = [fut(xt)]m =

⎡⎢⎣fut(xt)
...

f
[m]
ut (xt)

⎤⎥⎦ . (39)

The Taylor formula for the component f
[k]
ut (xt) around the

current estimate x̂t, is the following

f [k]
ut

(xt) =
m∑

j=0

1
j!

(∇[j]
x ⊗ f [k]

ut
(x)

)∣∣
x̂t

(xt − x̂t)[j]

+ ϕf,k(xt, x̂t).
(40)

The remainder is such that, ∀(x, x̄, u) ∈ Ω × Ω × U ,

‖ϕf,k(x, x̄)‖ ≤ γf,k‖x − x̄‖m+1. (41)

where γf,k = sup
(x,u)∈Ω×U

∥∥∇[m+1]
x ⊗ f

[k]
u (x)

∥∥
(m + 1)!

. (42)

Using the symbol [ · ]m, the extended transition map

[fut(xt)]m can be written in the compact form

[fut(xt)]m =
[
fut(x̂t)

]m + Fm(x̂t)[xt − x̂t]m + ϕf (xt, x̂t),
(43)

where the matrix Fm(x̂t) ∈ R
nm×nm is made of m × m

blocks, defined, for k = 1, . . . , m, j = 1, . . . , m, as[Fm(x)
]
k,j

=
1
j!

(∇[j]
x ⊗ f [k]

ut
(x)

) ∈ R
nk×nj

(44)
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(the dependence of Fm on ut is not shown). For (x, x̄, u) ∈
Ω × Ω × U , the remainder ϕf obeys the inequality

‖ϕf (x, x̄)‖ ≤ γf‖x − x̄‖m+1, (45)

where γf = sup
(x,u)∈Ω×U

∥∥∇[m+1]
x ⊗ [fu(x)]m

∥∥
(m + 1)!

. (46)

Now the extended state transition step Xt+1 = [fut
(xt)]m

can be written using the representation (43) with the substi-

tutions [
xt − x̂t]m = Im(−x̂t)

(
[xt]m − [x̂t]m

)
= Im(−x̂t)

(
Xt − [x̂t]m

)
,

(47)

obtaining

Xt+1 =
[
fut(x̂t)

]m+ At

(
Xt − [x̂t]m

)
+ ϕf (ΣXt, x̂t),

(48)

where At = Fm(x̂t)Im(−x̂t). (49)

The equations (48) and (38) describing system (3)–(4), can

be written as

Xt+1 = AtXt +
[
fut(x̂t)

]m − At[x̂t]m + ϕf , (50)

yt = CtXt + hut(x̃t) − Ct[x̃t]m + ϕh, (51)

where ϕf = ϕf (ΣXt, x̂t), ϕh = ϕh(ΣXt, x̃t). (52)

System (3)–(4) is said to be immersed into the system (50)–

(51), which has higher dimension, in the sense that if at a

given t0 it is Xt0 = [xt0 ]
m, then Xt = [xt]m, for all t ≥ t0,

and therefore xt = ΣXt.

Note that in the derivation of (50)–(51) the sequences

x̂t and x̃t can be any sequences in Ω (they may even be

constant).

The Carleman linearization of (3)–(4) around the se-

quences x̂t and x̃t consists in neglecting the remainders ϕf

and ϕh in equations (50)–(51), and in replacing the poly-

nomial extended state Xt = [xt]m with an approximating

vector Xt ∈ R
nm , to obtain

Xt+1 = AtXt +
[
fut(x̂t)

]m − At[x̂t]m, (53)

y′
t = AtXt + hut(x̃t) − Ct[x̃t]m. (54)

The Carleman linearization (53)–(54) is an approximation of

system (3)–(4) if the differences [xt]m −Xt and yt − y′
t can

be made as small as desired, at least in a finite time interval,

by increasing the degree m, provided that both xt and Xt

are consistently initialized at time t0 (i.e., Xt0 = [xt0 ]
m) and

both systems are forced by the same input sequence.

Remark 5. Note that, by definition, Xt evolves on the

consistency manifold Mm, defined in Appendix, eq. (80),

while, in general, Xt is not consistent (i.e., Xt 
∈ Mm).

Equations (53)–(54) have the appearance of a time-varing

linear system, with known system matrices and forcing

terms. Thus, the construction of an observer with the standard

Kalman Filter structure is straightforward. Such an observer,

denoted here PEKO, has the same prediction-correction

structure of the EKO, where the correction gain Kt is the

output of Riccati equations forced by two sequences of

PD matrices, Qt ∈ R
nm×nm and Rt ∈ R

q×q , uniformly

lower and upper bounded over t ∈ Z. The equations of the

PEKO need to be initializated using an a priori state estimate

x̄0 ∈ R
n at time t0. The Riccati equations require a PD

matrix P 0 ∈ R
nm×nm for the initialization, representing the

uncertainty on the initial estimate x̄0.
The sequences of state observations x̂t and predictions

x̃t in the PEKO are obtained as subvectors of the extended

state observations X̃t and predictions X̃t produced by the

algorithm.

Polynomial Extended Kalman Observer
(PEKO)

Starting values: x̃t0 = x̄0, X̃t0 = [x̃t0 ]
m, P̃t0 = P 0, t = t0.

Ct = Hm(x̃t)Im(−x̃t), (55)

ỹt = hut(x̃t) − Ct

(
X̃t − [x̃t]m

)
, output pred. (56)

Kt = P̃tC
T
t

(
CtP̃tC

T
t + Rt

)−1
, (57)

X̂t = X̃t + Kt(yt − ỹt), ext. state estim. (58)

Pt =
(
In − KtCt

)
P̃t, (59)

x̂t = ΣX̂t, state estim. (60)

At = Fm(x̂t)Im(−x̂t), (61)

P̃t+1 = α2AtPtA
T
t + Qt, (62)

X̃t+1 =[fut(x̂t)]m−At

(
X̂t−[x̂t]m

)
, ext. state pred. (63)

x̃t+1 = ΣX̃t+1. state prediction (64)

Remark 6. As in the EKO, a constant coefficient α ≥ 1
(forgetting factor) has been considered in equation (62), so

that exponential data weighting is achieved when α > 1.

Remark 7. The vector X̃t is an estimate of [x̃t]m, and, by

construction, see eq. (64), it is such that Σ
(
X̃t− [x̃t]m) = 0,

although in general X̃t 
= [x̃t]m. Stated in other words, X̃t

in general do not belong to the consistency manifold Mm ⊂
R

nm . The same considerations can be made for X̂t, that is

an estimate of [x̂]m such that Σ
(
X̂t − [x̂t]m) = 0, but in

general X̂t − [x̂t]m 
= 0. Note that the difference X̃t − [x̃t]m

appear as a forcing term in the output prediction equation

(56), while the mismatch X̂t − [x̂t]m appear as a forcing

term in the extended state prediction (63).

IV. CONVERGENCE ANALYSIS OF THE PEKO

Following the approach in [24], the convergence analysis

of the PEKO is addressed in this section by deriving and

studying the recursive equation that governs the dynamics

of the prediction error. Note that the PEKO provides a

sequence of estimates and predictions of the extended state

Xt = [xt]m. The following relationship exists between the

state prediction error xt−x̃t and the extended state prediction

error Xt − X̃t:

‖xt − x̃t‖ = ‖Σ(Xt − X̃t)‖ ≤ ‖Xt − X̃t‖. (65)

This inequality implies that the convergence of the extended

prediction implies the convergence of the state prediction (if

‖Xt − X̃t‖ → 0, then ‖xt − x̃t‖ → 0).

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 ThC02.5

5125



Thus, the convergence analysis can proceed by deriving

a recursive equation for the extended state prediction error

Xt − X̃t. Subtracting (63) from (50) yields

Xt+1 − X̃t+1 = At

(
Xt − X̂t

)
+ ϕf . (66)

The estimation error of the extended state Xt − X̂t is

computed subtracting (58) from Xt

Xt − X̂t = Xt − X̃t − Kt(yt − ỹt). (67)

The output prediction error yt−ỹt is computed by subtracting

(56) from (51)

yt − ỹt = Ct

(
Xt − X̃t

)
+ ϕh. (68)

Substitution of this into (67) yields

Xt − X̂t =
(
Inm − KtCt

)
(Xt − X̃t) − Ktϕh. (69)

Substitution of (69) into (66) gives

Xt+1 − X̃t+1 = At

(
Inm − KtCt

)
(Xt − X̃t) + ϕI , (70)

where ϕI = ϕf (xt, x̂t) − AtKtϕh(xt, x̃t). (71)

Consider the bounds (45) and (29) on ϕf and ϕh. Using

the inequalities ‖xt − x̃t‖ ≤ ‖Xt − X̃t‖ and ‖xt − x̂t‖ ≤
‖Xt − X̂t‖, it follows

‖ϕf (xt, x̂t)‖ ≤ γf‖Xt − X̂t‖m+1,

‖ϕh(xt, x̃t)‖ ≤ γh‖Xt − X̃t‖m+1.
(72)

The following theorem can be proved following the same

lines of Theorem 1:

Theorem 2. Consider system (3)–(4), with assumption A0,
and the PEKO equations (56)–(64), for a given degree m,
and let the following assumptions hold

i) There exist positive numbers a, c̄, p̄, p such that for all
t ≥ t0

‖At‖ ≤ a, ‖Ct‖ ≤ c̄, (73)

pIn ≤ P̃t ≤ p̄In pIn ≤ P̃t ≤ p̄In. (74)

ii) At is nonsingular ∀t ≥ t0.
iii) There exist positive real numbers γf , γh, such that

inequalities (72) hold, for (xt, x̂t, ut) ∈ Ω × Ω × U .
Then, there exist positive real numbers η, ε0, θ, with θ > α,
such that, if ‖[xt0 ]

m − [x̃t0 ]
m‖ < ε0, then

‖[xt]m − [x̃t]m‖ ≤ η‖[xt0 ]
m − [x̃t0 ]

m‖θ−(t−t0), (75)

that means that the PEKO is a local exponential observer
(recall that ‖xt − x̃t‖ ≤ ‖[xt]m − [x̃t]m‖, see (65)).

V. FINAL REMARKS AND CONCLUSIONS

The local stability of the Polynomial Extended Kalman

Filter used as an asymptotic state observer (PEKO, Poly-

nomial Extended Kalman Observer) has been investigated.

The analysis is performed following the approach used in

[24] to study the convergence properties of the Extended

Kalman Filter used as an observer. A new compact formal-

ism is introduced for the representation of the Carleman
linearization of nonlinear discrete time systems, that allows

for the derivation of the state prediction error dynamics in

a form similar to the one developed in [24] for the classical

Extended Kalman Filter. It follows that the conditions that

ensure the exponential convergence of the observation error

of the PEKO are formally similar to those given in [24].

The stability analysis performed in this paper is also

important in the stochastic framework, when both state

and output noises are present. In this case the Polynomial

Extended Kalman Filter [14] should be applied, where the

sequences of matrices Qt and Rt in the Riccati equations are

not free design parameters. The conditions of exponential

stability of the error dynamics in the deterministic setting

ensure that in the stochastic setting the moments of the

estimation error, up to a given order, remain bounded over

time (stability of the PEKF).

An interesting issue to investigate in future work will be

whether higher order PEKO’s provide better convergence

properties than lower order ones, in terms of basin of

attraction and rate of convergence.

APPENDIX

USEFUL FORMULAS OF THE KRONECKER ALGEBRA

The Kronecker product of two matrices M and N of

dimensions p×q and r×s respectively, is the (p ·r)× (q ·s)
matrix

M ⊗ N =

⎡⎢⎣m11N . . . m1qN
...

. . .
...

mp1N . . . mpqN

⎤⎥⎦ , (76)

where the mij are the entries of M . The Kronecker power

of a matrix M is recursively defined as

M [0] = 1, M [i] = M ⊗ M [i−1], i ≥ 1. (77)

Note that if M ∈ R
p×q , then M [i] ∈ R

pi×qi

. A quick survey

on the Kronecker algebra can be found in the Appendix of

[8]. See [18] for more properties.

The symbol [x]k, with k ∈ N, defined in equation (26),

can also be recursively defined as

[x]1 = x, [x]k+1 =

[
[x]k

x[k+1]

]
, k ≥ 1. (78)

Then x ∈ R
n implies [x]m ∈ R

nm , with nm =
∑m

k=1 nk.

Let Σ denote the following matrix in R
n×nm

Σ =
[
In 0n×(nm−n)

]
. (79)

Σ is called selection matrix because it selects the first n
component of a vector of dimension nm. It is such that x =
Σ[x]m, ∀x ∈ R

n. Note that the vector [x]m belongs to a

submanifold Mm ⊂ R
nm of dimension n, defined as

Mm =
{
X ∈ R

nm : X = [ΣX]m
}
. (80)

Mm is called consistency manifold, and if X ∈ Mm, then

X is said to be consistent, because in this case x = ΣX is

such that X = [x]m.
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Let Im(v), where m ∈ N be a nm × nm matrix defined

as

Im(v) = Inm
+ Sm(v), (81)

where matrix Sm(v) is a strongly lower block-triangular

matrix, whose blocks Sh,k =
[Sm(v)

]
h,k

, are defined as

Sh,k = 0nh×nk , for h ≤ k, (strongly lower diagonal)

S2,1 = v ⊗ In + In ⊗ v,

Sh,1 = v[h−1] ⊗ In + Sh−1,1 ⊗ v, 2 < h ≤ m

Sh,k = Sh−1,k−1 ⊗ In + Sh−1,k ⊗ v, 1 < k < h.

(82)

From the definition it easy to see that Sm(0) = 0, and

therefore

Im(0) = Inm
. (83)

Lemma 3. For any given v and v̄ in R
n and m ∈ N, the

following hold

[v + v̄]m = Im(v̄)[v]m + [v̄]m, (84)

[v − v̄]m = Im(−v̄)
(
[v]m − [v̄]m

)
. (85)

[v]m = −Im(v)[−v]m, (86)

I−1
m (v) = Im(−v), (87)

The Kronecker formalism can be used also to represent

differential operators. Matrices of derivatives of any order

with respect to a vector variable x ∈ R
n can be represented

defining the operator ∇[i]
x ⊗. Let ψ : R

n �→ R
q be a

differentiable function. The operator ∇[i]
x ⊗ formally acts as

a Kronecker product as follows:

∇[0]
x ⊗ ψ = ψ,

∇[i+1]
x ⊗ ψ = ∇x ⊗ (∇[i]

x ⊗ ψ
)
, i ≥ 1.

(88)

with ∇x = [∂/∂x1 · · · ∂/∂xn]. Note that ∇x ⊗ ψ is the

standard Jacobian of the vector function ψ.
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