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Abstract— This paper considers the problem of model reduc-
tion for controlled systems. The paper considers a dual/adjoint
formulation of the general optimization problem to minimize
a criterion function subject to plant dynamics and system
constraints. By carrying out an approximation on the La-
grangian or Hamiltonian system that is inferred from the
dual optimization problem, a reduced Hamiltonian system is
obtained that approximates the optimally controlled dynamical
system. The merits of the method are illustrated on an example
of a controlled binary distillation process.

Index Terms— Model reduction, Hamiltonian systems, Opti-
mization theory

I. INTRODUCTION

In control system design one generally faces the paradigm
that high quality controllers will have a considerable com-
plexity because they are inferred from high quality models.
Indeed, model-based controllers are often as least as complex
as the model for which they are designed. For large-scale
systems that are represented by high dimensional state space
models this often means that the synthesis of controllers
easily turns into a computationally infeasible or numerically
intractable task. In addition, the maintenance and numerical
robustness of controllers is often a serious practical consid-
eration that leads one to prefer simple low order controllers
over complex high order ones.

The problem of designing low order controllers for high
order or large-scale dynamical systems has received con-
siderable attention in the model reduction community [10].
The most common approach towards solving this problem
amounts to first approximating the high order plant by a low
order one and subsequently designing a (low order) controller
for the low order plant. This ‘reduce-then-optimize’ strategy
of model-based control system design has found widespread
applications. The alternative is an ‘optimize-then-reduce’ ap-
proach in which first a model-based controller is synthesized
on the basis of a high order plant, which is then reduced
in complexity. Due to the complexity of the plant model,
this approach is numerically demanding and often infeasible
from a practical point of view. Other approaches for the
synthesis of low order controllers include the so called ‘direct
methods’. These methods involve a direct optimization of
the parameters that represent the controller as an a priori
structured component in a controlled system configuration.
See, e.g., [6].
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This paper is motivated by a different approach towards
the construction of low order controllers. Using classical
approaches in variational analysis, the formulation of an
optimal control (or an optimization) problem for a given
plant results in a set of Lagrangian or adjoint equations
whose solution determines the optimally controlled system.
The adjoint equations represent the interconnection of plant
and optimal controller. However, they are often defined in
terms of differential or partial differential equations that are
inadequate or cumbersome for the purpose of control system
synthesis. Indeed, the classical Hamilton-Jacobi-Bellman [1]
differential equations in dynamic programming and varia-
tional analysis lead to problems with two-point boundary
conditions, non-causal solution structures or non-smooth
solutions. The area of dynamic programming has proposed
and developed various notions of generalized solutions to
cover such situations.

Reduction of the adjoint system corresponds to a more
direct approximation of the optimally controlled system and
may be a feasible strategy to infer simpler representations of
the optimally controlled system. This reduction approach will
be the topic of this paper. Earlier work in the realm of un-
constrained linear systems has been discussed in [13]. Here,
we consider the general optimization problem to minimize
a cost function subject to arbitrary equality and inequality
constraints and subject to the dynamics of a given system. We
adopt the structure of a constrained port-Hamiltonian system
to represent the optimal controlled system. A reduction
strategy is proposed in which an empirical basis is used to
reduce the complexity of the Hamiltonian system.

Notation and terminology
We denote by R the set and field of real numbers. For T ⊆ R
let L2(T) denote the set of Lebesgue measurable real valued
functions v : T → Rn that are square integrable in the sense
that

‖v‖2 :=

√∫
T
‖v(t)‖2 dt < ∞.

When equipped with pointwise algebraic operations and
inner product

〈v, w〉 :=
∫

T
v(t)∗w(t) dt

this becomes a Hilbert space which we also denote by
L2(T, Rn), or by L2 for short. We denote by Cp(T) the class
of real valued functions on T that are p times continuously
differentiable. Partial derivatives and partial gradients of a
multivariable differentiable functional v in the arguments
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x1, . . . , xn with xi ∈ Rni are denoted ∂v
∂xi

and ∇xi
v,

respectively. The partial gradient ∇xiv = [ ∂v
∂xi

]> consists of
the column vector of all partial derivatives of v with respect
to the ni components of xi. Hence, ∇xiv : RN → Rni

where N =
∑n

i=1 ni. Finally, the function col(·) proves
useful to stack vector valued arguments in a column vector
as in col(a, b) = (a> b>)>.

II. HAMILTONIAN REPRESENTATIONS OF CONTROLLED
SYSTEMS

This section aims to formulate a general optimal control
problem for a given dynamical system and to show that,
under suitable conditions, its solution admits a representation
as a constrained port-controlled Hamiltonian system that
is interconnected with a system that consists of a static
nonlinearity.

A. Optimization problem
Consider the general optimization problem to minimize

the cost function

J(x, u) =
∫ te

0

s(x(t), u(t)) dt + e(x(te)) (1)

over all continuously differentiable state and input trajecto-
ries (x, u) that satisfy the constraints

ẋ = f(x, u), x(0) = x0 (2a)
g(x, u) = 0 (2b)
h(x) ≤ 0 (2c)

Here, x(t) ∈ Rn is the state, u(t) ∈ Rm the input, and

s : Rn+m → R, e : Rn → R
f : Rn+m → Rn, g : Rn+m → Rq, h : Rn → Rp

are given functions that are assumed to be continuously
differentiable. Following standard terminology, s(x, u) is
called the stage cost and e(x) is the end-point weighting.
It is assumed that both s and e are non-negative. We refer
to (2a) as the state evolution or the system equation, to (2b)
as the equality constraint and to (2c) as the inequality con-
straint. The q equality constraints (2b) and the p inequality
constraints (2c) are assumed to hold for all time instances
t ∈ [0, te] and the inequality (2c) is interpreted component-
wise: that is hj(x(t)) ≤ 0 for all t ∈ [0, te] and for all
j = 1, . . . , p. If no confusion can arise, we suppress the
time dependence of variables.

The constraints (2) define a feasible set of candidate state
and input trajectories that is given by

F := {(x, u) ∈ L2([0, te]) | (2) holds}

and is assumed to be non-empty throughout the paper.
We aim to minimize J subject to the state evolution, the
equality and inequality constraints defined in (2). Precisely,
we consider the primal optimization problem

Popt := inf
(x,u)∈F

J(x, u) (3)

and wish to find, if possible, (x∗, u∗) ∈ F such that
J(x∗, u∗) = Popt.

B. Port-controlled Hamiltonian systems

A solution of the optimization problem (3) can be de-
rived using techniques from variational analysis. Define the
Hamiltonian function H : Rn+n+m+q → R by setting

H(x, λ, u, µ) := s(x, u) + λ>f(x, u) + µ>g(x, u). (4)

Further, define the Lagrangian functional

L(x, λ, u, µ, ν) := 〈1, s(x, u)〉+ e(x(te))+
+ 〈λ, f(x, u)− ẋ〉+ 〈µ, g(x, u)〉+ 〈ν, h(x)〉 (5)

where 〈·, ·〉 is the L2([0, te]) inner product, together with the
Lagrange dual cost

`(λ, µ, ν) := inf
(x,u)∈F

L(x, u, λ, µ, ν).

The Lagrange dual cost is defined on the domain

G := {(λ, µ, ν) ∈ L2([0, te]) | ν ≥ 0}

and is called bounded if there exists a triple (λ, µ, ν) ∈ G
for which `(λ, µ, ν) > −∞. It is wel known [2] that
the Lagrange dual cost is a concave function and satisfies
`(λ, µ, ν) ≤ Popt for all (λ, µ, ν) ∈ G. If we assume that
the Lagrange dual cost is bounded, the dual optimization
problem amounts to determining

Dopt := max
(λ,µ,ν)∈G

`(λ, µ, ν)

and, if possible, trajectories (λ∗, µ∗, ν∗) ∈ G such that
`((λ∗, µ∗, ν∗) = Dopt. By construction, we have Dopt ≤ Popt.

Under suitable convexity conditions on the cost and con-
straint functions a sufficient condition for the existence of a
global minimizer for the primal optimization problem Popt is
given by the generalized Karush-Kuhn-Tucker theorem. See,
e.g., [2], [4]. Precisely, the constraints (2b) and (2c) are said
to satisfy the constraint qualification condition if there exist
at least one pair (x, u) such that g(x, u) = 0 and hj(x) < 0
for all components hj , j = 1, . . . , r of h.

Theorem II.1 Suppose g and h are affine and J is convex.
Assume that the primal optimization problem (3) satisfies the
constraint qualification. Then Dopt = Popt. Moreover, there
exist functions λ∗, µ∗ and ν∗ ≥ 0 defined on [0, te] such
that Dopt = `(λ∗, µ∗, ν∗), i.e., the dual optimization problem
admits an optimal solution. In addition, (x∗, u∗) is an optimal
solution of the primal optimization problem and (λ∗, µ∗, ν∗)
is an optimal solution of the dual optimization problem, if and
only if for all time instances t ∈ [0, te]:

1) g(x∗, u∗) = 0 and h(x∗) ≤ 0,
2) ν∗ ≥ 0 and (x∗, u∗) minimizes L(x, λ∗, u, µ∗, ν∗) over

all (x, u) ∈ L2([0, te]) and
3) ν∗j hj(x∗) = 0 for all j = 1, . . . , p.

Using partial integration, the conditions on z∗ :=
col(x∗, λ∗, u∗, µ∗, ν∗) translate into stationary conditions of
the Lagrangian functional. Precisely, under the assumptions
given in Theorem II.1 the optimal trajectory z∗ allows a
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representation as the (unique) solution z = col(x, λ, u, µ, ν)
of the equations

0 = ∇λL = f(x, u)− ẋ = ∇λH − ẋ (6a)

0 = ∇xL = ∇xH + λ̇ +
∂h

∂x
(x)>ν (6b)

0 = ∇uL = ∇uH (6c)
0 = ∇µL = g(x, u) (6d)
0 ≥ h(x) (6e)
0 ≤ ν (6f)
0 = νjhj(x) for j = 1, . . . , p (6g)

where the differential equations (6a) and (6b) are subject
to the two-point boundary conditions x(0) = x0 and
λ(te)>x(te) = ∇xe(x(te)). We refer to (6) as the adjoint
system corresponding to the optimization. We stress that (6)
is an autonomous system in the sense that solutions of (6)
only depend on boundary conditions in (6a) and (6b).

Using the Hamiltonian function (4), the adjoint system is
equivalently represented by

ΣH :



ẋ = ∇λH(z)
λ̇ = −∇xH(z)− ∂h

∂x (x)> · ν
ρ = −∂h

∂x (x) · ∇λH(z)
0 = ∇uH(z)
0 = ∇µH(z)

(7)

together with the static nonlinear constraints

ΣNL :


0 ≥ h(x)
0 ≤ ν

0 = νjhj(x) for j = 1, . . . , p.

(8)

Here, we introduced the auxiliary output ρ and set z =
col(x, λ, u, µ, ν). By doing so, the system ΣH becomes a
constrained port-controlled Hamiltonian system that satisfies
the conservation law

dH

dt
= ∇xH(z)>ẋ +∇λH(z)>λ̇ +∇uH(z)>u̇+

+∇µH(z)>µ̇ = −ν>
∂h

∂x
(x)ẋ =

= −ν>
∂h

∂x
(x) · ∇λH(z) = ν>ρ

for all time instances t ∈ [0, te]. See, e.g., [3], [8], [9]. In
particular, we infer that

H(z(t1)) = H(z(t0)) +
∫ t1

t0

ν>(t)ρ(t) dt (9)

for all 0 ≤ t0 ≤ t1 ≤ te and all ν. This shows that the
system ΣH is conservative with respect to the supply rate
ν>ρ. Note that the complementarity condition in (8) implies
that, in fact, ν>(t)ρ(t) = 0 for all t ∈ [0, te], so that in the
combined equations (7) and (8) the quantity H is conserved
along optimal trajectories.

III. HAMILTONIAN SYSTEMS AND THEIR REDUCTION

The adjoint system (6) represents the optimal controlled
system as it incorporates information about the plant, the
optimization criterion and the optimization constraints. In
this section we wish to reduce the complexity of the adjoint
system (6) by finding a lower order state space representation
for the port-Hamiltonian system (7). In the canonical coordi-
nates s := col(x, λ) the state space of (7) has dimension 2n.
Projection based model reduction strategies aim to reduce
this dimension by projecting the state on a suitably defined
lower dimensional manifold.

A. Canonical state transformations

A straightforward implementation of this strategy first
involves a canonical transformation of the state variable
s = col(x, λ) according to a bijective and continuously
differentiable mapping Φ : R2n → R2n where

s = Φ(v) =
(

Φx(v)
Φλ(v)

)
=

(
x
λ

)
. (10)

Define the state transformed Hamiltonian

H̄(v, u, µ) := H(Φx(v),Φλ(v), u, µ).

Then one easily verifies that in the transformed coordinates
the port-controlled Hamiltonian system ΣH is represented by

ΣH :


v̇ = J(v)∇vH̄(v, u, µ) + b(v)ν
ρ = b(v)>∇vH̄(v, u, µ)
0 = ∇uH̄(v, u, µ)
0 = ∇µH̄(v, u, µ)

(11)

where

J(v) =
(

∂Φ
∂v

(v)
)−1 (

0 I
−I 0

) (
∂Φ
∂v

(v)
)−>

is a skew-symmetric matrix function (i.e., J(v)+J(v)> = 0)
and where

b(v) =
(

∂Φ
∂v

(v)
)−1 (

0
−∂h

∂x (Φx(v))>

)
.

The transformed system is again a port-Hamiltonian system,
as this property is not dependent on the choice of canonical
basis in the state space [5].

B. Reduced order systems

It is our purpose to reduce the complexity of the port-
controlled Hamiltonian system (7) while retaining the port-
Hamiltonian structure. In particular, we aim to replace the
Hamiltonian function H that satisfies the conservation law
(9) by a function Ĥ that satisfies the same conservation law
(9) for the reduced order system.

With the (linear or non-linear) coordinate change Φ, the
reduced system is defined by decomposing the transformed
state variable v according to v = col(v′, v′′) and by project-
ing v on its first r = dim(v′) canonical coordinates. Here,
r < 2n is the dimension of the reduced order system. With
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this decomposition, the system (11) is equivalently described
by

ΣH :



(
v̇′

v̇′′

)
=

(
J11(v) J12(v)
J21(v) J22(v)

) (
∇v′ H̄(v,u,µ)

∇v′′ H̄(v,u,µ)

)
+

+
(

b′(v)

b′′(v)

)
ν

ρ = ( b′(v)> b′′(v)> )
(
∇v′ H̄(v,u,µ)

∇v′′ H̄(v,u,µ)

)
0 = ∇uH̄(v, u, µ)
0 = ∇µH̄(v, u, µ)

(12)

The reduced system is then defined by the equations

Σr
H :



v̇′ = ( J11(v
′,0) J12(v

′,0) )
(
∇v′ H̄(v′,0,u,µ)

∇v′′ H̄(v′,0,u,µ)

)
+

+b′(v′, 0)ν

ρ = ( b′(v′,0)> b′′(v′,0)> )
(
∇v′ H̄(v′,0,u,µ)

∇v′′ H̄(v′,0,u,µ)

)
0 = ∇uH̄(v′, 0, u, µ)
0 = ∇µH̄(v′, 0, µ)

.

(13)

In general, the reduced system (13) is no longer a port
controlled Hamiltonian system. The following theorem gives
a sufficient condition that guarantees a Hamiltonian structure
of the reduced order system.

Theorem III.1 In the decomposition of (12), the reduced
system (13) is a constrained port-Hamiltonian system of state
dimension r whenever

∇v′′H̄(v′, 0, u, µ) = 0 (14)

for all v′ and for all u and µ that satisfy the last two equations
in (13).

Proof: Under the hypothesis (14), the state evolution
of (13) reads

v̇′ = J11(v′, 0)∇v′H̄(v′, 0, u, µ) + b′(v′, 0)ν

ρ = b′(v′, 0)>∇v′H̄(v′, 0, u, µ).

It thus follows that

dH̄

dt
= ∇v′H̄

>v̇′ +∇uH̄>u̇ +∇µH̄>ν̇

= ∇v′H̄
>[J11∇v′H̄ + b′(v′, 0)ν] + 0 + 0

= ρ>ν

where we used that the skew symmetry of J(v) implies
the skew symmetry of J11(v′, v′′) for all pairs (v′, v′′) and
therefore also for all pairs (v′, 0). Then integrate to obtain
the result.

If we assume that the primal and dual optimization prob-
lems Popt and Dopt admit optimal solutions, then the control
input u and the Lagrange multiplier µ can be explicitly
solved from the equations (11). This means that there exist
functions c : R2n × Rp → Rm and d : R2n × Rp → Rq

with the property that u = c(v, ν) and µ = d(v, ν) if
and only if (v, u, µ, ν) satisfy (11). The Hamiltonian H̄ can
then be written as H̄(v, u, µ) = H̄(v, c(v, ν), d(v, ν)) which
becomes a function Ĥ(v, ν) of state-input pairs (v, ν). With

this substitution, the condition (14) becomes ∂Ĥ
∂v′′ (v

′, 0, ν) =
0 for all pairs (v′, ν).

Obviously, the choice of a suitable, possibly nonlinear,
coordinate transformation Φ together with the value of r
define the quality of the reduced order model (13). Candidate
nonlinear coordinate transformations Φ include the nonlinear
balanced realization that has been proposed in [11]. An
empirical basis transformation similar to the one proposed
in [7], leads to a linear coordinate transformation and will
be discussed below.

An empirical basis for the 2n dimensional Hamiltonian
system (7) is obtained by generating trajectories sj(t) =
col(xj(t), λj(t)) of the port-controlled Hamiltonian system
(7), for j = 1, . . . ,M and t ∈ [0, te]. The trajectories sj

are generated by varying the Lagrange multiplier ν and/or
by varying the boundary conditions in (7). Given such a
collection of state trajectories the data correlation matrix X :
R2n → R2n is defined by setting

X =
M∑

j=1

∫ te

0

sj(t)s>j (t) dt. (15)

Since X is a self-adjoint and positive semi-definite op-
erator its singular value decomposition assumes the form
X = Φ>ΣΦ in which Φ is a unitary matrix and Σ =
diag(σ1, . . . , σ2n) is a diagonal matrix with singular values
ordered according to

σ1 ≥ σ2 ≥ · · · ≥ σ2n ≥ 0.

A linear state space transformation (10) is then defined by
setting

Φ(v) := Φv

and transforms (7) to (11).

Remark III.2 It is important to remark that this reduction
strategy leads to a reduced order system that retains its
Hamiltonian structure under the conditions of Theorem III.1,
but that does not, in general, respect the constraints (2).
Reduction methods in which the equality and inequality
constraints (2b) and (2c) are respected are subject of inves-
tigation.

C. The linear case

For linear systems with quadratic cost function and affine
constraints the previous analysis specializes to

s(x, u) =
1
2

(
x
u

)> (
Q S
S> R

) (
x
u

)
, e(x) =

1
2
x>Ex

f(x, u) = Ax + Bu

g(x, u) = Agx + Bgu + Cg

h(x) = Ahx + Ch

where (A,B) is assumed to be stabilizable, E ≥ 0, Q ≥ 0
and R > 0. The Hamiltonian system (7) is then represented
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by

ΣH :



ẋ = Ax + Bu

λ̇ = −Qx− Su−A>λ−A>
g µ−A>

h ν

ρ = −AhAx−AhBu

0 = Ru + S>x + B>λ + B>
g µ

0 = Agx + Bgu + Cg

This can be rewritten in the form of an affine state space
system

ΣH :

{
ṡ = As + Bν + b

y = Cs + d
(16)

where s = col(x, λ) is the state, ν the input, y = col(ρ, u)
the output and

A =
(

Γ0−BR−1B>
g R−1

g Γg BR−1(B>
g R−1

g Bg−R)R−1B>

SR−1S>−Q−Γ>g R−1
g Γg Γ>g BgR−1B>−Γ>0

)
B =

(
0

−A>
h

)
C =

(
Ah(BR−1B>

g R−1
g Γg−Γ0) Ah(BR−1(R−B>

g R−1
g Bg)R−1B>)

−R−1(S>+B>
g R−1

g Γg) R−1(B>
g R−1

g Bg−R)R−1B>

)
b =

(
−BR−1B>

g R−1
g Cg

SR−1B>
g R−1

g Cg

)
d =

(
AhBR−1B>

g R−1
g Cg

−R−1B>
g R−1

g BgCg

)
.

Here, we set Γ0 = A − BR−1S>, Γg = Ag − BgR
−1S>

and it assumed that Rg = B>
g R−1Bg is invertible. (If Rg is

not invertible, a similar affine representation can be inferred
that involves a factorization of Rg).

The optimal trajectories of the primal and dual optimiza-
tion problem are defined by combining (16) with the static
nonlinear constraints

ΣNL :


0 ≥ Ahx + Ch

0 ≤ ν

0 = νje
>
j (Ahx + Ch) for j = 1, . . . , p.

To define the reduced order system, the affine system (16)
is simulated over the time interval [0, te] for M different
combinations of input trajectories ν and initial conditions
x0. This leads to the time trajectories sj(t), t ∈ [0, te], j =
1, . . . ,M and the data correlation matrix X = X> ≥ 0
defined in (15). We let X = Φ>ΣΦ be a singular value
decomposition of X and transform the state s in (16) to

v := Φ>s = Φ−1s.

This gives an affine system that is equivalent to (16). Finally,
the reduced order system of order r < 2n is defined by
discarding the least (2n − r) dominant directions in the
correlation matrix X as in (13).

IV. EXAMPLE IN BINARY DISTILLATION

We illustrate the reduction methodology on a model of
a binary distillation process. In binary distillation the sep-
aration of a mixture of two components is achieved by
controlling the transfer of components between various trays

VB

VT

LT

LB B, XB

D, XD

MD

MB

KD

KB

F, zF

Reboiler

Condensor

XB Bottom composition
XD Distillate composition
VB Boilup vapor flow
LT Reflux flow
LB Bottom liquid flow
VT Top vapor flow
MB Reboiler holdup
MD Condensor holdup
B Bottom product flow
D Distillate product flow
KB Stabilizing P-controller
KD Stabilizing P-controller

Fig. 1. Distillation column

in the column, so as to produce output products of a desired
purity. In a typical distillation process, two recycle streams
are returned to the column. One at the top (the liquid recycle)
to feed the downward liquid stream and one at the bottom
(the vapor recycle) to feed the upward vapor stream in the
column.

Here, we use a linearized time-invariant model of a sta-
bilized binary distillation column with 41 stages. A detailed
description of this model can be found in [12]. A schematic
representation of the distillation column with nomenclature
is depicted in Figure 1. Flow units are in kmol/min, holdups
in kmol, and tray compositions in mole fraction. The model
contains two proportional controllers in order to stabilize the
levels in the reboiler and the condensor.

Inputs of the model are

u = col(VB , LT )

which consists of the flow rate VB of the reboiler and
the reflux flow rate LT of the condenser. Outputs of the
model are taken to be the bottom and top distillate product
compositions

y = col(XB , XD).

The model is inferred from a linearization of a rigorous
nonlinear model in which the total material balance at
each of the 41 trays in the column is described. A state
space representation of the model has a state variable of
dimension n = 82 that consists of liquid compositions and
the component hold-up at each tray.

In this study, we consider only VB and LT to exert control
over the product compositions XB and XD. The resulting
plant model is therefore a stable LTI model with 2 inputs, 2
outputs and n = 82 states. The stage cost is defined by

s(x, u) =
1
2

[
x
u

]> [
Q 0
0 R

] [
x
u

]
where the Q is chosen such that x>Qx = y>y and R =
0.001·I . We only applied inequality constraints on the holdup
conditions in that

−0.05 ≤ xj(t) ≤ 0.05, j = 42, . . . , 82
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That is, the constrained function

h(x) = Ahx + Ch ≤ 0

with Ah of rank 41. No equality constraints where considered
in this example.

A reduction has been made of the affine controlled port-
Hamiltonian system on the basis of an empirical (linear) state
transformation that has been derived in the previous section.
The reduction order was set to r = 4. The optimal input
u∗ and the input û inferred from the reduced order system
where both fed to the original plant to produce outputs y∗

and ŷ, respectively.
Figure 2 shows the results on a comparison of the optimal

and suboptimal output and input trajectories, respectively.
Due to the approximation, the inequality constraints h(x) ≤
0 are not satisfied in the reduced order system. In particular,
this means that the active sets in the reduced order system
are different from the active sets in the optimally controlled
system. Nevertheless, the responses (û, ŷ) in the 4th order
approximation are reasonable approximations of the optimal
trajectories (u∗, y∗).

V. CONCLUSIONS

In this paper we considered the problem of model reduc-
tion for controlled systems. The controlled system is defined
by minimizing a criterion function subject to plant dynamics
and system constraints. Using variational analysis, the solu-
tion of this optimization problem is expressed in terms of an
adjoint system of equations that is associated with the dual
optimization problem. We view the adjoint system as the
interconnection of a constrained port-controlled Hamiltonian
system and a static nonlinear system. By carrying out an
approximation on the dynamic port-controlled Hamiltonian
system, a reduced order system is obtained that has been
proven to be a port-controlled Hamiltonian system under
suitable conditions. The merits of the method are illustrated
on an example of a controlled binary distillation process that

Fig. 2. Approximation results for controlled distillation column

has been reduced by projecting the system on the dominant
basis functions inferred from an empiric basis.

Qualitative or quantitative properties of the approximate
system are still subject of investigation. We believe that is
of particular interest to find reduction methods for the adjoint
system in which equality and inequality constraints are left
invariant. However, currently, this is a largely open question.
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