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Abstract— The traditional control scheme has been to input
a signal into a plant, where the signal is derived from either an
open-loop or a closed-loop. This control strategy requires that
the plant be able to accept inputs or can be modified to do so.
However, this situation is not always true in biological genetic
networks; in these systems, there is often no input or obvious
modification to allow inputs. We believe that they require a new
paradigm for control. Biotechnology techniques are such that it
is easier to make topological changes to a genetic network than
it is to either change the states of the pathway or add more
elements to the pathway. Thus, for such genetic networks it is
important to develop a theory of control based on making large-
scale changes (e.g. genetic mutations) to the topology of the
network; we provide steps towards such a theory. We highlight
some useful results from monotone and hybrid systems theory,
and show how these results can be used for such a topological
control scheme. We consider the cancer-related p53 pathway as
an example; we analyze this system using control theory and
devise a controller.

I. INTRODUCTION

Control theory has traditionally focused on a core group of

goals: to stabilize a plant, to improve plant performance, to

robustify a plant, to track a reference, or to perform motion

planning. In engineering systems, these goals have been

achieved through an analysis-design flow; this flow is rarely

linear – there is often a need to go back to previous steps

and incorporate things that were missed in earlier attempts.

Beginning with design specifications, we write mathematical

models for the engineering system, analyze these models,

and devise a controller. We also implement the controller on

actual hardware.

The traditional control scheme has been to input a signal

into a plant, using either an open-loop or a closed-loop con-

troller. Such a control strategy is possible if the plant is able

to accept inputs or can be modified to do so. However, this

situation is not always true in biological genetic networks; in

these systems, there is often no input or obvious modification

to allow inputs. Instead of inputs, genetic networks are more

easily influenced through large-scale modifications. Genetic

networks are different from traditional engineering systems

and require a new paradigm for control.

A. Topology Based Control

It is often easier to change the topology of a genetic

network than it is to either change the states or elements of
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the network. For instance, a state could be the concentration

of a protein within a cell, something which is difficult

to affect to within any order of precision. Additionally, it

is sometimes difficult or not feasible to modify or insert

pathways by adding elements [22], [20], [8]. Thus, for

genetic networks it is important to develop a theory of control

based on making large-scale changes (e.g. genetic changes)

to the topology of the genetic network. Fundamentally, we

want to change how a cell operates and go beyond modifying

the cellular environment.

Genetic networks can be modified in a variety of ways.

Biotechnology techniques allow for the insertion of genetic

material into bacteria, and are commonly used for alternative

energy and pharmaceutical applications [13], [28]. In another

technique, the genetic material of a virus is replaced with

useful, genetic material. Next, the host is infected with

the virus, and this inserts the useful, genetic material into

the host. This control technique is being studied for use

in pharmaceutical applications such as cystic fibrosis [13],

[28]. Biologists continue to develop new techniques, amongst

which include the use of microRNA and single interfering

RNA.

Though many of these techniques are established and

used in practice, there is a lack of a systematic theory or

methodology to determine which modifications to make.

Biological research often involves the use of intuition or

trial-and-error to determine which changes are or are not

beneficial for the purposes of controlling a biological system.

In this paper, we consider piecewise-affine (PWA) hybrid

systems and ordinary differential equation (ODE) models of

biological systems. We use two different types of models for

reasons of analysis: The simpler, hybrid systems models are

easier to analyze for global behavior, and the more detailed,

ODE models are easier to analyze for local behavior of small

components of the network. We discuss results related to

hybrid systems theory, define and analyze controllers using

ODE theory, and then we use these theories to analyze and

build a controller for the p53 pathway – a pathway that is

related to cancer.

We qualify what we mean by topological control. Our

control changes the topology of the network by applying a

pharamaceutical or other chemical, and the topology remains

changed only in the presence of this pharamaceutical. As

soon as it degrades away, the topology of the network

goes back to an uncontrolled, unchanged state. Since our

control is topological, it is crucial that we have a correctly

identified network. The approach that we describe is unable

to deal with latent variables that are unidentified, because

the presence of latent variables can drastically change the
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behavior of the system.

II. PWA HYBRID AUTOMATON

The PWA hybrid systems we consider have rectangular

guards, and are a simplification of general hybrid systems

[19], [29]. In order to define them, we begin we a set of

preliminary definitions.

A. Preliminaries

We define a hypercube as

C = {x : li < xi < ui, ∀i ∈ {1, . . . , n}}, (1)

where li, ui are constants, n is the dimension of the state-

space, and xi denotes the i-th component of x. Similarly,

define a hyperedge as

E = {x : li < xi < ui,

∀i ∈ I ∧ xj = γj , ∀j ∈ {1, . . . , n} \ I}, (2)

where li, ui, γj are constants and I ⊆ {1, . . . , n} is a set of

indices. Additionally, to each hypercube Cq we associate a

total of (3
n−1) hyperedges Eq

k – by defining li, ui, γj , and I

for each k – such that
⋃3n

−1
i=1 Eq

i = ∂C and Eq
i ∩E

q
j = ∅ for

i 6= j. An example in R
2 of a hypercube and its associated

hyperedges is shown in Figure 1.

C1
= {x : 0 < x1 < 1 ∧ 0 < x2 < 1}

E1
1 = {x : 0 < x1 < 1 ∧ x2 = 1}

E1
2 = {x : x1 = 1 ∧ x2 = 1}

Fig. 1: A simple example of a hypercube and its associated

hyperedges in R
2 is shown. Only two of the associated

hyperedges are labeled; there are eight hyperedges associated

to C1.

B. Definition of PWA Hybrid System

We define a PWA hybrid system on a domain D as a

collection of hypercubes Ci, with ẋ = Aix + bi for x ∈ Ci,

such that D =
⋃

i>0 C
i and Ci∩Cj

= ∅ for i 6= j. A trajectory

of this system is a solution of the vector field f(x) in the

sense of Filippov [9], where f(x) = A
i
x + b

i if x ∈ Ci

and is undefined otherwise. Specifically, a trajectory of this

system with initial condition x ∈ D is given by ψt(x) ∈ D
such that

dψt(x)

dt
∈

⋂

δ>0

⋂

µ(N)=0

co(f(B(x, δ) \N)) (3)

almost everywhere, where B(x, δ) = {y : ‖x−y‖ 2
2 < δ} and

the intersection is taken over all sets N with measure zero.

A solution in the sense of Filippov is not necessarily unique;

this property is unfortunate, because the non-uniqueness of

solutions can lead to a lack of global monotonicity. For initial

condition x ∈ D, define Tx = [0, tf ) as the maximal interval

such that ψt(x) ∈ D. We can interpret tf as the escape time

at which ψtf
(x) /∈ D.

C. Trajectory Cycles

We will define the notion of trajectory cycles to describe

the type of trajectories possible in a system. Intuitively, a

forward trajectory cycle is defined as a forward trajectory

of the continuous states of the hybrid system, such that the

trajectory makes an infinite number of visits to a particular

hypercube. Similarly, a backwards trajectory cycle is defined

as a backwards trajectory of the continuous states, such

that the trajectory makes an infinite number of visits to

a particular hypercube. Note that implicit in both intuitive

definitions is the inclusion of Zeno behavior.

III. PROMOTION-INHIBITION NETWORKS

A promotion-inhibition network is a signed, directed graph

N = (V,E, S). V = {v1, . . . , vn} is the set of vertices, E ⊆
{(u, v) : u, v ∈ V } is the set of directed edges, and S : E →
{−1,+1} is a function that gives the sign of an edge. For

an edge e = (u, v): u is the direct predecessor of v, and v is

the direct successor of u. A feedback loop is a directed cycle

L = {e1 = (u1, v1), . . . , em = (um, vm)}, where ui = vi−1

for i = 2, . . . ,m; and vm = u1. A negative feedback loop is

a feedback loop L such that
∏m

i=1 S(ei) = −1. A monotone

loop is an undirected cycle M = {e1 = (u1, v1), . . . , em =

(um, vm)}, where either vi = ui−1 or ui = vi−1 for i =

2, . . . ,m; and vm = u1 or v1 = um. A negative monotone

loop is a monotone loop such that
∏m

i=1 S(ei) = −1.

A. Relation to Biological Genetic Networks

Genetic networks are often elucidated in the form of a

promotion-inhibition network, and examples are shown in

Figure 2. Intuitively, a positively (negatively) signed edge

between two vertices means that an increase in the direct

predecessor leads to an increase (decrease) in the direct

successor, and biologists term this as promotion (inhibition).

These networks do not describe the underlying biological

mechanism of an edge, but this information will be important

when designing controllers.

We can generate a PWA hybrid system model from a

promotion-inhibition network, using the techniques of [7],

[12], [25], [14], [3], [11], [5]. Similarly, we can generate an

ordinary differential equation model [17], [26] from these

networks. There are various advantages and disadvantages

to the two types of models, and we discuss this below.

IV. EXISTENCE OF TRAJECTORY CYCLES

An important class of results in the hybrid and monotone

systems theories relates the topological structure of a system

to the global behavior of trajectories of the system, indepen-

dent of any coefficients in the system. One useful theorem
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concerns a PWA hybrid system derived from a promotion-

inhibition network, in the manner of [7], [12], [25], [14],

[3], [11], [5]. Under technical assumptions on the PWA

hybrid system, if there are no negative feedback loops in the

promotion-inhibition network, then there are no trajectory

cycles [4].

Under the given conditions, these systems are stable and

trajectories converge to an equilibrium point in a node-like

manner; that is, trajectories qualitatively look like the trajec-

tories of a stable, linear system with purely real eigenvalues.

Moreover, the presence of negative feedback is a necessary

condition for the presence of limit cycles, centers, and foci.

The shortcoming of this theorem is that it does not apply

to many systems with self-inhibition, and this is common in

biological systems.

An similar result holds for ODE systems. Under technical

conditions, if the promotion-inhibition network has no nega-

tive monotone loops, then the system is a monotone system

[17], [1]. Consequently, the trajectories of the system con-

verge to an equilibrium and there are no stable oscillations

[16]. These theorems apply to systems with self-inhibition,

but they are stricter because negative montone loops are

stricter than negative feedback loops.

V. CONTROLLERS

Through the use of results stated in Sect. IV, several dif-

ferent topology based controller schemes become apparent.

The basic idea is to use operations, such as removing edges

or nodes in the promotion-inhibition network, to change

the topology of the genetic network. We want to force the

genetic network into a situation such that it has no negative

feedback. Because this will ensure that the system does

not oscillate and has simple dynamics, it will be easier to

design the controller to move the system into a desired state.

Such control is quite crude in relation to traditional control

techniques, but it can be used to achieve useful results in

certain situations.

It is important to keep in mind that the fundamental ideas

of the controllers are contained within the basic topological

examples given below. Though these are examples, the exam-

ples are general since the equations model two broad classes

of reactions. Based on existing biological techniques [13],

[28], the controller examples that we give are hypothetically

feasible. However, it is not always possible to implement the

controller.

Despite this, the reason that the fundamental ideas are

topological is that there are multiple, biological ways to

achieve the effects that we describe. For instance, a node

removal can be accomplished via compounds or pharma-

ceuticals that bind to a protein and remove its function,

instead of the antisense RNA example that we give [13].

The controller used to remove an edge or a node must

correspond to the biological mechanism behind the edge or

node, otherwise the controller will fail.

A. Inhibition Edge Removal Example

Gene therapy techniques can add genetic material, but they

cannot remove genetic material. Thus, to remove an inhibi-

tion edge we must be more clever: we can use competitive

binding to accomplish such an aim. The basic idea for the

control is to add a high number of copies of a gene and

its promoter region to a cell. This negates the effect of any

inhibitors.

Suppose that we have a promotion-inhibition network with

edge e = (A,B) and label S(e) = −1, and we use a

control that enforces [D0] ≫ [A0], where the subscript 0 is

used to denote initial concentrations and the square brackets

[·] denote concentration. One model for this is the set of

reactions

A+D
k1

↼−−−−−−⇁
k
−1

AD (4)

D + Ei

k2,i

↼−−−−−−⇁
k
−2,i

DEi
k4,i

−−→ B +D + Ei (5)

D + Fi

k3,i

↼−−−−−−⇁
k
−3,i

DFi, (6)

where Ei are proteins which promote the production of

protein B, D is the DNA which codes for protein B and

has the accompanying promoter region, and Fi is a protein

which binds to DNA D but does not begin transcription.

Note that i indexes over multiple proteins and complexes. In

these reactions, AD, DEi, AP , and DFi are intermediate

complexes. The effect of the inhibitors A and Fi is to prevent

the formation of the DEi complex, that is either A or Fi

cannot simultaneously bind with either Ei or D. Note that

(5) describes the aggregate process of activators and enzymes

producing a protein and (4) and (6) describe an inhibitor

binding to DNA.

These reactions can be written as a set of fractal reaction

equations [23], [24], [31] as

d[AD]

dt
= k1[A]

α1 [D]
α2 − k

−1[AD] (7)

d[DEi]

dt
= k2,i[D]

α3,i [Ei]
α4,i − k

−2,i[DEi] (8)

d[DFi]

dt
= k3,i[D]

α5,i [Fi]
α6,i − k

−3,i[DFi] (9)

d[B]

dt
=

∑

i

k4,i[DEi]
α7,i , (10)

with the following constraints:

[A0] = [A] + [AD] (11)

[D0] = [D] + [AD] +

∑

i

[DEi] +

∑

i

[DFi] (12)

[Ei,0] = [Ei] + [DEi] (13)

[Fi,0] = [Fi] + [FEi]. (14)

The constraints assume fixed initial concentrations. In these

fractal equations, each k is a reaction rate, each α is an

exponent that relates concentration to the speed of the

reaction, and the brackets denote concentration.

From the positivity of concentrations and (11), it is clear

that 0 ≤ [AD] ≤ [A0], which implies that

[D0] − [A0] − [DE] ≤ [D] ≤ [D0] − [DE]. (15)
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However, since [D0] ≫ [A0], we have that approximately

[D] = [D0] − [DE]. (16)

Consequently, if [Fi,0] ∼ [D0] then our system is approxi-

mately the same as if reaction (4) did not occur. In the special

case of α3,i = α5,i = 1, solving for the rate of production,

using standard assumptions, gives

d[B]

dt
=

∑

i

k4,i

(

k2,i

k
−2,i

([D0]/H)[Ei]
α4,i

)α7,i

, (17)

where

H = 1 +

∑

i

k2,i

k
−2,i

[E]
α4,i +

∑

i

k3,i

k
−3,i

[F ]
α6,i . (18)

Through the use of our controller, we were able to eliminate

the inhibitory effect of A on B. Thus, we effectively break

the inhibition edge in the promotion-inhibition network.

B. Node Removal Example

In a node removal controller, we remove a node from the

promotion-inhibition network. We can use antisense RNA to

prevent translation of protein through competitive binding

with mRNA[13], [28]. The control is to add a high number

of copies of the antisense RNA. This removes the effect of

the node.

Suppose that we have a promotion-inhibition network with

edge e = (A,B) and label S(e) = +1, and we use a control

that enforces [P0] ≫ K , where [mAP ] ≤ K . One model for

this is the set of reactions

D + Ei

k1,i

↼−−−−−−⇁
k
−1,i

DEi
k3,i

−−→ DEi +mA (19)

mA
k4−→ mA+A (20)

mA
k5−→ Z1 (21)

A
k6−→ Z2 (22)

mA+ P
k2

↼−−−−−−⇁
k
−2

mAP (23)

where Ei are proteins which promote the production of

protein A, D is the DNA which codes for protein A and has

the accompanying promoter region, P is the control of added

antisense RNA. Also, Z1 and Z2 are the aggregate products

of degradation. Note that i indexes over multiple proteins and

complexes. In these reactions, mA is the translated mRNA

for protein A, DEi is an intermediate complex, and mAP is

the complex of mRNA bound with the antisense RNA. Note

that (19) describes the aggregate process of activators and

enzymes translating the DNA for a protein into mRNA, (20)

describes the aggregate process of translation of mRNA into

protein, and (23) describes the binding of a mRNA with the

added antisense RNA. Since P is the antisense RNA of the

mRNA, this prevents translation of the mRNA into protein

when P is bound to mA. Also, (21) and (22) describe the

degradation of mA and A, respectively.

These reactions can be written as a set of fractal reaction

equations [23], [24], [31] as

d[DEi]

dt
= k1,i[D]

α1,i [E]
α2,i − k

−1,i[DEi] (24)

d[mA]

dt
= k3,i[DEi]

α3,i − k4[mA]+ (25)

− k2[mA]
α5 [P ]

α6 + k
−2[mAP ]

d[A]

dt
= k5[mA]

α4 − k6[A] (26)

d[mAP ]

dt
= k2[mA]

α5 [P ]
α6 − k

−2[mAP ] (27)

with the following constraints:

[D0] = [D] +

∑

i

[DEi] (28)

[Ei,0] = [Ei] + [DEi] (29)

[P0] = [P ] + [mAP ] (30)

[DEi] ≤ Ki (31)

[mA] ≤ K. (32)

The last two inequalities come about through standard argu-

ments involving nullclines. In these fractal equations, each

k is a reaction rate, each α is an exponent that relates

concentration to the speed of the reaction, and the brackets

denote concentration.

Typically, the reversible reactions are much faster than the

irreversible reaction, that is the reactions corresponding to

k1,i, k2, k−1,i, k2 are much faster than those corresponding

to k3,i, k4, k5 [23]. Under this assumption, we can apply the

quasi-steady state assumption to get

[DEi] =
k1

k
−1

[D]
α1,i [Ei]

α2,i (33)

[mAP ] =
k2

k
−2

[mA]
α5 [P ]

α6 . (34)

Combining (28) and (34) gives

[mA] =

(

k
−2[mAP ]

k2[P ]α6

)1/α5

(35)

≤

(

k
−2K

k2([P0] − [mAP ])α6

)1/α5

. (36)

Because the controller enforces that [P0] ≫ K , we get that

approximately [mA] = 0. Consequently, we approximately

have that
d[A]

dt
= k5[mA]

α4 − k6[A] ≤ 0. (37)

Through the use of the controller, we were able to reduce

the concentration of protein A to zero. Thus, we effectively

remove node A from the promotion-inhibition network.

VI. P53 PATHWAY

The p53 protein is an important tumor suppressor, which

reacts to stress signals and induces an appropriate cellular

response [15], [10], [2], [30]. These stress signals include

DNA damage, heat shock, cold shock, and spindle damage.

These stress signals lead to a post-translational modification
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(a) Normal p53 Pathway (b) Abnormal p53 Pathway (c) Abnormal p53 Pathway with Controller

Fig. 2: When a subsegment of the normal p53 pathway [15], [21], [27], [18] becomes abnormal, such as loss of p19 ARF

function [21], the system behaves unfavorably by underexpressing p53. Using a controller, certain edges and nodes of the

pathway can be removed to make the system behavior more favorably.

of p53, causing the p53 to trigger downstream pathways

involved with cell cycle arrest, cell senescence, or apoptosis

[15]. The inactivation of p53 can lead to tumor development

[2].

A promotion-inhibition network for a subsegment of the

p53 pathway is shown in Fig. 2a. In roughly 10% of human

tumors, p53 is inactivated through overexpression of MDM2

[10]. MDM2 can be overexpressed through an inactivation

of p19 [21], and this is shown in Fig. 2b. MDM2 works to

reduce expression of p53 [15], [10], [2], [30] by increasing

the degradation rate of p53 and facilitating the nuclear

export of p53 [2], [30]. Thus, inhibition of MDM2 has been

considered as a possible strategy for cancer treatment [30],

[10].

In designing a controller for the abnormal p53 pathway, we

must keep in mind the underlying biological mechanisms for

the edges in the network. Here, the inhibition edge between

MDM2 and p53 is due to protein-protein interaction, and

so we cannot simply use the controller given in Sect. V-A.

However, we can use the controller given in Sect. V-B to

remove the node coressponding to MDM2. The controller is

shown in Fig. 2c, and is implemented through the addition

of antisense RNA that binds with the mRNA for MDM2.

Based on existing techniques [13], [28], the controller is

hypothetically feasible.

Time course concentrations of p53, cyclin A, and MDM2

are shown in Fig. 3a for the normal p53 pathway, Fig. 3b

for the abnormal p53 pathway, and Fig. 3c for the abnormal

p53 pathway with controller. These simulations come from

an ODE model of the network, and in the simulations we

do not remove the edges between either MDM2 and p53 or

MDM2 and cyclin A. In the normal p53 pathway, concen-

trations of p53 and cyclin A are high, and concentrations

of MDM2 are low. In the abnormal p53 pathway, p53 and

cyclin concentrations are low, whereas MDM2 is in high

concentration. In the abnormal p53 pathway with controller,

the controller is used at times t = 200, t = 250, and t = 300.

The controller causes cyclin A and p53 concentrations to

increase to higher levels, and reduces MDM2 concentrations.

The controller must be used at multiple times, because the

cyclin A promoter is modeled to decay. So, the effect of

the controller wains as time goes on. If the controller is not

applied again, the system returns to an abnormal state.

VII. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

We have presented steps towards a new paradigm for

the control of biological genetic networks through topology

based controllers. Such techniques may also be useful for

understanding the effects of pharmaceuticals. The basic idea

of the controller is two-fold. First, we abstract the use of

pharmaceuticals to a graph-theoretical interpretation. Sec-

ondly, we simplify the dynamics of the system, by removing

negative feedback, and then let the simplified dynamics steer

the system to a desirable state. We gave derivations for two

possible controllers to remove edges or nodes of a network,

and used one of these controllers to treat abnormalities in

the cancer-related p53 pathway.

B. Future Works

What is needed is an understanding of the biological

mechanisms behind interactions, and a library of controllers

to deal with and eliminate such interactions. Additionally,

we need algorithms to identify what the optimal edges to

remove are. Reach set algorithms from hybrid systems may

be useful for this. In fact, we used PWA hybrid systems to

analyze global system behavior, because efficient algorithms

– for system analysis – exist for such systems [5], [6], [7],

[4], [3]. These topics are the subject of our current research.
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(c) Abnormal p53 Pathway with Controller

Fig. 3: The time course plots for the different pathways

displays the effect of the abnormality and the controller. Note

that p53 is solid, cyclin A is dashed, and MDM2 is dash-

dotted.
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[7] H. de Jong, J.-L. Gouzé, C. Hernandez, M. Page, T. Sari, and
J. Geiselmann, “Qualitative simulation of genetic regulatory networks
using piecewise-linear models,” Bulletin of Mathematical Biology,
vol. 66, no. 2, pp. 301–340, Mar. 2004.

[8] T. Deans, C. Cantor, and J. Collins, “A tunable genetic switch based
on RNAi and repressor proteins for regulating gene expression in
mammalian cells,” Cell, vol. 130, pp. 363–372, 2007.

[9] A. F. Filippov, Differential equations with discontinuous righthand

sides. Kluwer Academic Publishers, 1988.

[10] G. Ganguli and B. Wasylyk, “p53-independent functions of MDM2,”
Molecular Cancer Research, vol. 1, pp. 1027–1035, 2003.

[11] R. Ghosh and C. Tomlin, “Symbolic reachable set computation of
piecewise affine hybrid automata and its application to biological

modelling: Delta-Notch protein signalling,” Systems Biology, vol. 1,
no. 1, pp. 170–183, Jun. 2005.

[12] L. Glass, “Combinatorial and topological methods in nonlinear chem-
ical kinetics,” J. Chem. Phys, vol. 63, no. 4, pp. 1325–1335, 1975.

[13] B. Glick and J. Pasternak, Molecular Biotechnology: Principles and
Applications of Recombinant DNA. American Society of Microbiol-
ogy Press, 2003.
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