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Abstract— Neural networks are a viable pararadigm for
adaptive system identification and control. This paper develops
a new neuroadaptive control architecture for nonlinear uncer-
tain dynamical systems. The proposed framework involves a
novel controller architecture involving additional terms in the
update laws that are constructed using a moving window of
the integrated system uncertainty. These terms can be used
to identify the ideal system parameters as well as effectively
suppress system uncertainty. A linear parameterization of the
system uncertainty is considered and state feedback neuroad-
aptive controllers are developed.

I. INTRODUCTION

To improve robustness of adaptive and neuroadaptive con-
trollers several controller architectures have been proposed
in the literature. These include the σ- and e-modification ar-
chitectures used to keep the system parameter estimates from
growing without bound in the face of system uncertainty [1],
[2]. In this paper, a new neuroadaptive control architecture
for nonlinear uncertain dynamical systems is developed.
Specifically, the proposed framework involves a new and
novel controller architecture involving additional terms, or
Q-modification terms, in the update laws that are constructed
using a moving window of the integrated system uncertainty.
The Q-modification terms can be used to identify the ideal
system parameters which can be used in the adaptive law. In
addition, these terms effectively suppress system uncertainty.
Even though the proposed approach is reminiscent to the
composite adaptive control framework discussed in [3], the
Q-modification framework does not involve filtered versions
of the control input and system state in the update laws.
Rather, the update laws involve auxiliary terms predicated on
an estimate of the unknown neural network weights which in
turn are characterized by an auxiliary equation involving the
integrated error dynamics over a moving time interval. For
a scalar linearly parameterized uncertainty structure, these
ideas were first explored in [4]. In this paper, we extend
the results in [4] to vector uncertainty structures with linear
parameterizations. Finally, due to space limitations, all the
proofs are omitted from the paper. The proofs along with
extensions to nonlinear uncertainty parameterizations and
output feedback are given in [5]

II. ADAPTIVE CONTROL WITH A Q-MODIFICATION
ARCHITECTURE

In this section, we present the notion of the Q-modification
architecture in adaptive control. Specifically, consider the
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adaptive control problem with error dynamics given by

ė(t) = Ae(t) + b[∆(t)− νad(t)], e(0) = e0, t ≥ 0, (1)

where e(t) ∈ Rn, t ≥ 0, is the error signal, ∆(t) ∈ R,
t ≥ 0, is the system uncertainty, νad(t) is the adaptive
signal whose purpose is to suppress the effect of the system
uncertainty, A ∈ Rn×n is a known Hurwitz matrix, and
b = [0, . . . , 0, 1]T ∈ Rn. For simplicity of exposition, in this
section we consider the case where the system uncertainty
∆(t), t ≥ 0, is a scalar function with a perfect parametriza-
tion in terms of a constant unknown vector W ∈ RN and
an available vector of continuous basis functions θ(t) =
[θ1(t), . . . , θN (t)]T ∈ RN such that θi(t), i = 1, . . . , N ,
are bounded for all t ≥ 0. In particular,

∆(t) = WTθ(t), t ≥ 0. (2)

The parametrization given by (2) suggests an adaptive
control signal νad(t), t ≥ 0, of the form

νad(t) = ŴT(t)θ(t), (3)

where Ŵ (t) ∈ RN , t ≥ 0, is a vector of the adaptive weights.
Hence, the dynamics in (1) can be rewritten as

ė(t) = Ae(t) + b[W − Ŵ (t)]Tθ(t), e(0) = e0, t ≥ 0. (4)

The update law for Ŵ (t), t ≥ 0, can be derived using
standard Lyaupunov analysis by considering the Lyapunov
function candidate

V (e, W̃ ) =
1
2
eTPe +

1
2
W̃TΓ−1W̃ , (5)

where W̃ , W − Ŵ , Γ = ΓT > 0, and P > 0 satisfies

0 = ATP + PA + R,

where R = RT > 0. Note that V (0, 0) = 0 and V (e, W̃ ) > 0
for all (e, W̃ ) 6= (0, 0).

Now, differentiating (5) along the trajectories of (4) yields

V̇ (e(t), W̃ (t)) = −1
2
eT(t)Re(t) + eT(t)PbW̃T(t)θ(t)

−W̃T(t)Γ−1 ˙̂
W (t), t ≥ 0.

The standard choice of the update law is given by

˙̂
W (t) = ΓeT(t)Pbθ(t), Ŵ (0) = Ŵ0, t ≥ 0, (6)

so that

V̇ (e(t), W̃ (t)) = −1
2
eT(t)Re(t) ≤ 0, t ≥ 0, (7)

which guarantees that the error signal e(t), t ≥ 0, and weight
error Ŵ (t), t ≥ 0, are Lyapunov stable, and hence, are
bounded for all t ≥ 0. Since θ(t) is bounded for all t ≥ 0,
it follows from Barbalat’s lemma [6] that e(t) converges to
zero asymptotically.
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Fig. 1. Visualization of Q-modification term.

The above analysis outlines the salient features of the
classical adaptive control architecture. To improve the ro-
bustness properties of the adaptive controller (3) and (6) a
σ-modification term of the form σ(Ŵ −W 0), where σ > 0
and W 0 is an approximation of the actual system parameters,
can be included to the update law (6) to keep the adaptive
weight (i.e., parameter estimate) Ŵ from growing without
bound in the face of the system uncertainty. However, in
this case, when the error e(t) is small, ˙̂

W (t) is dominated
by σ(Ŵ −W 0) which causes Ŵ to be driven to W 0. If W 0

is not a good approximation of the actual system parameters
W , then the system error can increase. To circumvent this
problem, an e-modification term of the form ε(e)(Ŵ −W 0)
(with ε(e) = σ‖e‖) can be included to the update law (6)
in place of the σ-modification term. In both cases, however,
the modification terms are predicated on W 0 involving a best
guess for some W ∈ RN .

Next, we present a new and novel modification term that
goes beyond the aforementioned modifications. Specifically,
consider the error dynamics given by (4) and integrate (4)
over a moving time interval [td, t], t ≥ 0, where td ,
max{0, t − τd} and τd > 0 is a design parameter. Pre-
multiplying (4) by bT and rearranging terms yields

WTq(t, t− τd) = c(t, t− τd), t ≥ 0, τd > 0, (8)

where

c(t, t− τd) , bT

[
e(t)− e(t− τd)−

∫ t

td

Ae(s)ds

]

+
∫ t

td

ŴT(s)θ(s)ds, t ≥ 0, τd > 0, (9)

and

q(t, t− τd) ,
∫ t

td

θ(s)ds, t ≥ 0, τd > 0. (10)

Hence, although the vector W is unknown, W satisfies
the linear equation (8). Geometrically, (8) characterizes a
hyperplane in RN . For example, in the case where N = 2,
the hyperplane (8) is described by a line L with q(t, t− τd)
being a normal vector to L as shown in Figure 1. Note that
the distance from point A to point B shown in Figure 1,
which is the shortest distance from the weight estimate Ŵ (t)
to hyperplane L defined by (8), is given by c(t, t − τd) −
ŴT(t)q(t, t− τd).

Next, define the error

ρ(Ŵ (t), q(t, t− τd), c(t, t− τd))

, 1
2

[
ŴT(t)q(t, t− τd)− c(t, t− τd)

]2

, t ≥ 0, (11)

and note that the gradient of ρ(Ŵ (t), q(t, t − τd), c(t, t −
τd)), t ≥ 0, with respect to Ŵ (t), t ≥ 0, is given by

∂ρ(Ŵ (t), q(t, t− τd), c(t, t− τd))
∂Ŵ (t)

=
[
ŴT(t)q(t, t− τd)− c(t, t− τd)

]
q(t, t− τd).

Now, consider the modified update law for the adaptive
weights Ŵ (t), t ≥ 0, given by

˙̂
W (t) = Γ

(
eT(t)Pbθ(t) + k Q(t)

)
, Ŵ (0) = Ŵ0,

t ≥ 0, (12)

where k > 0 and

Q(t) , −
[
ŴT(t)q(t, t− τd)− c(t, t− τd)

]
q(t, t− τd),

t ≥ 0.

In contrast to (6), the update law given by (12) contains
the additional term Q(t), t ≥ 0, based on the gradient
of ρ(Ŵ (t), q(t, t − τd), c(t, t − τd)) with respect to Ŵ (t),
t ≥ 0. We call Q(t), t ≥ 0, a Q-modification term. Note
that for every t ≥ 0 the vector Q(t) is directed opposite
to the gradient ∂ρ(Ŵ (t), q(t,t−τd), c(t,t−τd))

∂Ŵ (t)
and parallel to

q(t, t − τd), which is a vector normal to the hyperplane
defined by (8). Hence, Q(t), t ≥ 0, introduces a component
in the update law (12) that drives the trajectory Ŵ (t), t ≥ 0,
in such a way so that the error given by (11) is minimized.

Note that Q(t), t ≥ 0, is zero only if Ŵ (t), t ≥ 0, satisfies

Ŵ (t)Tq(t, t− τd) = c(t, t− τd), t ≥ 0, (13)

that is, the weight estimates Ŵ (t), t ≥ 0, lie on the
hyperplane defined by (8). If the weight estimates Ŵ (t),
t ≥ 0, do not satisfy (13), then Q(t), t ≥ 0, drives
the trajectory Ŵ (t), t ≥ 0, to the hyperplane defined by
(8). Hence, the Q-modification term drives the trajectory of
the weight estimates to the hyperplane characterized by (8)
where the ideal weights W lie. As shown below, under a
condition of persistent excitation, the Q-modification term
also ensures the convergence of the weight estimates to the
ideal weights.

Next, we establish stability guarantees of the adaptive law
(3) with (12).

Theorem 2.1: Consider the uncertain dynamical system
given by (4). The adaptive feedback control law (3) with
update law given by (12) guarantees that the solution
(e(t), Ŵ (t)) ≡ (0,W ) of the closed-loop system given by
(4) and (12) is Lyapunov stable and e(t) → 0 as t →∞ for
all e0 ∈ Rn and Ŵ0 ∈ Rn.

Remark 2.1: The Q-modification term can be used to
identify the ideal weights which can be used in the adaptive
law. In this sense, the Q-modification architecture is reminis-
cent to the composite adaptation technique [3] and the com-
bined direct and indirect adaptation technique [7]. However,
the Q-modification technique markedly differs from these
approaches in the manner by which the identification error
is minimized.

If N time intervals [ti − τd, ti], i = 1, . . . , N , can be
recorded such that the corresponding vectors q(ti, ti − τd),
i = 1, . . . , N , given by (10) are linearly independent and

WTq(ti, ti − τd) = c(ti, ti − τd), ti ≥ τd, i = 1, . . . , N,
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Fig. 2. Weight identification using Q-modification architecture.

where c(ti, ti−τd), i = 1, . . . , N , are given by (9), then W
can be identified exactly by solving linear equation

MW = c, (14)

where

M =




qT(t1, t1 − τd)
...

qT(tN , tN − τd)


 , c =




c(t1, t1 − τd)
...

c(tN , tN − τd)


 .

(15)

In the case where N = 2, Figure 2 shows the ideal weight
W is identified as the intersection of the two hyperplanes L1
and L2 characterized by the linearly independent normal (to
L1 and L2) vectors given by q(t1, t1−τd) and q(t2, t2−τd),
respectively.

If the ideal weights can be identified, then no further
adaptation is needed. In this case, we can drive the trajectory
Ŵ (t), t ≥ 0, to the point W satisfying (14) and setting
Ŵ (t) = W for all t ≥ T , where T > maxi=1, ..., N{ti},
so that the uncertainty ∆(t) in (1) is completely canceled
by the adaptive signal νad(t) for all t ≥ T . This, of
course, corresponds to an ideal situation. Although for simple
problems it may be possible to identify the ideal weights
using the technique discussed above, for most problems it
is difficult to find N vectors q(ti, ti − τd), i = 1, . . . , N ,
such that the matrix M given by (15) is nonsingular and well
conditioned. Hence, for such problems, we can use a moving
time window to obtain information about W satisfying (8)
and use this information in the adaptive law (12).

The Q-modification technique described above involves
the integration of the system uncertainty. To see this, note
that (8) can be rewritten as

∫ t

t−τd

∆(s)ds = c(t, t− τd), t ≥ 0,

where the integration is performed over a moving time
window of fixed length [t− τd, t], t ≥ 0. When the system
uncertainty can be perfectly parameterized as in (2), integra-
tion over the time interval [0, t], t ≥ 0, can be used instead
of integration over a moving time window of fixed length.
Since perfect system uncertainty parametrization eliminates
approximation errors, integration over the time interval [0, t],
t ≥ 0, does not introduce any distortion of the information
of unknown weights W given by (8). However, in most
practical problems, system uncertainty cannot be perfectly
parameterized. In this case, neural networks can be used to
approximate uncertain nonlinear continuous functions over a
compact domain with a bounded error [1].
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Fig. 3. Visualization of Q-modification with modeling errors.

In particular, let ∆(t), t ≥ 0, be given by

∆(t) = WTθ(t) + ε(t), t ≥ 0,

where ε : [0, ∞] → R is the modeling error such that
|ε(t)| ≤ ε∗, ε∗ > 0, for all t ≥ 0. In this case, integration of
the system uncertainty over the time interval [0, t] gives

WTq(t, 0) = c(t, 0) +
∫ t

0

ε(s)ds, t ≥ 0, (16)

where the term
∫ t

0
ε(s)ds can become very large over time.

Hence, (16) cannot be used effectively in the update law
(12) with the appropriate modifications. Alternatively, if the
system uncertainty is integrated over a moving time window
[t− τd, t], t ≥ 0, then the unknown weights W satisfy

WTq(t, t− τd) = c(t, t− τd) +
∫ t

t−τd

ε(s)ds, t ≥ 0, (17)

where the term
∫ t

t−τd
ε(s)ds is bounded by ε∗τd. By choos-

ing τd, one can guarantee that ε∗τd is sufficiently small. Note
that (17) defines a collection of parallel hyperplanes in RN ,
or a boundary layer, where the ideal weights lie. Figure 3
shows such a collection of hyperplanes S for the case where
N = 2. Note that in Figure 3 the width of the boundary
layer, that is, the distance between points A and B, is
2τdε∗. In the next section we consider the case of nonperfect
parametrizations of the system uncertainty and show how the
Q-modification technique can be used to develop static and
dynamic neuroadaptive controllers using (17).

As elucidated above, the Q-modification technique is
based on a gradient minimization of the error defined by (11).
However, there are other error measures based on the integral
of the system uncertainty that can be used. For example,
define the accumulated error

κ(t, Ŵ (t), q(·, 0), c(·, 0))

, 1
2

∫ t

0

[
ŴT(t)q(s, 0)− c(s, 0)

]2

ds, t ≥ 0.

The gradient of this error with respect to Ŵ (t), t ≥ 0, is
given by

∂κ(t, Ŵ (t), q(·, 0), c(·, 0))
∂Ŵ (t)

= L(t, q(·, 0))Ŵ (t)− h(t, q(·, 0), c(·, 0)), t ≥ 0,

where

L(t, q(·, 0)) ,
∫ t

0

q(s, 0)qT(s, 0)ds, t ≥ 0,

h(t, q(·, 0), c(·, 0)) ,
∫ t

0

c(s, 0)q(s, 0)ds.
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For the statement of the next result define L̂(t) ,
L(t, q(·, 0)), t ≥ 0, and ĥ(t) , h(t, q(·, 0), c(·, 0)), t ≥ 0,
and consider the update law

˙̂
W (t) = Γ

[
eT(t)Pbθ(t) + k

(
ĥ(t)− L̂(t)Ŵ (t)

)]
,

Ŵ (0) = Ŵ0, t ≥ 0, (18)

where Γ = ΓT > 0 and k > 0. Furthermore, let λmin(·) and
λmax(·) denote the minimum and maximum eigenvalues of
a Hermitian matrix, respectively.

Theorem 2.2: Consider the linear uncertain dynamical
system given by (4). The adaptive feedback control law (3)
with update law given by (18) guarantees that the solution
(e(t), Ŵ (t)) ≡ (0,W ) of the closed-loop system given by
(4) and (18) is Lyapunov stable and e(t) → 0 as t →∞ for
all e0 ∈ Rn and Ŵ0 ∈ Rn. Moreover, if q(t, 0), t ≥ 0, is
persistently excited, that is, there exists T > 0 such that

∫ t+T

t

q(s, 0)qT(s, 0)ds ≥ αIN , t ≥ 0,

where IN is the N × N identity matrix and α > 0, then
e(t) → 0 and Ŵ (t) → W exponentially as t → ∞ with
degree not less than

K =
min{λmin(R), 2kα}

max{λmax(P ), λmin(Γ)} . (19)

Next, we highlight another feature of the Q-modification
technique that is useful in addressing uncertainty cancelation
or suppression. Specifically, suppose that the weight esti-
mates Ŵ (t) satisfy (13) for some t ≥ 0 and the vector θ(t)
is parallel to q(t, t− τd), that is, there exists k > 0 such that
θ(t) = k q(t, t − τd). In this case, the uncertainty ∆(t) is
perfectly canceled by the adaptive signal νad(t). Using (8),
it follows that

∆(t)− νad(t) = k (W − Ŵ (t))Tq(t, t− τd)
= c(t, t− τd)− c(t, t− τd)
= 0, t ≥ 0.

Since θi(t), i = 1, . . . , N , are bounded continuous functions
for all t ≥ 0, it follows from the mean value theorem [6]
that, for every i ∈ {1, . . . , N} and interval [td, t], t ≥ 0,
there exists s̄i ∈ [td, t] such that

qi(t, t− τd) =
∫ t

td

θi(s)ds = θi(s̄i)τd, t ≥ 0.

Hence, for all t ≥ 0 and each i ∈ {1, . . . , N},

qi(t, t− τd) = θi(t)τd + εi(t, τd),

where εi(t, τd) , τd(θi(s̄i)− θi(t)), or, in vector form,

q(t, t− τd) = τdθ(t) + ε(t, τd), t ≥ 0,

where ε(t, τd) , [ε1(t, τd), . . . , εN (t, τd)]T.

If Ŵ (t), t ≥ 0, satisfies (13), then

|∆(t)− νad(t)|
=

∣∣∣WTθ(t)− Ŵ (t)Tθ(t)
∣∣∣

=
∣∣∣∣

1
τd

W̃T(t)q(t, t− τd)− 1
τd

W̃T(t)ε(t, τd)
∣∣∣∣

=
∣∣∣∣−

1
τd

W̃T(t)ε(t, τd)
∣∣∣∣

≤ 1
τd
‖W̃T(t)‖‖ε(t, τd)‖, t ≥ 0. (20)

Now, if τd is chosen such that 1
τd
‖ε(t, τd)‖ is sufficiently

small, then it follows from (20) that |∆(t) − νad(t)| can
be made sufficiently small regardless of the magnitude of
‖W̃ (t)‖, t ≥ 0. Hence, the Q-modification technique, which
ensures that Ŵ (t), t ≥ 0, satisfies (13), guarantees system
uncertainty suppression. Finally, note that since 1

τd
ε(t, τd) =

[ θ1(s̄1)− θ1(t), . . . , θN (s̄N )− θN (t) ]T, a choice of τd can
depend on the time rate of change of θ(t).

III. NEUROADAPTIVE FULL-STATE FEEDBACK CONTROL
FOR NONLINEAR UNCERTAIN DYNAMICAL SYSTEMS

In this section, we consider the problem of characterizing
neuroadaptive full-state feedback control laws for nonlinear
uncertain dynamical systems to achieve reference model
trajectory tracking. Specifically, consider the controlled non-
linear uncertain dynamical system G given by

ẋ(t) = A0x(t) + BΛ [G(x(t))u(t) + f(x(t), û(t))
+Ax(t)] , x(0) = x0, t ≥ 0, (21)

where x(t) ∈ Rn, t ≥ 0, is the state vector,
u(t) ∈ Rm, t ≥ 0, is the control input, û(t) ,
[ u(t− τ), u(t− 2τ), . . . , u(t− pτ)] is a vector of p-
delayed values of the control input with p ≥ 1 and τ > 0
given, A0 ∈ Rn×n and B ∈ Rn×m are known matrices,
Λ ∈ Rm×m is an unknown positive-definite matrix, and
G : Rn → Rm×m is a known input matrix function such
that detG(x) 6= 0 for all x ∈ Rn, f : Rn × Rmp → Rm is
Lipschitz continuous on Rn ×Rmp but otherwise unknown,
and A ∈ Rm×n is unknown. Furthermore, we assume that
x(t), t ≥ 0, is available for feedback and the control input
u(·) in (21) is restricted to the class of admissible controls
consisting of measurable functions such that u(t) ∈ Rm,
t ≥ 0.

In order to achieve trajectory tracking, we construct the
reference system Gref given by

ẋref(t) = Arefxref(t) + Brefr(t), xref(0) = xref0 , t ≥ 0,
(22)

where xref(t) ∈ Rn, t ≥ 0, is the reference state vector,
r(t) ∈ Rr, t ≥ 0, is a bounded piecewise continuous
reference input, Aref ∈ Rn×n is Hurwitz, and Bref ∈ Rn×r.
The goal here is to develop an adaptive control signal u(t),
t ≥ 0, that guarantees that ‖x(t) − xref(t)‖ < γ, t ≥ T ,
where ‖ · ‖ denotes the Euclidean vector norm and γ > 0 is
sufficiently small.

Consider the control law given by

u(t) = G−1(x(t))(un(t) + uad(t)), t ≥ 0, (23)

where un(t), t ≥ 0, and uad(t), t ≥ 0, are defined below.
Using the parameterization Λ = Λ̂+∆Λ, where Λ̂ ∈ Rm×m

is a known positive-definite matrix and ∆Λ ∈ Rm×m is an
unknown symmetric matrix such that Λ̂ + ∆Λ is positive
definite, the dynamics in (21) can be rewritten as

ẋ(t) = A0x(t) + BΛ̂un(t) + B
[
Λ̂uad(t) + ΛAx(t)

+Λf(x(t), û(t)) + ∆Λun(t) + ∆Λuad(t)] ,
x(0) = x0, t ≥ 0. (24)

The following matching conditions are needed for the
main results of this section.

Assumption 3.1: There exist Kx ∈ Rm×n and Kr ∈
Rm×r such that A0 + BΛ̂Kx = Aref and BΛ̂Kr = Bref .
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Now, let un(t), t ≥ 0, in (23) be given by

un(t) = Kxx(t) + Krr(t), t ≥ 0. (25)

In this case, the system dynamics (24) can be rewritten as

ẋ(t) = Arefx(t) + Brefr(t) + B
[
Λ̂uad(t) + ΛAx(t)

+Λf(x(t), û(t)) + ∆Λun(t) + ∆Λuad(t)] ,
x(0) = x0, t ≥ 0. (26)

Defining the tracking error e(t) , x(t)− xref(t), t ≥ 0, the
error dynamics is given by

ė(t) = Arefe(t) + B
[
Λ̂uad(t) + Λf(x(t), û(t)) + ΛAx(t)

+∆Λun(t) + ∆Λuad(t)] , e(0) = e0, t ≥ 0, (27)

where e0 , x0−xref0 . We assume that the function f(x, û)
can be approximated over a compact set Dx×Dû by a linear
in parameters neural network up to a desired accuracy. In this
case, there exists ε̂ : Rn×Rmp → Rm such that ‖ε̂(x, û)‖ <
ε̂∗ for all (x, û) ∈ Dx ×Dû, where ε∗ > 0, and

f(x, û) = WT
f σ̂(x, û) + ε̂(x, û), (x, û) ∈ Dx ×Dû,

where Wf ∈ Rs×m is an optimal unknown (constant) weight
that minimizes the approximation error over Dx × Dû, σ̂ :
Rn×Rmp → Rs is a vector of basis functions such that each
component of σ̂(·, ·) takes values between 0 and 1, and ε̂(·, ·)
is the modeling error. Note that s denotes the total number
of basis functions or, equivalently, the number of nodes of
the neural network.

Since f(·, ·) is continuous on Rn × Rmp, we can choose
σ̂(·, ·) from a linear space X of continuous functions that
forms an algebra and separates points in Dx × Dû. In
this case, it follows from the Stone-Weierstrass theorem [8,
p. 212] that X is a dense subset of the set of continuous
functions on Dx × Dû. Now, as is the case in the standard
neuroadaptive control literature [1], we can construct a signal
involving the estimates of the optimal weights and basis
functions as our adaptive control signal.

Next, define W1 , WfΛ, W2 , ATΛ, and W3 , ∆ΛT,
and let uad(t), t ≥ 0, in (23) be given by

uad(t) = −
[
Λ̂ + ŴT

3 (t)
]−1 [

ŴT
1 (t)σ̂(x(t), û(t))

+ŴT
2 (t)x(t) + ŴT

3 (t)un(t)
]
, (28)

where Ŵ1(t) ∈ Rs×m, t ≥ 0, Ŵ2(t) ∈ Rn×m, t ≥ 0,
and Ŵ3(t) ∈ Rm×m, t ≥ 0, are update weights. It will
be shown later (see Remark 3.1) that the adaptive weight

Ŵ3(t) is such that
[
Λ̂ + ŴT

3 (t)
]−1

exists for all t ≥ 0.

Next, define W ,
[
WT

1 WT
2 WT

3

]T ∈ R(s+n+m)×m,

Ŵ (t) ,
[
ŴT

1 (t) ŴT
2 (t) ŴT

3 (t)
]T

∈ R(s+n+m)×m, t ≥ 0,

and W̃ (t) , W − Ŵ (t), and note that, using (28), the error
dynamics (27) can be rewritten as

ė(t) = Arefe(t) + BW̃T(t)σ(x(t), û(t), v(t))
+ε(x(t), û(t)), e(0) = e0, t ≥ 0, (29)

where σ(x, û, v) ,
[
σ̂T(x, û), xT, vT

]T
, v , un + uad,

and ε(x, û) , BΛε̂(x, û).
Next, we develop a neuroadaptive control architecture

which involves additional terms in the update laws that
are predicated on auxiliary terms involving an estimate of

the unknown weights W1, W2, and W3. In particular, by
integrating the error dynamics (29) over the moving time
interval [td, t], where td = max{0, t − τd} and τd > 0 is a
design parameter, we obtain

BWTq(t, t− τd) = c(t, t− τd) + δ(t, t− τd), t ≥ 0, (30)

where

q(t, t− τd) ,
∫ t

td

σ(x(ξ), û(ξ), v(ξ))dξ,

c(t, t− τd) , e(t)− e(td)−
∫ t

td

Arefe(ξ)dξ

+
∫ t

td

ŴT(t)σ(x(ξ), û(ξ), v(ξ))dξ,

δ(t, t− τd) ,
∫ t

td

ε(x(ξ), û(ξ))dξ.

Note that q(t, t−τd) and c(t, t−τd) are computable, whereas
δ(t, t− τd) is unknown.

Next, choose τd such that ‖q(t, t − τd)‖ ≤ qmax and
‖c(t, t − τd)‖ ≤ cmax for all t ≥ 0. Now, using (30) it
follows that for every k > 0 and Γ = ΓT > 0,

tr W̃T(t)Γ−1
[
k Γq(t, t− τd)

(
BŴT(t)q(t, t− τd)

−c(t, t− τd))T B
]

= k tr
[
BW̃T(t)q(t, t− τd)

(
BŴT(t)q(t, t− τd)

−c(t, t− τd))T
]

= −k ‖BŴT(t)q(t, t− τd)− c(t, t− τd)‖2

+k
(
BŴT(t)q(t, t− τd)− c(t, t− τd)

)T

δ(t, t− τd)

≤ −k ‖BŴT(t)q(t, t− τd)− c(t, t− τd)‖2
+k(‖B‖′Ŵmaxqmax + cmax)‖BΛ‖′ε̂∗τd, t ≥ 0, (31)

where ‖ · ‖′ : Rn×m → R is the matrix norm induced by
the vector norms ‖ · ‖′′ : Rn → R and ‖ · ‖′′′ : Rm → R,
and Ŵmax is a norm bound imposed on Ŵ (t), t ≥ 0. Next,
define the Q-modification term Q(t) by

Q(t) =




Q1(t)
Q2(t)
Q3(t)


 , q(t, t− τd)

[
BŴT(t)q(t, t− τd)

−c(t, t− τd)]T B, t ≥ 0, (32)

where for t ≥ 0, Q(t) ∈ R(s+n+m)×m, Q1(t) ∈ Rs×m,
Q2(t) ∈ Rn×m, and Q3(t) ∈ Rm×m.

For the statement of next result, define the projection
operator Proj(W̃ , Y ) given by

Proj(W̃ , Y ) ,





Y, if µ(W̃ ) < 0,

Y, if µ(W̃ ) ≥ 0 and µ′(W̃ )Y ≤ 0,

Y − µ′T (W̃ )µ′(W̃ )Y

µ′(W̃ )µ′T (W̃ )
µ(W̃ ), otherwise,

where W̃ ∈ Rs×m, Y ∈ Rn×m, µ(W̃ ) , tr W̃TW̃−w̃2
max

εW̃
,

w̃max ∈ R is the norm bound imposed on W̃ , and εW̃ > 0.
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Consider the feedback controller (23) with un(t) and
uad(t) given by (25) and (28), respectively, and update laws
given by

˙̂
W1(t) = Γ1Proj[Ŵ1(t), σ̂(x(t), û(t))eT(t)PB

−k h(Ŵ (t))Q1(t)], Ŵ1(0) = Ŵ10, t ≥ 0, (33)
˙̂

W2(t) = Γ2Proj[Ŵ2(t), x(t)eT(t)PB

−k h(Ŵ (t))Q2(t)], Ŵ2(0) = Ŵ20, (34)
˙̂

W3(t) = Γ3Proj[Ŵ3(t), v(t)eT(t)PB

−k h(Ŵ (t))Q3(t)], Ŵ3(0) = Ŵ30, (35)

where Γ1 ∈ Rs×s, Γ2 ∈ Rn×n, and Γ3 ∈ Rm×m are
positive-definite matrices, P ∈ Rn×n is a positive-definite
solution of the Lyapunov equation

0 = AT
refP + PAref + R, (36)

where R > 0, k > 0, Q1(t), Q2(t), Q3(t), t ≥ 0, are
given by (32), and h : R(s+n+m)×m → R is a bounded
nonnegative function taking values between 0 and 1 such
that if tr ŴT

i (t)Ŵi(t) = ŵ2
i max, for i = 1, 2, or 3, then

h(Ŵ (t)) = 0, where ŵ2
i max are the norm bounds imposed

on Ŵi(t), i = 1, 2, 3, t ≥ 0.
Theorem 3.1: Consider the nonlinear uncertain dynamical

system G given by (21) with u(t), t ≥ 0, given by (23) and
reference model given by (22) with tracking error dynamics
given by (29). Assume Assumption 3.1 holds. Then there
exists a compact positively invariant set Dα ⊂ Rn ×
Rs×m × Rn×m × Rm×m such that (0,W1,W2,W3) ∈ Dα,
where W1 ∈ Rs×m, W2 ∈ Rn×m, and W2 ∈ Rm×m,
and the solution (e(t), Ŵ1(t), Ŵ2(t), Ŵ3(t)), t ≥ 0, of the
closed-loop system given by (29) and (33)–(35) is ultimately
bounded for all (e(0), Ŵ1(0), Ŵ2(0), Ŵ3(0)) ∈ Dα with
ultimate bound ‖e(t)‖ < γ, t ≥ T , where

γ >
[
(ρ +

√
ρ2 + ν)2 + λmax(Γ−1

1 )ŵ2
1max

+λmax(Γ−1
2 )ŵ2

2max + λmax(Γ−1
3 )ŵ2

3max

] 1
2
, (37)

ρ , λ−1
min(R)‖PBΛ‖′ε̂∗, (38)

ν , 2kλ−1
min(R) (‖B‖′Ŵmaxqmax + cmax)‖BΛ‖′ε̂∗τd, (39)

ŵimax, i = 1, 2, 3, are norm bounds imposed on Ŵi, and
P ∈ Rn×n is the positive-definite solution of the Lyapunov
equation (36).

Remark 3.1: Note that since e(t), t ≥ 0, and xref(t), t ≥
0, are bounded, it follows that x(t), t ≥ 0, is bounded, and
hence, un(t), t ≥ 0, given by (25) is bounded. Furthermore,
since Ŵ3(t) is bounded for all t ≥ 0, it is always possible

to choose Λ̂ and ŵ2
3max so that

[
Λ̂ + ŴT

3 (t)
]−1

exists and
is bounded for all t ≥ 0. This follows from the fact that
for any two square matrices A and B, det(A + B) 6= 0
if and only if there exists α > 0 such that σmin(A) > α
and σmax(B) ≤ α. Hence, it follows that for A = Λ̂ and

B = ŴT
3 (t), t ∈ [0,∞),

[
Λ̂ + ŴT

3 (t)
]−1

exists for all t ≥ 0
if ŵ2

3max is sufficiently small. Hence, the adaptive signal
uad(t), t ≥ 0, given by (28) is bounded. Since un(t), t ≥ 0,
and uad(t), t ≥ 0 are bounded, and detG(x) 6= 0 for all
x ∈ Rn, it follows that control input u(t), t ≥ 0, given by
(23) is bounded for all t ≥ 0.

Remark 3.2: The Q-modification term defined by (32) is
similar to the modification terms appearing in the update
laws for composite adaptive control discussed in [3]. The
key difference, however, is that the two approaches use dif-
ferent signals. Specifically, in the proposed Q-modification
framework, the additional terms appearing in the update laws
are constructed using a moving window of the integrated
system uncertainty, whereas in composite adaptive control
the update laws involve filtered versions of the control input
and the system state.

Remark 3.3: It is straightforward to show that the Q-
modification framework can be incorporated within a radial
basis function neural network-based adaptive controller and
combined with the robust adaptive control laws discussed in
[2], such as σ- or e-modifications.

Remark 3.4: Note that the Q-modification terms in the
update laws (33)-(35) drive the trajectories of the neural
network weights to a collection of hyperplanes characterized
by (30) involving the unknown neural network weights. It can
be shown that in the case where ε̂(x, û) ≡ 0 and σ(x, û, u)
is persistently excited, that is,

∫ t+T

t

σ(x(s), û(s), v(s))σT(x(s), û(s), v(s))ds

≥ αIs+n+m, t ≥ 0,

where α > 0, the neural network weight estimates Ŵ (t)
converge to the ideal weights W .

Remark 3.5: Finally, it is important to note that the Q-
modification terms appearing in (33)-(35) are different from
the e- and σ-modification terms presented in the literature
[2].

IV. CONCLUSION

In this paper we developed a new neuroadaptive control
architecture for nonlinear uncertain systems. The proposed
framework involves a novel controller architecture involving
additional terms in the update laws that can identify ideal
system weights and effectively suppress system uncertainty.
Extensions of the Q-modification technique to general non-
linear dynamical systems with nonlinear uncertainty param-
eterizations and output feedback are addressed in [5].
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