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Abstract— This paper presents proof-certificate based suffi-
cient conditions for the existence of Zeno behavior in hybrid
systems near non-isolated Zeno equilibria. To establish these
conditions, we first prove sufficient conditions for Zeno behavior
in a special class of hybrid systems termed first quadrant interval
hybrid systems. The proof-certificate sufficient conditions are
then obtained through a collection of functions that effectively
“reduce” a general hybrid system to a first quadrant interval
hybrid system. This paper concludes with an application of
these ideas to Lagrangian hybrid systems, resulting in easily
verifiable sufficient conditions for Zeno behavior.

I. INTRODUCTION

This paper was motivated by the lack of analytic tools for

proving the existence of Zeno behavior in nontrivial hybrid

systems. In particular, mechanical systems undgergoing im-

pacts, modeled by Lagrangian hybrid systems [1], provide

a large class of systems that often appear to display Zeno

behavior. While Zeno behavior is often intuitively clear and

supported by simulation results [2], formal proofs of Zeno

behavior were limited to very simple systems such as the

bouncing ball.

The objects of study in this paper are Zeno equilibria—

subsets of the continuous domains of a hybrid system that are

fixed points of the discrete dynamics but not the continuous

dynamics—which are defined in analogy to equilibria of

dynamical systems. Given the success of studying isolated

equilibria in dynamical systems, a natural starting point for

studying Zeno behavior is a detailed analysis of isolated

Zeno equilibria—those Zeno equilibria with no other nearby

Zeno equilibria. Recently, however, it was observed that

Lagrangian hybrid systems with isolated Zeno equilibria

must have one dimensional configuration manifolds [3].

Thus, most interesting Lagrangian hybrid systems believed

to show Zeno behavior cannot be studied with attention

restricted to isolated Zeno equilibria.

On the other hand, first quadrant hybrid systems [4]—

hybrid systems with the first quadrant of R
2 as continuous

domains—provide a simple class of hybrid systems that can

demonstrate many of the subtleties of Zeno behavior. Recent

work [5], provides very simple sufficient conditions for Zeno

behavior depending only on the value of the vector fields at

the Zeno equilibrium.

This paper builds on a variant of first quadrant hybrid

systems to develop sufficient conditions for Zeno behavior
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near non-isolated Zeno equilibria that are general enough to

handle Lagrangian hybrid systems of arbitrary dimension.

In particular, we study first quadrant hybrid systems with

dynamics governed by simple differential inclusions termed

first quadrant interval hybrid systems. We find sufficient

conditions for Zeno behavior in first quadrant interval hybrid

systems extending those in [5].

Our first main result is a technique for “reducing” hybrid

systems to first quadrant interval hybrid systems resulting

in sufficient conditions for Zeno behavior near non-isolated

Zeno equilibria. The reduction consists of functions from the

continuous domains into the first quadrant of R
2 mapping

executions of the original hybrid system to executions of a

first quadrant interval hybrid system. Thus Zeno behavior

in the first quadrant interval hybrid system implies Zeno

behavior in the original hybrid system, and the conditions

for Zeno behavior in first quadrant interval systems yield

sufficient conditions for Zeno behavior in hybrid systems.

For our other main result, we obtain sufficient conditions

for Zeno behavior in Lagrangian hybrid systems of arbitrary

dimension by explicitly constructing the proof-certificates

implying Zeno behavior. These conditions for Lagrangian

hybrid systems generalize those in [3], but remain remark-

ably simple. When applied to examples, such as a ball

bouncing on a sinusoidal surface or a pendulum on a cart,

the conditions for Zeno behavior are easily verifiable and

intuitively appealing.

Due to the subtle and complex nature of Zeno behavior,

it has been studied in many forms and from many different

perspectives. Most of the conditions for Zeno behavior are

necessary and tend to be very conservative; see [6], [7],

[8] for general hybrid systems, and [9], [10] for linear

complementarity systems. Until recently, sufficient condi-

tions for Zeno behavior were more rare [11]. Necessary

and sufficent conditions for Zeno behavior in a significantly

different class of controlled hybrid systems were found in

[12]. Interestingly, their study of bounded rate hybrid systems

helped motivate our study of first quadrant interval hybrid

systems used in proving our main results.

We also note that this paper studies Zeno behavior in

Lagrangian hybrid systems, which were studied in [2], [13],

[14] as motivated by [1]. Finally, the characterization of Zeno

behavior presented in this paper complements the topological

characterization of Zeno behavior presented in [15].

II. HYBRID SYSTEMS & ZENO EQUILIBRIA

In this section, we introduce the basic notations on which

the rest of the paper will build. That is, we define hybrid
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systems, executions, and Zeno equilibria. For a more on

hybrid systems see [16] and for more on Zeno behavior see

[2], [3], [4], [5], [13].

Definition 1: A hybrid system on a cycle is a tuple:

H = (Γ, D,G,R, F ),

where

• Γ = (Q,E) is a directed cycle, with

Q = {q0, . . . , qk−1},

E = {e0 = (q0, q1), e1 = (q1, q2),

. . . , ek−1 = (qk−1, q0)}.

We denote the source of an edge e ∈ E by source(e)
and the target of an edge by target(e).

• D = {Dq}q∈Q is a set of domains, where Dq is a

smooth manifold.

• G = {Ge}e∈E is a set of guards, where Ge ⊆
Dsource(e) is and embedded submanifold of Dsource(e).

• R = {Re}e∈E is a set of reset maps, where Re : Ge ⊆
Dsource(e) → Dtarget(e) is a smooth map.

• F = {fq}q∈Q, where fq : Dq → TDq is a Lipschitz

vector field on Dq.

Remark 1: Note that if a hybrid system over a finite

graph displays Zeno behavior, the graph must contain a cycle

(see [6] and [8]). Therefore, beginning with hybrid systems

defined on cycles greatly simplifies our analysis, while still

capturing characteristic types of Zeno behavior.

Definition 2: An execution of a hybrid system H =
(Γ, D,G,R, F ) is a tuple:

χ = (Λ, I, ρ, C)

where

• Λ = {0, 1, 2, . . .} ⊆ N is a finite or infinite indexing

set,

• I = {Ii}i∈Λ where for each i ∈ Λ, Ii is defined as

follows: Ii = [τi, τi+1] if i, i + 1 ∈ Λ and IN−1 =
[τN−1, τN ] or [τN−1, τN ) or [τN−1,∞) if |Λ| = N ,

N finite. Here, for all i, i + 1 ∈ Λ, τi ≤ τi+1 with

τi, τi+1 ∈ R, and τN−1 ≤ τN with τN−1, τN ∈ R.

• ρ : Λ → Q is a map such that for all i, i + 1 ∈ Λ,

(ρ(i), ρ(i+ 1)) ∈ E. This is the discrete component of

the execution.

• C = {ci}i∈Λ is a set of continuous trajectories, and

they must satisfy ċi(t) = fρ(i)(ci(t)) for t ∈ Ii.

We require that when i, i+ 1 ∈ Λ,

(i) ci(t) ∈ Dρ(i) ∀ t ∈ Ii
(ii) ci(τi+1) ∈ G(ρ(i),ρ(i+1))

(iii) R(ρ(i),ρ(i+1))(ci(τi+1)) = ci+1(τi+1).
(1)

When i = |Λ| − 1, we still require that (i) holds.

The object of study in this paper will be Zeno executions,

which are defined in the following manner:

Definition 3: An execution χ is Zeno if Λ = N and

lim
i→∞

τi − τ0 =

∞
∑

i=0

τi+1 − τi = τ∞ <∞.

Here τ∞ is called the Zeno time.

A hybrid system H is Zeno1 if there exists a Zeno

execution χ such that τi+1 − τi 6= 0 for some i ∈ N.

Zeno behavior can be likened to stability, in that both

involve convergence. This motivates the study of the type

of equilibria associated to Zeno behavior: Zeno equilibria.

For more on Zeno equilibria, see [13], [4], [3].

Definition 4: A Zeno equilibria of a hybrid system H =
(Γ, D,G,R, F ) is a set z = {zq}q∈Q satisfying the following

conditions for all q ∈ Q:

• For the unique edge e = (q, q′) ∈ E

– zq ∈ Ge,

– Re(zq) = zq′ ,

• fq(zq) 6= 0.

Note that, in particular, the conditions given in Definition

4 imply that for all i ∈ {0, . . . , k − 1},

Rei−1
◦ · · · ◦Re0

◦Rek−1
◦ · · · ◦Rei

(zi) = zi.

That is, the element zi is a fixed point under the reset maps

composed in a cyclic manner.

III. FIRST QUADRANT INTERVAL HYBRID SYSTEMS

This section gives conditions for the existence of Zeno

behavior in a simple class of hybrid systems termed first

quadrant interval hybrid systems. These systems are easy to

analyze, yet flexible enough to capture important character-

istics of nontrivial systems. Note that first quadrant interval

hybrid systems are a variant on first quadrant hybrid systems

which have been studied in [5], [17].

Definition 5: We define a first quadrant interval (FQI)
hybrid system to be a tuple

HFQI = (Γ, D,G,R, F )

where

• Γ = (Q,E) is a directed cycle as in Definition 1.

• D = {Dq}q∈Q where for all q ∈ Q,

Dq = R
2
≥0 = {(x1, x2)

T ∈ R
2 : x1 ≥ 0, x2 ≥ 0}.

• G = {Ge}q∈Q where for all e ∈ E,

Ge = {(x1, x2)
T ∈ R

2
≥0 : x1 = 0, x2 ≥ 0}.

• R = {Re}e∈E where for all e ∈ E, Re is a set valued

function defined by

Re(0, x2) = {(y1, y2)
T ∈ Dq′ : y1 = 0,

y2 ∈ [γl
ex2, γ

u
e x2]},

1The motivation for this definition is that we want to exclude the
possibility that a hybrid system is “trivally” Zeno, i.e., the only Zeno
executions are executions that begin at a Zeno Equilibria
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for γu
e ≥ γl

e > 0 and for all (0, x2)
T ∈ Ge.

• F = {fq}q∈Q where for all q ∈ Q, fq is the (constant)

differential inclusion defined for all x ∈ Dq by

fq(x) = {(y1, y2)
T ∈ R

2 : y1 ∈ [αl
q, α

u
q ], y2 ∈ [βl

q, β
u
q ]}.

Definition 6: An execution of a first quadrant interval

system, HFQI is a tuple χFQI = (Λ, I, ρ, C) where

• Λ, I and ρ are defined as in Definition 2.

• C = {ci}i∈Λ is a set of continuous trajectories, and

they must satisfy ċi(t) ∈ fρ(i)(ci(t)) for t ∈ Ii.

We require that when i, i+ 1 ∈ Λ,

(i) ci(t) ∈ Dρ(i) ∀ t ∈ Ii
(ii) ci(τi+1) ∈ G(ρ(i),ρ(i+1))

(iii) ci+1(τi+1) ∈ R(ρ(i),ρ(i+1))(ci(τi+1)).
(2)

When i = |Λ| − 1, we still require that (i) holds.

Theorem 1: Let HFQI = (Γ, D,G,R, F ) be a first quad-

rant interval hybrid system with |Q| = k. If αu
q < 0 < βl

q

for all q ∈ Q, γl
e > 0 for all e ∈ E and

k−1
∏

i=0

∣

∣

∣

∣

γu
(qi,qi+1)

βu
qi

αu
qi

∣

∣

∣

∣

< 1

then every execution χFQI extends to an infinite execution,

and every infinite execution is Zeno.

Further, if χFQI is a Zeno execution, then there exists

TZeno : R≥0 → R such that τ∞ ≤ TZeno(‖c0(τ0)‖) and

TZeno(‖c0(τ0)‖) → 0 as ‖c0(τ0)‖ → 0.

Proof: [Sketch] Consider the hybrid system defined

by HC = (Γ, D,RC , FC) with RC = {R̂e} defined by

R̂e(0, x2) = (γu
e x2, 0)T and FC = {f̂q} defined by f̂q(x) =

(αu
q , β

u
q )T . By integration, every execution of HC extends to

a unique Zeno execution. If χ = (N, I, ρ, C) is an execution

of HFQI and χ̂ = (N, Î, ρ̂, Ĉ) is an execution of HC with

c0(τ0) = ĉ0(τ̂0), then for all i ∈ N, τi − τ0 ≤ τ̂i − τ̂0.

Therefore χ is Zeno with time bound inherited from χ̂.

IV. SUFFICIENT CONDITIONS FOR ZENO BEHAVIOR

THROUGH REDUCTION TO FQI HYBRID SYSTEMS

The main result of this paper is presented in this section,

i.e., we give sufficient conditions for the existence of Zeno

behavior in hybrid systems “reducing” them to FQI hybrid

systems. In particular, we prove that if a hybrid system

satisfies certain conditions then, given a Zeno equilibria,

every execution starting near this Zeno equilibria is Zeno.

Assumption. In this section, we assume that each Dq is a

subset of R
nq with nq = dim(Dq) and zq = 0. No generality

is lost because we can work locally in coordinate charts.

Reduction conditions. Let z = {zq}q∈Q be a Zeno equi-

librium (not necessarily isolated) of a hybrid system H =
(Γ, D,G,R, F ), {Wq}q∈Q be a collection of sets with zq ∈
Wq ⊆ Dq and {ψq}q∈Q be a collection of C1 maps; these

are “proof-certificates”, with

ψq : Wq ⊆ Dq → R
2
≥0.

Consider the following conditions:

R1: ψq(zq) = 0 for all q ∈ Q.

R2: If (q, q′) ∈ E, then ψq(x)1 = 0 if and only

if x ∈ G(q,q′) ∩Wq.

R3: dψq(zq)1fq(zq) < 0 < dψq(zq)2fq(zq) for

all q ∈ Q.

R4: ψq′(R(q,q′)(x))2 = 0 and there exist con-

stants 0 < γl
e ≤ γu

e such that

ψq′(R(q,q′)(x))1 ∈
[

γl
(q,q′)ψq(x)2, γ

u
(q,q′)ψq(x)2

]

for all x ∈ G(q,q′)∩Wq and all (q, q′) ∈ E.

R5:

|Q|−1
∏

i=0

∣

∣

∣

∣

γu
(qi,qi+1)

dψqi
(zqi

)2fqi
(zqi

)

dψqi
(zqi

)1fqi
(zqi

)

∣

∣

∣

∣

< 1.

R6: There exists K ≥ 0 such that

‖R(q,q′)(x)− zq′‖ ≤ ‖x− zq‖+Kψq(x)2

for all x ∈ G(q,q′)∩Wq and all (q, q′) ∈ E.

Theorem 2: Let H be a hybrid system with a Zeno

equilibria z = {zq}q∈Q. If there exists a collection of sets

{Wq}q∈Q with zq ∈Wq ⊆ Dq and maps {ψq}q∈Q satisfying

conditions R1-R6, then there exists η > 0 such that for all

q ∈ Q and x0 ∈ Dq such that ‖x0 − zq‖ < η there exist an

execution χ of H with c0(τ0) = x0, ρ(0) = q and Λ = N,

and every such execution is Zeno. Therefore, H is Zeno.

We prove Theorem 2 in the following manner:

1) Construct a Zeno first quadrant interval system HFQI

from the hybrid system H and project executions of

the hybrid system to executions of the FQI hybrid

system (Lemma 1).

2) Prove that executions of H stay “close” to the Zeno

equilibria for a bounded period of time (Lemma 2).

3) Use (2) and (1) to show that H is Zeno exactly

because HFQI is Zeno due to conditions R1-R6.

Constructing a FQI hybrid system. We define a first

quadrant interval system HFQI from a hybrid system H

based on the reduction conditions. Assume that H is a

hybrid system satisfying R1-R5. Pick αl
q, αu

q , βl
q and βu

q

such that

αl
q < dψq(0)1fq(0) < αu

q < 0 < βl
q < dψq(0)2fq(0) < βu

q

for all q ∈ Q and

k−1
∏

i=0

∣

∣

∣

∣

γu
(qi,qi+1)

βu
qi

αu
qi

∣

∣

∣

∣

< 1,

where γu
(qi,qi+1)

is given by R4. The constants αl
q, αu

q , βl
q,

βu
q , γl

(q,q′) and γu
(q,q′) (with γl

(q,q′) also given by R4) thus

define a first quadrant interval system HFQI , on the same

graph Γ as H , satisfying the conditions of Theorem 1 due
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to conditions R3-R5. Thus all executions of HFQI extend

to Zeno executions.

Now we show how an execution of H remaining near the

Zeno equilibria gives rise to an execution of HFQI .

Lemma 1: Suppose H is a hybrid system satisfying the

conditions of Theorem 2. Then there exists µ > 0 such that

if χ = (Λ, ρ, I, C) is an execution of H with ‖ci(t)‖ < µ

for all t ∈ Ii and all i ∈ Λ, then χFQI = (Λ, ρ, I,Ψ ◦ C),
where Ψ ◦C = {ψρ(i) ◦ ci}i∈Λ, is an execution of of HFQI

Proof: [Sketch] By continuity, it follows that there exists

µ > 0 such that for all q ∈ Q and for all x ∈ Wq with

‖x‖ < µ,

αl
q < dψq(x)1fq(x) < αu

q < 0 < βl
q < dψq(x)2fq(x) < βu

q .

wherein it follows that χFQI satisfies the conditions of

HFQI by construction.

Lemma 2: Let H satisfy the conditions of Theorem 2.

Then for all 0 < µ sufficiently small and all η > 0 sufficiently

smaller than µ, there exists Tescape(η, µ) > 0 such that any

execution χ of H with ‖c0(τ0)‖ < η satisfies ‖ci(t)‖ < µ

for all t ∈ Ii with t− τ0 < Tescape(η, µ).
Furthermore, if η̂ ≤ η, then Tescape(η̂, µ) ≥ Tescape(η, µ).

Proof: [Sketch] Let χ be such that ‖c0(τ0)‖ < η and

‖ci∗(τi∗)‖ ≥ µ. By continuity of fq and R6, it can be shown

that for some M > 0,

M(τ −τ0) ≥ ‖ci∗(τ)‖−‖c0(τ0)‖−K
i∗−1
∑

i=0

ψρ(i)(ci(τi+1))2.

The proof is completed by showing the summation on the

right hand side approaches zero as η → 0.

Proof: [of Theorem 2, Sketch] Because we assume that

the fq, q ∈ Q, are Lipschitz, the continuous dynamics are

always well-defined on each domain. Furthermore, since

Γ is a directed cycle the dynamics of H are completely

deterministic. Thus given x0 ∈ Dq, there exists a unique

execution χ of H with c0(τ0) = x0 such that either χ is

defined for all t ≥ τ0 or χ is Zeno.

Pick small constants η and µ such that TZeno(g(η)) <
Tescape(η, µ), where g(η) = max‖x‖≤η,q∈Q ‖ψq(x)‖. As-

sume for the sake of contradiction that there is an execution

χ with ‖c0(τ0)‖ < η that is not Zeno. Let χ̂ be χ restriced to

t−τ0 < Tescape(η, µ). Then Lemmas 1 and 2 combined with

Theorem 1 imply that χ̂ gives rise to an execution χFQI of

HFQI that is defined past its Zeno time, a contradiction.

V. APPLICATION TO SIMPLE HYBRID MECHANICAL

SYSTEMS

Mechanical systems undergoing impacts are naturally

modeled as hybrid systems. In this section, we will consider

hybrid systems of this form and demonstrate how one obtains

such systems from hybrid Lagrangians, which are the hybrid

analogue of Lagrangians. For more on hybrid Lagrangians

and Lagrangian hybrid systems, see [2], [13], [14].

Lagrangians. Consider a configuration space2 Θ and a

Lagrangian L : TΘ → R given in coordinates by:

L(θ, θ̇) =
1

2
θ̇TM(θ)θ̇ − U(θ) (3)

where M(θ) is positive definite and symmetric and U(θ) is

the potential energy. For the sake of simplicity, we assume

Θ ⊂ R
n since all our results are local, i.e., we can work

within a coordinate chart. The equations of motion are

then given in coordinates by the Euler-Lagrange equations,
d
dt

∂L

∂θ̇
− ∂L

∂θ
= 0. In the case of Lagrangians of the form

given in (3), the Lagrangian vector field, fL, associated to

L takes the familiar form

ẋ = fL(x) =

(

θ̇

M(θ)−1(−C(θ, θ̇)θ̇ −N(θ))

)

. (4)

where x = (θT , θ̇T )T , C(θ, θ̇) is the Coriolis matrix and

N(θ) = ∂U
∂θ

(θ).
This process of associating a dynamical system to a

Lagrangian will be mirrored in the setting of hybrid systems.

First, we introduce the notion of a hybrid Lagrangian.

Definition 7: A hybrid Lagrangian is a tuple, L =
(Θ, L, h), where

• Θ ⊂ R
n is the configuration space,

• L : TΘ → R is a Lagrangian of the form give in (3),

• h : Θ → R is a unilateral constraint function, where

we assume that 0 is a regular value of h.

Examples. We now present two examples that will be

considered throughout the rest of the paper to illustrate the

concepts involved. Note that these examples were studied

in the context of hybrid reduction in [14], although these

examples have never been formally shown to be Zeno.

Example 1 (Ball): Our first running example is a ball

bouncing on a sinusoidal surface (cf. Fig. 1). In this case B =
(ΘB, LB, hB), where ΘB = R

3, and for x = (x1, x2, x3),

LB(x, ẋ) = 1
2m‖ẋ‖2 −mgx3,

hB(x1, x2, x3) = x3 − sin(x2).

So, for this example, there are trivial dynamics and a

nontrivial unilateral constraint function.

Example 2 (Cart): Our second running example is a con-

strained pendulum on a cart (cf. Fig. 1); this is a variation

on the classical pendulum on a cart, where the pendulum is

not allowed to “pass through” the cart, i.e., the cart gives

physical constraints on the configuration space. In this case

C = (ΘC, LC, hC), where ΘC = S
1 × R, q = (θ, x), and

LC(θ, θ̇, x, ẋ) = −mgR cos(θ)+

1

2

(

θ̇ ẋ
)

(

mR2 mR cos(θ)
mR cos(θ) M +m

) (

θ̇

ẋ

)

.

2Note that we denote the configuration space by Θ rather than Q, due to
the fact that Q denotes the vertices of the graph of a hybrid system.
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Fig. 1. Ball bouncing on a sinusoidal surface (left). Pendulum on a cart
(right).

where m is the mass of the pendulum, M is the mass

of the cart and R is the length of the pendulum. Finally,

the constraint function hC(θ, x) = cos(θ) implies that the

pendulum is not allowed to pass through the cart.

Domains from constraints. Given a smooth (unilateral

constraint) function h : Θ → R on a configuration space

Θ such that 0 is a regular value of h (so h−1(0) is a smooth

manifold), we can construct a domain and a guard explicitly.

Define the domain, Dh, as the manifold (with boundary):

Dh = {(θ, θ̇) ∈ TΘ : h(θ) ≥ 0}.

Similarly, we have an associated guard, Gh, defined as the

following submanifold of Dh:

Gh = {(θ, θ̇) ∈ TΘ : h(θ) = 0 and dh(θ)θ̇ ≤ 0},

where dh(θ) =
(

∂h
∂θ1

(θ) · · · ∂h
∂θn

(θ)
)

. Note that the

requirement that 0 is a regular value of h is equivalent to

requiring that dh(θ) 6= 0 when h(θ) = 0.

Lagrangian Hybrid Systems. Given a hybrid Lagrangian

L = (Θ, L, h), the Lagrangian hybrid system associated to

L is the hybrid system

HL = (Γ = ({q}, {(q, q)}), DL, GL, RL, FL),

where DL = {Dh}, FL = {fL}, GL = {Gh} and RL =
{Rh} with Rh(θ, θ̇) = (θ, P (θ, θ̇)), where

P (θ, θ̇) = (5)

θ̇ − (1 + e)
dh(θ)θ̇

dh(θ)M(θ)−1dh(θ)T
M(θ)−1dh(θ)T .

Example 3: From the hybrid Lagrangian B =
(ΘB, LB, hB) we obtain

HB = (Γ = ({q}, {(q, q)}), DB, GB, RB, FB),

where

DhB
= {(x, ẋ) ∈ R

3 × R
3 : x3 − sin(x2) ≥ 0},

GhB
= {(x, ẋ) ∈ R

3 × R
3 : x3 = sin(x2)

and ẋ3 − cos(x2)ẋ2 ≤ 0},

and RhB
(x, ẋ) = (x, PhB

(x, ẋ)), where PhB
is computed

from (5) with 0 ≤ e ≤ 1 the coefficient of restitution. Finally,

fLB
(x, ẋ) =

(

ẋ, (0, 0,−g)T
)

.

One can similarly construct a Lagrangian hybrid system

HC from the hybrid Lagrangian C.

VI. SUFFICIENT CONDITIONS FOR ZENO BEHAVIOR IN

LAGRANGIAN HYBRID SYSTEMS

In this section, we present sufficient conditions for the

existence of Zeno behavior in Lagrangian hybrid systems.

Before presenting these conditions, we characterize Zeno

equilibria in systems of this form.

Zeno equilibria in Lagrangian hybrid systems. If HL is

a Lagrangian hybrid system, then due to the special form of

these systems we find that z = {(θ∗, θ̇∗)} is a Zeno equilibria

iff θ̇∗ = P (θ∗, θ̇∗), with P given in (5). In particular, the

special form of P implies that this holds iff dh(θ∗)θ̇∗ = 0.
Therefore the set of all Zeno equilibria for a Lagrangian

hybrid system is given by the hypersurfaces in Gh:

Z = {(θ, θ̇) ∈ Gh : dh(θ)θ̇ = 0}.

Note that if dim(Θ) > 1, the Zeno equilibria in Lagrangian

hybrid systems are always non-isolated (see [3])—this mo-

tivates the study of such equilibria.

Theorem 3: Let HL be a Lagrangian hybrid system and

Let z = {(θ∗, θ̇∗)} be a Zeno equilibria of HL. If 0 < e < 1
and ḧ(θ∗, θ̇∗) < 0, with

ḧ(θ∗, θ̇∗) = (θ̇∗)TH(h(θ∗))θ̇∗ +

dh(θ∗)M(θ∗)−1(−C(θ∗, θ̇∗)θ̇∗ −N(θ∗)),

where H(h(θ∗)) is the Hessian of h at θ∗, then there is

a neighborhood W ⊂ Dh of (θ∗, θ̇∗) such that for every

(θ, θ̇) ∈W , there is a unique Zeno execution χ of HL with

c0(τ0) = (θ, θ̇).

Proof: [Sketch] Let Wq be a small neighborhood of

(θ∗, θ̇∗) and assume (by passing to a coordinate chart) that

Wq ⊂ R
2n with Euclidean norm. Let K satisfy

K >
1 + e

2

‖M(θ∗)−1dh(θ∗)T‖

dh(θ∗)M(θ∗)−1dh(θ∗)T
.

Routine calculation verifies that the constants γu
h = γl

g = e,

K and the function

ψh(θ, θ̇) =





ḣ(θ, θ̇) +
√

ḣ(θ, θ̇)2 + 2h(θ)

−ḣ(θ, θ̇) +
√

ḣ(θ, θ̇)2 + 2h(θ)
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Fig. 2. A Zeno execution of the bouncing ball (left) x3 vs x2 and (right)
displacements x1, x2 and x3 vs time.

theta

x

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

0 5 10 15 20 25 30 35 40

Positions

Time

Fig. 3. A Zeno execution of the pendulum on a cart—displacements θ and
x vs time.

satisfy conditions R1-R6 when Wq is small enough.

Example 4 (Ball): We first demonstrate that the hybrid

system HB modeling a ball bouncing on a sinusoidal surface

is Zeno. First, the Zeno equilibria of this system are given

by the set

Z = {(x, ẋ) ∈ GhB
: ẋ3 − ẋ2 cos(x2) = 0}.

Now, one can easily verify that for (x∗, ẋ∗) ∈ Z

ḧB(x∗, ẋ∗) = sin(x2)ẋ
2
2 − g.

Therefore, there are clearly Zeno equilibria satisfying the

conditions of Theorem 3, namely when ẋ2 is small, and thus

HB is Zeno. A simulation of a Zeno trajectory of the system

can be seen in Fig. 2.

Example 5 (Cart): We now demonstrate that the hybrid

system modeling a pendulum on a cart, HC, is Zeno. First,

note that the Zeno equilibria are given by the set:

Z = {(θ, x, θ̇, ẋ) ∈ GhC
: sin(θ)θ̇ = 0},

and for (θ∗, x∗, θ̇∗, ẋ∗) ∈ Z,

ḧC(θ∗, x∗, θ̇∗, ẋ∗) = −
g

R
< 0.

Therefore, for every Zeno equilibria of the pendulum on a

cart there a neighborhood of the Zeno equilibria such that

every execution with an initial condition in that neighborhood

is Zeno. Such a Zeno execution can be seen in Fig. 3.
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