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Abstract

This paper presents several dynamical systems for simultaneous

computation of principal and minor subspaces of a symmetric

matrix. The proposed methods are derived from optimizing cost

functions which are chosen to have optimal values at vectors

that are linear combinations of extreme eigenvectors of a given

matrix. Necessary optimality conditions are given in terms of a

gradient of certain cost functions over a Stiefel manifold. Stabil-

ity analysis of equilibrium points of six algorithms is established

using Liapunov direct method.
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1 Introduction

Principal subspace analysis (PSA), and minor subspace analy-

sis (MSA), are essential for many signal processing applications

including direction estimation in antenna arrays, data compres-

sion, and multiuser detection in wireless communications. Both

PSA and MSA require the computation of a few extremal eigen-

pairs and corresponding eigenspaces of positive definite matri-

ces. Designing learning rules for PSA and MSA has been the

focus of many research efforts, see [1]-[6] and numerous refer-

ences therein. A well-known tool for computing the principal

and minor subspace of a data matrix is Oja’s rule and several

variations of it. A variety of adaptive (on-line) algorithms for

PCA or PSA can be found in neural networks literature, see also

[7] and references therein.

Many other methods are derived from optimizing Rayleigh

and inverse Rayleigh quotients [8]-[10]. In most known methods,

either a principal or a minor subspace (or component) but not

both are computed. Methods for joint computing eigenspaces

corresponding to both maximum and minimum eigenvalues are

given in [11]. In this paper, additional methods that expand

those of [11] are proposed. These involve algorithms for joint

computation of both (PSA and MSA) or (PCA and MCA).

Specifically, iterative methods are presented for determining the

largest and smallest eigenvalues of a symmetric matrix, and their

corresponding eigenvectors, simultaneously.

Let A ∈ IRn×n be an arbitrary symmetric matrix, i.e.,

A = AT , where T denotes matrix stranspose, and IR is the

set of real numbers. Let {λi}n
i=1 be the set of eigenvalues of A

with associated eigenvectors {qi}n
i=1. It will be assumed that

qi is a unit norm eigenvector associated with the eigenvalue λi,

i.e., Aqi = λiqi, qT
i qj = δij , where δij is the Kronecker delta

function. Since A is symmetric, all its eigenvalues are real and

A has a complete set of orthogonal eigenvectors, i.e., the set

{qi}n
i=1 is a bais for Rn. It will be assumed throughout that the

λi’s are in decreasing order so that λ1 ≥ λ2 ≥ · · · ≥ λn. It will

be assumed that λ1 > λn for otherwise A is an identity matrix.

The quantity λ1−λn is sometimes called the eigen-spread of

the matrix A. The eigen-spread of a symmetric matrix A may be

charaterized by Mirsky result [12] (Theorem 3). Another chara-

terization of the eigen-spread of the matrix A is given in [11]

and is shown to be equivalent to Mirsky result. In this paper,

several variations will be derived by generalizing the methods

presented in [11]. It will be assumed that λ1 > λn for otherwise

A is an identity matrix.

The following notation will be used throughout. The nota-

tion IR, and C denote the set of real numbers, and the set of

complex numbers, respectively. The identity matrix of dimen-

sion k is expressed with the symbol Ik. The vector ei denotes

the ith column of an identity matix. The magnitude of a vector

x will be denoted by ||x|| =
√

xT x. The notation I denotes

an identity matrix of appropriate size.The transpose of a real

matrix x is denoted by xT , and the derivative of x with respect

to time is written as x′. If B is a square matrix, then tr(B),

and det(B) denote the trace of B and the determinant of B re-

spectively. Finally, the time derivative of V (x, y) is denoted by

V̇ .

2 Higher Order Eigenvalue Problems

In this section, several results that will be used in the subsequent

sections are presented. These results include solving quadratic

and higher order eigenvalue problems, and some results regard-

ing the eigen-spread of a symmetric matrix.

Theorem 1. Let A ∈ IRn×n be a symmetric matrix and con-

sider the equation

A2z + Azα + xβ = 0, (1)
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for some numbers α, β ∈ IR, and z ∈ IRn×1. Then each nonzero

solution of (1) is of the form z = γ1qi + γ2qj for some numbers

γ1, γ2.

Proof: Clearly, A has a complete set of eigenvectors q1, · · · , qn

since A is symmetric. Thus assume that z =
∑n

k=1
γkqk for

some γk ∈ C and k = 1, · · · , n. Hence by substituting in (1) we

obtain

A2z+Azα+xβ = A2

n∑

k=1

γkqk+αA

n∑

k=1

γkqk+(

n∑

k=1

γkqk)β = 0.

This implies that

γkλ2
k + αλkγk + γkβ = γk(λ2

k + αγk + β) = 0,

for k = 1, · · · , n. Since a quadratic equation has only two zeros

(counting multiplicities), it follows that γk = 0 for each k ∈
{1, 2, · · · , n} except for two indices. Thus assume that γi 6= 0

and γj 6= 0. Consequently, z = γiqi + γjqj , β = λiλj and

α = −(λi + λj).

This result can be generalized as follows:

Theorem 2. Let A ∈ IRn×n be a symmetric matrix and con-

sider the equation

Amz + Am−1zα1 + · · · + zαm = 0, (2)

for some numbers αk ∈ IR, k = 1, · · · , n, and z ∈ IRn×1. Then

each nonzero solution of (2) is of the form z =
∑m

k=1
γik

qik
for

some numbers γik
, ik = i1, i2, · · · , im ∈ {1, · · · , n}.

Next we state and proof a well-known result of Mirsky [12]

regarding the eigen-spread of a symmetric matrix. The proof,

which is simple and algebraic in nature, is given here since the

ideas in the proof can be adopted to derive dynamical systems

that converges to linear combinations of minimum and maxi-

mum eigenvectors.

Theorem 3(Mirsky [12]). Let A ∈ IRn×n be a positive defi-

nite matrix and consider the optimization problem:

Maximize F1(x, y) = xT Ay

subject to

x, y ∈ IRn×1, xT x = yT y = 1, xT y = 0.

(3)

Then (3) attains its maximum λ1 − λn at (x, y) =

(± q1+qn√
2

,± q1−qn√
2

). Similarly, the minimum is λn − λ1 and

is attained when (x, y) = (± q1+qn√
2

,∓ q1−qn√
2

).

Proof: Let us define the Stiefel manifold S as

S = {x ∈ IRn×2 : xT x = I2}. (4)

As shown in [13], the gradient of F1 with respect to S is

∇N F1 = ∇F1(x) − x(∇F1(x))T x

= [Ay Ax ] − [x y ] [ y x ]T A [ x y ] .

Clearly, ∇NF1 = 0 implies that U = Qijα, where Qij =

[ qi qj ] , i 6= j, and α ∈ IR2×2 is orthogonal, i.e., αT α = I2.

Consequently, the equation ∇NF1 = 0 yields

Σα = αJαT ΣαJ,

where J =

[
0 1
1 0

]
and Σ =

[
λi 0
0 λj

]
. By pre-multiplying by

αT we obtain

αT Σα = αT αJαT ΣαJ = JαT ΣαJ.

Since J2 = I2, it follows that

αT ΣαJ = JαT Σα,

and therefore, αT Σα has the matrix form

αT Σα =

[
r s
s r

]
,

for some real numbers r and s. The eigenvalues of the last

matrix are r − s and r + s with eigenvectors

[
1
−1

]
and

[
1
1

]
.

Let α be given as

α =

[
α11 α12

α21 α22

]
= [α1 α2 ]

where α1 =

[
α11

α21

]
and α2 =

[
α12

α22

]
. Then,

xT Ay = αT
1 Σα2 = α11α12λ1 + α21α22λ2 = α11α12(λi − λj).

Thus the maximum of xT Ay occurs when i = 1 and j = n.

It remains to determine the maximum of α11α12. Maximizing

α11α12 leads to the following problem:

Max eT
1 α1αT

2 e1

subject to α ∈ IRn×2, αT α = I2

The necessary condition of optimatity is that:

e1eT
1 αJ − αJαT e1eT

1 α = 0,

i.e.,
[

1 0
0 0

] [
α11 α12

α21 α22

] [
0 1
1 0

]
=

[
α11 α12

α21 α22

] [
0 1
1 0

] [
α11 α12

α21 α22

] [
1 0
0 0

] [
α11 α12

α21 α22

]
.

After simplifications we obtain
[

α12 α11

0 0

]

=

[
α2

11(α21 + α12) α11α12(α21 + α12)
α11(α2

21 + α11α22) α12(α2
21 + α11α22)

]
.

This leads to the following four equations:

α12 = α2
11(α21 + α12),

α11 = α11α12(α21 + α12),

0 = α11(α2
21 + α11α22),

0 = α12(α2
21 + α11α22).

From these equations, one concludes that if α2
21 + α11α22 6= 0

then α11 = 0 and α21 = 0. This contradicts the orthogonality

of α. Hence α2
21 +α11α22 = 0. Similarly, if α21 + α12 = 0, then

α11 = 0 and α21 = 0. This contradicts the orthogonality of

α. It follows from the first two equations that if α11 = 0, then

α12 = 0, and if α12 = 0, then α11 = 0. Hence α11 6= 0, α12 6= 0,

and α12 + α21 6= 0. It follows from the first two equations that

α12

α11
=

α11

α12
.

This implies that α2
12 = α2

11, or α12 = ±α11 . Also, α2
22 = α2

21,

or α21 = ±α22 . Thus α12α11 is maximum when α12 = α11 , in

which case α21 = −α22. Hence α is equal one of the following

matrices:

[ 1√
2

1√
2

1√
2

−1√
2

]
,

[ 1√
2

1√
2

−1√
2

1√
2

]
,

[ −1√
2

−1√
2

1√
2

−1√
2

]
,

[ −1√
2

−1√
2

−1√
2

1√
2

]
. (5)
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Note that αT Jα =

[
1 0
0 −1

]
and JαT Σα =

[
λ1 0
0 −λn

]

Thus the maximum of α11α12 is 1
2

and subsequently the maxi-

mum of xT Ay is λ1−λn
2

with the maximizers given by

[x y ] = Qα = ±
[

q1+qn√
2

q1−qn√
2

]
.

It follows that q1 = ±x+y√
2

and qn = ±x−y√
2

.

Next we show that the dynamical system based on Mirsky

theorem is stable.

2.0.1 Stability Analysis

A gradient dynamical system for solving the optimization prob-

lem (3) is

x′ = ∇NF1 = ∇F1(x) − x(∇F1(x))T x

= [Ay Ax ] − [x y ] [ y x ]T A [ x y ] ,
(6a)

which can be expressed as

U ′ = AUJ − UJUT AU, (6b)

where U = [x y ], and J =

[
0 1
1 0

]
. The equilibrium points

for this system are contained in the set

Ωij = {U : U = [ qi qj ]α, α ∈ IR2×2, αT α = I2}. (7)

Assume that Û is a stationary point for the system (6a),

then ÛT AÛJ = JÛT AÛ or equivalently, αT ΣαJ = JαT Σα,

i.e.,αT Σα is centro-symmetric since JαT ΣαJ = αT Σα.

To examine stability of equilibrium points of the system (6a),

we first rewrite the equivalent system (6b) as follows:

Ū ′ = (J ⊗ A − JUT AU ⊗ In)Ū , (8)

where Ū is a vector obtained from concatenating the columns of

U , and ⊗ denotes the Kronecker product operation. The matrix

J ⊗ A − JUT AU ⊗ In can be written as

[
0 A
A 0

]
−

[
λ1−λn

2
λ1+λn

2
λ1+λn

2
λ1−λn

2

]
⊗ In

=

[
−λ1−λn

2
In A − λ1+λn

2
In

A − λ1+λn
2

In −λ1−λn
2

In

]
.

(9)

which is negative semidefinite since −λ1−λn
2

< 0 with the Schur

complement [14]

R = −
λ1 − λn

2
In + 2

(A − λ1+λn
2

In)2

λ1 − λn
.

It can be verified that if λi is an eigenvalue of A, then
2(λi−λ1)(λi−λn)

λ1−λn
is an eigenvalue of R. Hence all eigenvalues

of the matrix of (9) are negative or zeros. Since the matrix

J ⊗A−JUT AU ⊗ In is symmetric, the geometric and algebraic

multiplicity of each eigenvalue are the same. This implies that

the system (6a) is stable over the set Ωij only if Ωij = Ω1n.

Another version of Mirsky theorem is derived in [11] which

is stated in the next result.

Theorem 4 [11]. Let A ∈ IRn×n be a symmetric matrix and

consider the optimization problem:

Maximize F2(x, y) = xT Ax − yT Ay

subject to x, y ∈ IRn×1, xT x = yT y = 1, xT y = 0.
(10)

Then (10) attains its maximum at x = ±qn and y = ±q1, and

the maximum is λn − λ1. Similarly, the minimum is λ1 − λn

and is attained when x = ±q1 and y = ±qn.

This result has been stated and analyzed in [11] using con-

strained optimization techniques. In this section, we examine

the stability of a gradient dynamical system that is based on

the gradient of F2 on the Stiefel’s manifold S defined in (4):

x′ = Ax − xxT Ax + yyT Ax

y′ = −Ay − xxT Ay + yyT Ay.
(11)

In more compact form, the system (11) is equivalent to

Ū ′ = (J ⊗ A − JΣ ⊗ In)Ū , (12)

where J =

[
1 0
0 −1

]
. This system is stable over the set Ω1n

since the matrix J ⊗ A − JΣ ⊗ In can be shown to be negative

semidefinite. Clearly, the matrix

J ⊗ A − JΣ ⊗ In =

[
A − λ1In 0

0 −A + λnIn

]
,

is negative semidefinite since its eigenvalues are all negative or

zeros.

3 The Propsed Methods

To increase convergence rate, several variations of F1 and F2 are

considered in the next few sections.

3.1 Algorithm 1

A logarithmic version of Mirsky’s theorem is given in the next

result.

Theorem 5. Let A ∈ IRn×n be a positive definite matrix and

consider the optimization problem:

Maximize F3(x, y) = log(xT Ay)

subject to

x, y ∈ IRn×1, xT x = yT y = 1, xT y = 0.

(13)

Then (13) attains its maximum at x = ±qn and y = ±q1, and

the maximum is log( λ1
λn

). Similarly, the minimum is log(λn
λ1

)

and is attained when x = ±q1 and y = ±qn.

A gradient dynamical system that is based on the gradient

of F3 on the Stiefel’s manifold S defined in (3) is

x′ = Ay(xT Ay)−1 − x − y(xT Ay)−1xT Ax,

y′ = Ax(yT Ax)−1 − y − x(yT Ay)−1yT Ay.
(14)

The equilibrium points, i.e., the solutions of ∇NF3 = 0, are

contained in the set Ωij , 1 ≤ i, j ≤ n.

3.1.1 Stability Analysis

The dynamical system (14) may be rewritten in concise form as

U ′ = AUJ − UJUT AU, (15)

where U = [x y ], and J1 =

[
0 1

xT Ay
1

yT Ax
0

]
. Next we verify

that Ω1n is a stable equilibrium set for the system (14). If Û is

3
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a steady state solution of the system (15), then since xT Ay =

yT Ax, then

ÛT AÛJ1 = J1ÛT AÛ,

or equivalently,

αT ΣαJ1 = J1αT Σα,

where Σ =

[
λ1 0
0 λn

]
. This implies that αT Σα =

[
r s
s r

]
,

i.e., αT Σα is centro-symmetric. Clearly, the eigenvalues of the

matrix J1 ⊗ A − J1UT AU ⊗ In are same as those of the matrix
1

xT Ay
(J ⊗ A − JUT AU ⊗ In) which are non-positive provided

that xT Ay > 0 which is the case since [x y ] is a maximizer of

F3.

3.2 Algorithm 2

In this section, a logarithmic version of Algorithm 1 is developed.

Theorem 6. Let A ∈ IRn×n be a positive definite matrix and

consider the optimization problem:

Maximize F3(x, y) = log(xT Ax) − log(yT Ay)

subject to x, y ∈ IRn×1, xT x = yT y = 1, xT y = 0.
(16)

Then (16) attains its maximum at x = ±qn and y = ±q1, and

the maximum is log( λ1
λn

). Similarly, the minimum is log(λn
λ1

)

and is attained when x = ±q1 and y = ±qn.

A gradient dynamical system that is based on the gradient

of F3 on the Stiefel’s manifold Ω is

x′ = Ax(xT Ax)−1 − x + y(yT Ay)−1yT Ax

y′ = −Ay(yT Ay)−1 + y + x(xT Ax)−1xT Ay.
(17a)

3.2.1 Stability Analysis

The system (17a) may be written as:

U ′ = AUJ − UJUT AU, (17b)

where J =

[
1

xT Ax
0

0 −1
yT Ay

]
. At optimality, the matrix J =

[
1

λ1
0

0 −1
λn

]
.

It can be shown that the system (17b) is stable over the set

Ω1n since it is equivalent to

Ū ′ = (J ⊗ A − JUT AU ⊗ In)Ū . (18)

The eigenvalues of this system are those of the matrix
[

A
λ1

0

0 −A
λn

]
−

[
In 0
0 −In

]
=

[
A
λ1

− In 0

0 −A
λn

+ In

]
. (19)

The eigenvalues of the last matrix are λi
λ1

− 1 or 1 − λi
λn

which

are both non-positive. There are exactly two zero eigenvalues

which occur when i = 1 or i = n.

3.3 Algorithm 3

If in Theorem 3, the vector y is replaced by y = y1√
yT
1 y1

, where

y1 = Ax − xxT Ax, then yT y = 1, xT y = 0, and xT x = 1. This

leads to the following optimization problem:

Maximize F4(x) =
1

2
trace{xT A2x − (xT Ax)2}

subject to x ∈ IRn×1, xT x = 1,

(20)

The gradient of F4 with respect to the Stiefel manifold {x ∈
IRn×1 : xT x = 1} is

∇N F4 = ∇F4(x) − x(∇F4(x))T x,

= A2x − 2AxxT Ax − xxT A2x + 2x(xT Ax)2.
(21)

From Theorem 1, any solution of ∇NF4 = 0 is of the form

x = γiqi + γjqj , for some numbers γi, γj such that γ2
i + γ2

j = 1.

Now,

F4(x) = xT A2x − (xT Ax)2

= (γ2
i − γ4

i )λ2
i − 2γ2

i γ2
j λiλj + (γ2

j − γ4
j )λ2

j

= γ2
i γ2

j λ2
i − 2γ2

i γ2
j λiλj + γ2

i γ2
j λ2

j

= γ2
i γ2

j (λi − λj)
2.

(22)

Since γ2
i + γ2

j = 1, the maximum of γ2
i γ2

j occurs when γ2
i =

γ2
j = 1

2
. Also (λi − λj)2 is maximum when i = 1 and j = n.

Thus the maximum of the function F is
(λ1 − λn)2

4
,

and this maximum occurs when z = ± q1+qn√
2

and z = ± q1−qn√
2

.

Thus depending on initial condition x(0), i.e., whether x(0)

has components along the eigenvectors q1 and qn, the dynamical

system

x′ = A2x − 2AxxT Ax − xxT A2x + 2x(xT Ax)2, (23)

may converge to either z1 = q1+qn√
2

, z2 = − q1+qn√
2

, z3 = q1−qn√
2

or z4 = − q1−qn√
2

.

Note ∇N F4(x) = 0 if x is any normalized eigenvector of

A. In this case F4(x) = 0, which is the minimum of F4 since

F (x) ≥ 0 for all x ∈ S.

3.3.1 Stability Analysis

The system (23) can be shown to be globally stable using the

Lyapunov function V (x) = 1
4
(xT x−1)2 . The time derivative of

V along a trajectory of (23) is

V ′ = xT A2x − 2(xT Ax)2 − xT xxT A2x + 2xT x(xT Ax)2

= −(xT x − 1)2(xT A2x − 2(xT Ax)2) ≤ 0,
(24)

over the set {x ∈ IRn×1 : xT x ≤ 1
2
}. Hence (23) is stable [15,16].

Let x(t) be a solution of (23) in the interval [0, ∞), where

x(0) = x0 is given and has nonzero components along q1 and

qn. Assume that x(t) → z1 as t → ∞. It can be verified that

Az1 − z1zT
1 Az1 = λ1−λn

2
√

2
(q1 − qn) = λ1−λn

2
√

2
z3, and Az3 −

z3zT
1 Az3 = λ1−λn

2
√

2
(q1 + qn) = λ1−λn

2
√

2
z1. Thus to extract q1

and qn, we have q1 = z1+z3√
2

, and qn = z1−z3√
2

.

Remark: It can be shown that the system (23) is stable on the

set S1 = {x : xT x = 1, xT Ax = λ1+λn
2

, xT A2x =
λ2
1+λ2

n
2

}.
On the set S1, the system (23) transforms into

x′ = A2x − (λ1 + λn)Ax + λ1λnx

= (A2 − (λ1 + λn)A + λ1λnIn)x
(25)

The matrix A2 − (λ1 + λn)A + λ1λnIn is negative semi-definite

since its eigenvalues are given by λ2
i − (λ1 + λn)λi + λ1λn =

(λi − λ1)(λi − λn) ≤ 0. Equality holds only when λi = λ1 or

λi = λn.
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3.4 Algorithm 4

This algorithm is based on the following maximization problem:

Maximize F5(x) =
1

2
trace(xT A2x) − det(xT Ax)

subject to x ∈ IRn×2, xT x = I2.

(26)

The gradient of F5 with respect to the Stiefel manifold S defined

in (4) is

∇NF5 = ∇F5(x) − x(∇F5(x))T x

= A2x − 2det(xT Ax)Ax(xT Ax)−1 − xxT A2x

+ 2xdet(xT Ax).

(27)

One can show through Lagrange multipliers theory that

∇N F5 = 0 if x = [ qi qj ] α, where α is orthogonal. However,

this solution is not stable unless {i, j} = {1, n}.

3.4.1 Stability Analysis

Now consider the dynamical system

x′ = ∇N F5(x), (28)

or equivalently,

x̄′ = Hx̄,

where

H = I ⊗ A2 − 2det(xT Ax)(xT Ax)−1 ⊗ A − xT A2x ⊗ In

+ 2det(xT Ax)I2 ⊗ In

= I2⊗A2−2det(xT Ax)(xT Ax)−1⊗A−xT A2x⊗In+2det(xT Ax)I2⊗In.

It can be shown that the system (28) is stable over the set Ω1n.

The matrix H can be expressed as

H =(αT ⊗ In){I2 ⊗ A2 − 2det(Σ)Σ−1 ⊗ A − Σ2 ⊗ In

+ 2det(Σ)I2 ⊗ In}(α ⊗ In).

Hence the eigenvalues of H are the same as those of the matrix:
[

A2 − 2λnA − λ2
1In + 2λ1λnIn 0
0 A2 − 2λ1A − λ2

nIn + 2λ1λnIn

]
.

Let λi be an eigenvalue of A, then each eigenvalue of H is of the

form

λ2
i − 2λ1λi − λ2

n + 2λ1λn = (λi − λn)(λi + λn − 2λ1),

or the form

λ2
i − 2λnλi − λ2

1 + 2λ1λn = (λi − λ1)(λi + λ1 − 2λn).

Clearly, each eigenvalue of H is negative except when i = 1 or

i = n, in which case, these quantities are zero.

3.5 Algorithm 5

This algorithm is derived from the following optimization prob-

lem:

Maximize F6(x) =
1

2
{trace(xT Ax)}2 − 2det(xT Ax)

subject to x ∈ IRn×2, xT x = I2.

(29)

The gradient of F6 with respect to the Stiefel manifold S = {x ∈
IRn×r : xT x = I2} is

∇N F6 = ∇F6(x) − x(∇F6(x))T x

= A2x − 2det(xT Ax)Ax(xT Ax)−1 − xxT A2x + 2xdet(xT Ax)
(30)

Note ∇NF6 = 0 if x = [ qi qj ]α for some orthogonal matrix α.

Stability of stationary points can be analyzed using the following

dynamical system:

x′ = ∇F6(x) − x(∇F6(x))T x

= trace(xT Ax)Ax − 2Axdet(xT Ax)Ax(xT Ax)−1

− xxT Axtrace(xT Ax) + 2xdet(xT Ax).

(31a)

3.5.1 Stability Analysis

One way to show that the system (31a) is stable over the set

S = {x ∈ IRn×2 : x = [ q1 qn ] α, αT α = I2}, is to examine the

associated matrix

I2 ⊗ A2 − 2det(xT Ax)(xT Ax)−1 ⊗ A − xT A2x ⊗ In

+ 2det(xT Ax)I2 ⊗ In,
(31b)

for definiteness. Local stability of this system over the set Ω1n

follows from analyzing the linearized system. The matrix version

of (31b) is
[

tr(xT Ax)A 0
0 tr(xT Ax)A

]
− 2

[
λ1λn

λ1
A 0

0 λ1λn
λ1

A

]

−
[

λ1tr(xT Ax)In 0
0 λntr(xT Ax)In

]
+ 2

[
λ1λnIn 0

0 λ1λnIn

]
.

(31c)

For each eigenvalue λ1 of the matrix A, there are two eigen-

values of the matrix (31c) given by:

(λ1+λn)λi−2λnλi−λ1(λ1+λn)+2λ1λn = (λi−λ1)(λ1−λn) ≤ 0,

and

(λ1+λn)λi−2λ1λi−λn(λ1+λn)+2λ1λ2 = (λi−λn)(λn−λ1) ≤ 0.

Thus all eigenvalues of the linearized system are non-positive

and each zero eigenvalue has geometric multiplicity 1. This in-

dicates that the system (31a) is stable over Ω1n.

3.6 Algorithm 6

Finally, the last algorithm is derived from the gradient system

associated with the following optimization problem:

Maximize F7(x) =
1

2
trace{(xT Ax)2} − 2det(xT Ax)

subject to x ∈ IRn×2 xT x = I2.

(32)

The gradient of F7 with respect to the Stiefel manifold S = {x ∈
IRn×r : xT x = I2} is

∇NF7 = ∇F7(x) − x(∇F7(x))T x

= AxxT Ax − 2det(xT Ax)Ax(xT Ax)−1 − x(xT Ax)2

+ 2xdet(xT Ax)

(33)

The associated dynamical system is

x′ = ∇F7(x) − x(∇F7(x))T x

= AxxT Ax − det(xT Ax)Ax(xT Ax)−1 − x(xT Ax)2

+ xdet(xT Ax)

(34)

Clearly, if x is a solution of the equation ∇N F7 = 0, then x ∈
Ωij , 1 ≤ i, j ≤ n. In the next section Ω1n is shown to be stable

equilibrium set for the system (34).

5
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3.6.1 Stability Analysis

The system (34) can be expressed as

x̄′ = Hx̄,

where

H = xT Ax ⊗ A − det(xT Ax)(xT Ax)−1 ⊗ A − (xT Ax)2 ⊗ In

+ det(xT Ax) ⊗ In.

If x ∈ Ω1n, then the matrix H can be equivalently written as

H = αT Σα ⊗ A − (αT Σα)−1det(αT Σα) ⊗ A

− αT Σ2α ⊗ In + det(αT Σα)I2 ⊗ In

= (αT ⊗ In){Σ ⊗ A − Σ−1det(Σ) ⊗ A

− Σ2 ⊗ In + det(Σ)I2 ⊗ In}(α ⊗ In).

This implies that the eigenvalues of H are those of the matrix

[
λ1A 0
0 λnA

]
−

[
λ1λn

λ1
A 0

0 λ1λn
λ1

A

]
−

[
λ2
1In 0
0 λ2

nIn

]

+

[
λ1λnIn 0

0 λ1λnIn

]
,

=

[
λ1A − λnA − λ1

1In + λ1λnIn 0
0 λnA − λ1A − λ1

nIn + λ1λnIn

]
.

Corresponding to each eigenvalue λi of A, there exist two

eignvalues of H given by

λ1λi − λnλi − λ2
1 + λ1λn = (λ1 − λn)(λi − λ1) ≤ 0,

or

λnλi − λ1λi − λ2
n + λ1λn = (λn − λ1)(λi − λn) ≤ 0.

This shows that all eigenvalues of the symmetric matrix H are

negative except two which occur when λi = 1 or λi = λn.

4 Conclusion

Several dynamical systems for joint computation of minimum

and maximum eigenvalues and corresponding eigenvectors are

developed. These systems are extensions of the author work [11]

for extracting extreme eigenvectors simultaneously. The main

challenge in deriving these systems is to come up with the appro-

priate cost function. Local stability of the proposed systems is

established using Lyapunov direct method. There remain many

issues to be examined including global convergence and stability.

It should be stated that more rigorous proofs of stability can be

established using results from central manifold theory. Prelimi-

nay simulations, which are not shown here due to space limits,

have shown that these systems converge from a wide range of

intitial conditions demonstrating global convergence. Also, it is

observed that incorporating penalty terms in the cost functions

F1-F4 leads to significant acceleration in convergence.
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