Joint Computation of Principal and Minor Components Using Gradient Dynamical Systems Over Stiefel Manifolds

Mohammed A. Hasan
Department of Electrical \& Computer Engineering
University of Minnesota Duluth
E.mail:mhasan@d.umn.edu

Abstract

This paper presents several dynamical systems for simultaneous computation of principal and minor subspaces of a symmetric matrix. The proposed methods are derived from optimizing cost functions which are chosen to have optimal values at vectors that are linear combinations of extreme eigenvectors of a given matrix. Necessary optimality conditions are given in terms of a gradient of certain cost functions over a Stiefel manifold. Stability analysis of equilibrium points of six algorithms is established using Liapunov direct method.

Keywords: Eigenvalue spread, Gradient dynamical systems; Stiefel manifold, Joint PCA-MCA, Joint PSAMSA, Oja's Rule

1 Introduction

Principal subspace analysis (PSA), and minor subspace analysis (MSA), are essential for many signal processing applications including direction estimation in antenna arrays, data compression, and multiuser detection in wireless communications. Both PSA and MSA require the computation of a few extremal eigenpairs and corresponding eigenspaces of positive definite matrices. Designing learning rules for PSA and MSA has been the focus of many research efforts, see [1]-[6] and numerous references therein. A well-known tool for computing the principal and minor subspace of a data matrix is Oja's rule and several variations of it. A variety of adaptive (on-line) algorithms for PCA or PSA can be found in neural networks literature, see also [7] and references therein.

Many other methods are derived from optimizing Rayleigh and inverse Rayleigh quotients [8]-[10]. In most known methods, either a principal or a minor subspace (or component) but not both are computed. Methods for joint computing eigenspaces corresponding to both maximum and minimum eigenvalues are given in [11]. In this paper, additional methods that expand those of [11] are proposed. These involve algorithms for joint computation of both (PSA and MSA) or (PCA and MCA). Specifically, iterative methods are presented for determining the largest and smallest eigenvalues of a symmetric matrix, and their corresponding eigenvectors, simultaneously.

Let $A \in \mathbb{R}^{n \times n}$ be an arbitrary symmetric matrix, i.e., $A=A^{T}$, where ${ }^{T}$ denotes matrix stranspose, and \mathbb{R} is the set of real numbers. Let $\left\{\lambda_{i}\right\}_{i=1}^{n}$ be the set of eigenvalues of A with associated eigenvectors $\left\{q_{i}\right\}_{i=1}^{n}$. It will be assumed that q_{i} is a unit norm eigenvector associated with the eigenvalue λ_{i}, i.e., $A q_{i}=\lambda_{i} q_{i}, q_{i}^{T} q_{j}=\delta_{i j}$, where $\delta_{i j}$ is the Kronecker delta function. Since A is symmetric, all its eigenvalues are real and A has a complete set of orthogonal eigenvectors, i.e., the set $\left\{q_{i}\right\}_{i=1}^{n}$ is a bais for R^{n}. It will be assumed throughout that the λ_{i} 's are in decreasing order so that $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}$. It will be assumed that $\lambda_{1}>\lambda_{n}$ for otherwise A is an identity matrix.

The quantity $\lambda_{1}-\lambda_{n}$ is sometimes called the eigen-spread of the matrix A. The eigen-spread of a symmetric matrix A may be charaterized by Mirsky result [12] (Theorem 3). Another charaterization of the eigen-spread of the matrix A is given in [11] and is shown to be equivalent to Mirsky result. In this paper, several variations will be derived by generalizing the methods presented in [11]. It will be assumed that $\lambda_{1}>\lambda_{n}$ for otherwise A is an identity matrix.

The following notation will be used throughout. The notation \mathbb{R}, and \mathcal{C} denote the set of real numbers, and the set of complex numbers, respectively. The identity matrix of dimension k is expressed with the symbol I_{k}. The vector e_{i} denotes the i th column of an identity matix. The magnitude of a vector x will be denoted by $\|x\|=\sqrt{x^{T} x}$. The notation I denotes an identity matrix of appropriate size. The transpose of a real matrix x is denoted by x^{T}, and the derivative of x with respect to time is written as x^{\prime}. If B is a square matrix, then $\operatorname{tr}(B)$, and $\operatorname{det}(\mathrm{B})$ denote the trace of B and the determinant of B respectively. Finally, the time derivative of $V(x, y)$ is denoted by \dot{V}.

2 Higher Order Eigenvalue Problems

In this section, several results that will be used in the subsequent sections are presented. These results include solving quadratic and higher order eigenvalue problems, and some results regarding the eigen-spread of a symmetric matrix.

Theorem 1. Let $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix and consider the equation

$$
\begin{equation*}
A^{2} z+A z \alpha+x \beta=0 \tag{1}
\end{equation*}
$$

for some numbers $\alpha, \beta \in \mathbb{R}$, and $z \in \mathbb{R}^{n \times 1}$. Then each nonzero solution of (1) is of the form $z=\gamma_{1} q_{i}+\gamma_{2} q_{j}$ for some numbers γ_{1}, γ_{2}.

Proof: Clearly, A has a complete set of eigenvectors q_{1}, \cdots, q_{n} since A is symmetric. Thus assume that $z=\sum_{k=1}^{n} \gamma_{k} q_{k}$ for some $\gamma_{k} \in \mathcal{C}$ and $k=1, \cdots, n$. Hence by substituting in (1) we obtain
$A^{2} z+A z \alpha+x \beta=A^{2} \sum_{k=1}^{n} \gamma_{k} q_{k}+\alpha A \sum_{k=1}^{n} \gamma_{k} q_{k}+\left(\sum_{k=1}^{n} \gamma_{k} q_{k}\right) \beta=0$.
This implies that

$$
\gamma_{k} \lambda_{k}^{2}+\alpha \lambda_{k} \gamma_{k}+\gamma_{k} \beta=\gamma_{k}\left(\lambda_{k}^{2}+\alpha \gamma_{k}+\beta\right)=0
$$

for $k=1, \cdots, n$. Since a quadratic equation has only two zeros (counting multiplicities), it follows that $\gamma_{k}=0$ for each $k \in$ $\{1,2, \cdots, n\}$ except for two indices. Thus assume that $\gamma_{i} \neq 0$ and $\gamma_{j} \neq 0$. Consequently, $z=\gamma_{i} q_{i}+\gamma_{j} q_{j}, \beta=\lambda_{i} \lambda_{j}$ and $\alpha=-\left(\lambda_{i}+\lambda_{j}\right)$.

This result can be generalized as follows:
Theorem 2. Let $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix and consider the equation

$$
\begin{equation*}
A^{m} z+A^{m-1} z \alpha_{1}+\cdots+z \alpha_{m}=0 \tag{2}
\end{equation*}
$$

for some numbers $\alpha_{k} \in \mathbb{R}, k=1, \cdots, n$, and $z \in \mathbb{R}^{n \times 1}$. Then each nonzero solution of (2) is of the form $z=\sum_{k=1}^{m} \gamma_{i_{k}} q_{i_{k}}$ for some numbers $\gamma_{i_{k}}, i_{k}=i_{1}, i_{2}, \cdots, i_{m} \in\{1, \cdots, n\}$.

Next we state and proof a well-known result of Mirsky [12] regarding the eigen-spread of a symmetric matrix. The proof, which is simple and algebraic in nature, is given here since the ideas in the proof can be adopted to derive dynamical systems that converges to linear combinations of minimum and maximum eigenvectors.

Theorem 3(Mirsky [12]). Let $A \in \mathbb{R}^{n \times n}$ be a positive definite matrix and consider the optimization problem:

$$
\begin{align*}
& \text { Maximize } F_{1}(x, y)=x^{T} A y \\
& \text { subject to } \tag{3}\\
& x, y \in \mathbb{R}^{n \times 1}, x^{T} x=y^{T} y=1, x^{T} y=0
\end{align*}
$$

Then (3) attains its maximum $\lambda_{1}-\lambda_{n}$ at $(x, y)=$ $\left(\pm \frac{q_{1}+q_{n}}{\sqrt{2}}, \pm \frac{q_{1}-q_{n}}{\sqrt{2}}\right)$. Similarly, the minimum is $\lambda_{n}-\lambda_{1}$ and is attained when $(x, y)=\left(\pm \frac{q_{1}+q_{n}}{\sqrt{2}}, \mp \frac{q_{1}-q_{n}}{\sqrt{2}}\right)$.
Proof: Let us define the Stiefel manifold S as

$$
\begin{equation*}
S=\left\{x \in \mathbb{R}^{n \times 2}: x^{T} x=I_{2}\right\} \tag{4}
\end{equation*}
$$

As shown in [13], the gradient of F_{1} with respect to S is

$$
\begin{aligned}
& \nabla_{N} F_{1}=\nabla F_{1}(x)-x\left(\nabla F_{1}(x)\right)^{T} x \\
& =\left[\begin{array}{ll}
A y & A x
\end{array}\right]-\left[\begin{array}{ll}
x & y
\end{array}\right]\left[\begin{array}{ll}
y & x
\end{array}\right]^{T} A\left[\begin{array}{ll}
x & y
\end{array}\right]
\end{aligned}
$$

Clearly, $\nabla_{N} F_{1}=0$ implies that $U=Q_{i j} \alpha$, where $Q_{i j}=$ $\left[\begin{array}{ll}q_{i} & q_{j}\end{array}\right], i \neq j$, and $\alpha \in \mathbb{R}^{2 \times 2}$ is orthogonal, i.e., $\alpha^{T} \alpha=I_{2}$. Consequently, the equation $\nabla_{N} F_{1}=0$ yields

$$
\Sigma \alpha=\alpha J \alpha^{T} \Sigma \alpha J
$$

where $J=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$ and $\Sigma=\left[\begin{array}{cc}\lambda_{i} & 0 \\ 0 & \lambda_{j}\end{array}\right]$. By pre-multiplying by α^{T} we obtain

$$
\alpha^{T} \Sigma \alpha=\alpha^{T} \alpha J \alpha^{T} \Sigma \alpha J=J \alpha^{T} \Sigma \alpha J
$$

Since $J^{2}=I_{2}$, it follows that

$$
\alpha^{T} \Sigma \alpha J=J \alpha^{T} \Sigma \alpha
$$

and therefore, $\alpha^{T} \Sigma \alpha$ has the matrix form

$$
\alpha^{T} \Sigma \alpha=\left[\begin{array}{ll}
r & s \\
s & r
\end{array}\right]
$$

for some real numbers r and s. The eigenvalues of the last matrix are $r-s$ and $r+s$ with eigenvectors $\left[\begin{array}{c}1 \\ -1\end{array}\right]$ and $\left[\begin{array}{l}1 \\ 1\end{array}\right]$.

Let α be given as

$$
\alpha=\left[\begin{array}{ll}
\alpha_{11} & \alpha_{12} \\
\alpha_{21} & \alpha_{22}
\end{array}\right]=\left[\begin{array}{ll}
\alpha_{1} & \alpha_{2}
\end{array}\right]
$$

where $\alpha_{1}=\left[\begin{array}{l}\alpha_{11} \\ \alpha_{21}\end{array}\right]$ and $\alpha_{2}=\left[\begin{array}{l}\alpha_{12} \\ \alpha_{22}\end{array}\right]$. Then,

$$
x^{T} A y=\alpha_{1}^{T} \Sigma \alpha_{2}=\alpha_{11} \alpha_{12} \lambda_{1}+\alpha_{21} \alpha_{22} \lambda_{2}=\alpha_{11} \alpha_{12}\left(\lambda_{i}-\lambda_{j}\right)
$$

Thus the maximum of $x^{T} A y$ occurs when $i=1$ and $j=n$. It remains to determine the maximum of $\alpha_{11} \alpha_{12}$. Maximizing $\alpha_{11} \alpha_{12}$ leads to the following problem:

$$
\begin{aligned}
& \operatorname{Max} e_{1}^{T} \alpha_{1} \alpha_{2}^{T} e_{1} \\
& \text { subject to } \alpha \in \mathbb{R}^{n \times 2}, \alpha^{T} \alpha=I_{2}
\end{aligned}
$$

The necessary condition of optimatity is that:

$$
e_{1} e_{1}^{T} \alpha J-\alpha J \alpha^{T} e_{1} e_{1}^{T} \alpha=0
$$

i.e.,

$$
\begin{aligned}
& {\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
\alpha_{11} & \alpha_{12} \\
\alpha_{21} & \alpha_{22}
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]=} \\
& {\left[\begin{array}{ll}
\alpha_{11} & \alpha_{12} \\
\alpha_{21} & \alpha_{22}
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{ll}
\alpha_{11} & \alpha_{12} \\
\alpha_{21} & \alpha_{22}
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
\alpha_{11} & \alpha_{12} \\
\alpha_{21} & \alpha_{22}
\end{array}\right]}
\end{aligned}
$$

After simplifications we obtain

$$
\begin{aligned}
& {\left[\begin{array}{cc}
\alpha_{12} & \alpha_{11} \\
0 & 0
\end{array}\right]} \\
& =\left[\begin{array}{cc}
\alpha_{11}^{2}\left(\alpha_{21}+\alpha_{12}\right) & \alpha_{11} \alpha_{12}\left(\alpha_{21}+\alpha_{12}\right) \\
\alpha_{11}\left(\alpha_{21}^{2}+\alpha_{11} \alpha_{22}\right) & \alpha_{12}\left(\alpha_{21}^{2}+\alpha_{11} \alpha_{22}\right)
\end{array}\right]
\end{aligned}
$$

This leads to the following four equations:

$$
\begin{aligned}
\alpha_{12} & =\alpha_{11}^{2}\left(\alpha_{21}+\alpha_{12}\right) \\
\alpha_{11} & =\alpha_{11} \alpha_{12}\left(\alpha_{21}+\alpha_{12}\right) \\
0 & =\alpha_{11}\left(\alpha_{21}^{2}+\alpha_{11} \alpha_{22}\right) \\
0 & =\alpha_{12}\left(\alpha_{21}^{2}+\alpha_{11} \alpha_{22}\right)
\end{aligned}
$$

From these equations, one concludes that if $\alpha_{21}^{2}+\alpha_{11} \alpha_{22} \neq 0$ then $\alpha_{11}=0$ and $\alpha_{21}=0$. This contradicts the orthogonality of α. Hence $\alpha_{21}^{2}+\alpha_{11} \alpha_{22}=0$. Similarly, if $\alpha_{21}+\alpha_{12}=0$, then $\alpha_{11}=0$ and $\alpha_{21}=0$. This contradicts the orthogonality of α. It follows from the first two equations that if $\alpha_{11}=0$, then $\alpha_{12}=0$, and if $\alpha_{12}=0$, then $\alpha_{11}=0$. Hence $\alpha_{11} \neq 0, \alpha_{12} \neq 0$, and $\alpha_{12}+\alpha_{21} \neq 0$. It follows from the first two equations that

$$
\frac{\alpha_{12}}{\alpha_{11}}=\frac{\alpha_{11}}{\alpha_{12}}
$$

This implies that $\alpha_{12}^{2}=\alpha_{11}^{2}$, or $\alpha_{12}= \pm \alpha_{11}$. Also, $\alpha_{22}^{2}=\alpha_{21}^{2}$, or $\alpha_{21}= \pm \alpha_{22}$. Thus $\alpha_{12} \alpha_{11}$ is maximum when $\alpha_{12}=\alpha_{11}$, in which case $\alpha_{21}=-\alpha_{22}$. Hence α is equal one of the following matrices:

$$
\left[\begin{array}{ll}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \tag{5}\\
\frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}}
\end{array}\right],\left[\begin{array}{ll}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{-1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right],\left[\begin{array}{cc}
\frac{-1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}}
\end{array}\right],\left[\begin{array}{cc}
\frac{-1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \\
\frac{-1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right] .
$$

Note that $\alpha^{T} J \alpha=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$ and $J \alpha^{T} \Sigma \alpha=\left[\begin{array}{cc}\lambda_{1} & 0 \\ 0 & -\lambda_{n}\end{array}\right]$ Thus the maximum of $\alpha_{11} \alpha_{12}$ is $\frac{1}{2}$ and subsequently the maximum of $x^{T} A y$ is $\frac{\lambda_{1}-\lambda_{n}}{2}$ with the maximizers given by

$$
\left[\begin{array}{ll}
x & y
\end{array}\right]=Q \alpha= \pm\left[\begin{array}{ll}
\frac{q_{1}+q_{n}}{\sqrt{2}} & \frac{q_{1}-q_{n}}{\sqrt{2}}
\end{array}\right]
$$

It follows that $q_{1}= \pm \frac{x+y}{\sqrt{2}}$ and $q_{n}= \pm \frac{x-y}{\sqrt{2}}$.
Next we show that the dynamical system based on Mirsky theorem is stable.

2.0.1 Stability Analysis

A gradient dynamical system for solving the optimization problem (3) is

$$
\begin{align*}
& x^{\prime}=\nabla_{N} F_{1}=\nabla F_{1}(x)-x\left(\nabla F_{1}(x)\right)^{T} x \tag{6a}\\
& =\left[\begin{array}{ll}
A y & A x
\end{array}\right]-\left[\begin{array}{ll}
x & y
\end{array}\right]\left[\begin{array}{ll}
y & x
\end{array}\right]^{T} A\left[\begin{array}{ll}
x & y
\end{array}\right]
\end{align*}
$$

which can be expressed as

$$
\begin{equation*}
U^{\prime}=A U J-U J U^{T} A U \tag{6b}
\end{equation*}
$$

where $U=\left[\begin{array}{ll}x & y\end{array}\right]$, and $J=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$. The equilibrium points for this system are contained in the set

$$
\Omega_{i j}=\left\{U: U=\left[\begin{array}{ll}
q_{i} & q_{j} \tag{7}
\end{array}\right] \alpha, \alpha \in \mathbb{R}^{2 \times 2}, \alpha^{T} \alpha=I_{2}\right\}
$$

Assume that \hat{U} is a stationary point for the system (6a), then $\hat{U}^{T} A \hat{U} J=J \hat{U}^{T} A \hat{U}$ or equivalently, $\alpha^{T} \Sigma \alpha J=J \alpha^{T} \Sigma \alpha$, i.e., $\alpha^{T} \Sigma \alpha$ is centro-symmetric since $J \alpha^{T} \Sigma \alpha J=\alpha^{T} \Sigma \alpha$.

To examine stability of equilibrium points of the system (6a), we first rewrite the equivalent system (6 b) as follows:

$$
\begin{equation*}
\bar{U}^{\prime}=\left(J \otimes A-J U^{T} A U \otimes I_{n}\right) \bar{U} \tag{8}
\end{equation*}
$$

where \bar{U} is a vector obtained from concatenating the columns of U, and \otimes denotes the Kronecker product operation. The matrix $J \otimes A-J U^{T} A U \otimes I_{n}$ can be written as

$$
\begin{align*}
& {\left[\begin{array}{cc}
0 & A \\
A & 0
\end{array}\right]-\left[\begin{array}{cc}
\frac{\lambda_{1}-\lambda_{n}}{2} & \frac{\lambda_{1}+\lambda_{n}}{2} \\
\frac{\lambda_{1}+\lambda_{n}}{2} & \frac{\lambda_{1}-\lambda_{n}}{2}
\end{array}\right] \otimes I_{n}} \\
& =\left[\begin{array}{cc}
-\frac{\lambda_{1}-\lambda_{n}}{2} I_{n} & A-\frac{\lambda_{1}+\lambda_{n}}{2} I_{n} \\
A-\frac{\lambda_{1}+\lambda_{n}}{2} I_{n} & -\frac{\lambda_{1}-\lambda_{n}}{2} I_{n}
\end{array}\right] . \tag{9}
\end{align*}
$$

which is negative semidefinite since $-\frac{\lambda_{1}-\lambda_{n}}{2}<0$ with the Schur complement [14]

$$
R=-\frac{\lambda_{1}-\lambda_{n}}{2} I_{n}+2 \frac{\left(A-\frac{\lambda_{1}+\lambda_{n}}{2} I_{n}\right)^{2}}{\lambda_{1}-\lambda_{n}}
$$

It can be verified that if λ_{i} is an eigenvalue of A, then $\frac{2\left(\lambda_{i}-\lambda_{1}\right)\left(\lambda_{i}-\lambda_{n}\right)}{\lambda_{1}-\lambda_{n}}$ is an eigenvalue of R. Hence all eigenvalues of the matrix of (9) are negative or zeros. Since the matrix $J \otimes A-J U^{T} A U \otimes I_{n}$ is symmetric, the geometric and algebraic multiplicity of each eigenvalue are the same. This implies that the system (6a) is stable over the set $\Omega_{i j}$ only if $\Omega_{i j}=\Omega_{1 n}$.

Another version of Mirsky theorem is derived in [11] which is stated in the next result.

Theorem 4 [11]. Let $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix and consider the optimization problem:

$$
\begin{align*}
& \text { Maximize } F_{2}(x, y)=x^{T} A x-y^{T} A y \tag{10}\\
& \text { subject to } x, y \in \mathbb{R}^{n \times 1}, x^{T} x=y^{T} y=1, x^{T} y=0
\end{align*}
$$

Then (10) attains its maximum at $x= \pm q_{n}$ and $y= \pm q_{1}$, and the maximum is $\lambda_{n}-\lambda_{1}$. Similarly, the minimum is $\lambda_{1}-\lambda_{n}$ and is attained when $x= \pm q_{1}$ and $y= \pm q_{n}$.

This result has been stated and analyzed in [11] using constrained optimization techniques. In this section, we examine the stability of a gradient dynamical system that is based on the gradient of F_{2} on the Stiefel's manifold S defined in (4):

$$
\begin{align*}
x^{\prime} & =A x-x x^{T} A x+y y^{T} A x \\
y^{\prime} & =-A y-x x^{T} A y+y y^{T} A y \tag{11}
\end{align*}
$$

In more compact form, the system (11) is equivalent to

$$
\begin{equation*}
\bar{U}^{\prime}=\left(J \otimes A-J \Sigma \otimes I_{n}\right) \bar{U} \tag{12}
\end{equation*}
$$

where $J=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$. This system is stable over the set $\Omega_{1 n}$ since the matrix $J \otimes A-J \Sigma \otimes I_{n}$ can be shown to be negative semidefinite. Clearly, the matrix

$$
J \otimes A-J \Sigma \otimes I_{n}=\left[\begin{array}{cc}
A-\lambda_{1} I_{n} & 0 \\
0 & -A+\lambda_{n} I_{n}
\end{array}\right]
$$

is negative semidefinite since its eigenvalues are all negative or zeros.

3 The Propsed Methods

To increase convergence rate, several variations of F_{1} and F_{2} are considered in the next few sections.

3.1 Algorithm 1

A logarithmic version of Mirsky's theorem is given in the next result.
Theorem 5. Let $A \in \mathbb{R}^{n \times n}$ be a positive definite matrix and consider the optimization problem:

$$
\begin{align*}
& \text { Maximize } F_{3}(x, y)=\log \left(x^{T} A y\right) \\
& \text { subject to } \tag{13}\\
& x, y \in \mathbb{R}^{n \times 1}, x^{T} x=y^{T} y=1, x^{T} y=0
\end{align*}
$$

Then (13) attains its maximum at $x= \pm q_{n}$ and $y= \pm q_{1}$, and the maximum is $\log \left(\frac{\lambda_{1}}{\lambda_{n}}\right)$. Similarly, the minimum is $\log \left(\frac{\lambda_{n}}{\lambda_{1}}\right)$ and is attained when $x= \pm q_{1}$ and $y= \pm q_{n}$.

A gradient dynamical system that is based on the gradient of F_{3} on the Stiefel's manifold S defined in (3) is

$$
\begin{align*}
x^{\prime} & =A y\left(x^{T} A y\right)^{-1}-x-y\left(x^{T} A y\right)^{-1} x^{T} A x \tag{14}\\
y^{\prime} & =A x\left(y^{T} A x\right)^{-1}-y-x\left(y^{T} A y\right)^{-1} y^{T} A y
\end{align*}
$$

The equilibrium points, i.e., the solutions of $\nabla_{N} F_{3}=0$, are contained in the set $\Omega_{i j}, 1 \leq i, j \leq n$.

3.1.1 Stability Analysis

The dynamical system (14) may be rewritten in concise form as

$$
\begin{equation*}
U^{\prime}=A U J-U J U^{T} A U \tag{15}
\end{equation*}
$$

where $U=\left[\begin{array}{ll}x & y\end{array}\right]$, and $J_{1}=\left[\begin{array}{cc}0 & \frac{1}{x^{T} A y} \\ \frac{1}{y^{T} A x} & 0\end{array}\right]$. Next we verify that $\Omega_{1 n}$ is a stable equilibrium set for the system (14). If \hat{U} is
a steady state solution of the system (15), then since $x^{T} A y=$ $y^{T} A x$, then

$$
\hat{U}^{T} A \hat{U} J_{1}=J_{1} \hat{U}^{T} A \hat{U}
$$

or equivalently,

$$
\alpha^{T} \Sigma \alpha J_{1}=J_{1} \alpha^{T} \Sigma \alpha
$$

where $\Sigma=\left[\begin{array}{cc}\lambda_{1} & 0 \\ 0 & \lambda_{n}\end{array}\right]$. This implies that $\alpha^{T} \Sigma \alpha=\left[\begin{array}{cc}r & s \\ s & r\end{array}\right]$, i.e., $\alpha^{T} \Sigma \alpha$ is centro-symmetric. Clearly, the eigenvalues of the matrix $J_{1} \otimes A-J_{1} U^{T} A U \otimes I_{n}$ are same as those of the matrix $\frac{1}{x^{T} A y}\left(J \otimes A-J U^{T} A U \otimes I_{n}\right)$ which are non-positive provided that $x^{T} A y>0$ which is the case since $\left[\begin{array}{ll}x & y\end{array}\right]$ is a maximizer of F_{3}.

3.2 Algorithm 2

In this section, a logarithmic version of Algorithm 1 is developed.
Theorem 6. Let $A \in \mathbb{R}^{n \times n}$ be a positive definite matrix and consider the optimization problem:

$$
\begin{align*}
& \text { Maximize } F_{3}(x, y)=\log \left(x^{T} A x\right)-\log \left(y^{T} A y\right) \\
& \text { subject to } x, y \in \mathbb{R}^{n \times 1}, x^{T} x=y^{T} y=1, x^{T} y=0 . \tag{16}
\end{align*}
$$

Then (16) attains its maximum at $x= \pm q_{n}$ and $y= \pm q_{1}$, and the maximum is $\log \left(\frac{\lambda_{1}}{\lambda_{n}}\right)$. Similarly, the minimum is $\log \left(\frac{\lambda_{n}}{\lambda_{1}}\right)$ and is attained when $x= \pm q_{1}$ and $y= \pm q_{n}$.

A gradient dynamical system that is based on the gradient of F_{3} on the Stiefel's manifold Ω is

$$
\begin{align*}
x^{\prime} & =A x\left(x^{T} A x\right)^{-1}-x+y\left(y^{T} A y\right)^{-1} y^{T} A x \\
y^{\prime} & =-A y\left(y^{T} A y\right)^{-1}+y+x\left(x^{T} A x\right)^{-1} x^{T} A y . \tag{17a}
\end{align*}
$$

3.2.1 Stability Analysis

The system (17a) may be written as:

$$
\begin{equation*}
U^{\prime}=A U J-U J U^{T} A U \tag{17b}
\end{equation*}
$$

where $J=\left[\begin{array}{cc}\frac{1}{x^{T} A x} & 0 \\ 0 & \frac{-1}{y^{T} A y}\end{array}\right]$. At optimality, the matrix $J=$ $\left[\begin{array}{cc}\frac{1}{\lambda_{1}} & 0 \\ 0 & \frac{-1}{\lambda_{n}}\end{array}\right]$.

It can be shown that the system (17b) is stable over the set $\Omega_{1 n}$ since it is equivalent to

$$
\begin{equation*}
\bar{U}^{\prime}=\left(J \otimes A-J U^{T} A U \otimes I_{n}\right) \bar{U} \tag{18}
\end{equation*}
$$

The eigenvalues of this system are those of the matrix

$$
\left[\begin{array}{cc}
\frac{A}{\lambda_{1}} & 0 \tag{19}\\
0 & \frac{-A}{\lambda_{n}}
\end{array}\right]-\left[\begin{array}{cc}
I_{n} & 0 \\
0 & -I_{n}
\end{array}\right]=\left[\begin{array}{cc}
\frac{A}{\lambda_{1}}-I_{n} & 0 \\
0 & \frac{-A}{\lambda_{n}}+I_{n}
\end{array}\right] .
$$

The eigenvalues of the last matrix are $\frac{\lambda_{i}}{\lambda_{1}}-1$ or $1-\frac{\lambda_{i}}{\lambda_{n}}$ which are both non-positive. There are exactly two zero eigenvalues which occur when $i=1$ or $i=n$.

3.3 Algorithm 3

If in Theorem 3, the vector y is replaced by $y=\frac{y_{1}}{\sqrt{y_{1}^{T} y_{1}}}$, where $y_{1}=A x-x x^{T} A x$, then $y^{T} y=1, x^{T} y=0$, and $x^{T} x=1$. This leads to the following optimization problem:

$$
\begin{align*}
& \text { Maximize } F_{4}(x)=\frac{1}{2} \operatorname{trace}\left\{x^{T} A^{2} x-\left(x^{T} A x\right)^{2}\right\} \tag{20}\\
& \text { subject to } x \in \mathbb{R}^{n \times 1}, x^{T} x=1
\end{align*}
$$

The gradient of F_{4} with respect to the Stiefel manifold $\{x \in$ $\left.\mathbb{R}^{n \times 1}: x^{T} x=1\right\}$ is

$$
\begin{align*}
& \nabla_{N} F_{4}=\nabla F_{4}(x)-x\left(\nabla F_{4}(x)\right)^{T} x \\
& =A^{2} x-2 A x x^{T} A x-x x^{T} A^{2} x+2 x\left(x^{T} A x\right)^{2} \tag{21}
\end{align*}
$$

From Theorem 1, any solution of $\nabla_{N} F_{4}=0$ is of the form $x=\gamma_{i} q_{i}+\gamma_{j} q_{j}$, for some numbers γ_{i}, γ_{j} such that $\gamma_{i}^{2}+\gamma_{j}^{2}=1$. Now,

$$
\begin{align*}
F_{4}(x) & =x^{T} A^{2} x-\left(x^{T} A x\right)^{2} \\
& =\left(\gamma_{i}^{2}-\gamma_{i}^{4}\right) \lambda_{i}^{2}-2 \gamma_{i}^{2} \gamma_{j}^{2} \lambda_{i} \lambda_{j}+\left(\gamma_{j}^{2}-\gamma_{j}^{4}\right) \lambda_{j}^{2} \\
& =\gamma_{i}^{2} \gamma_{j}^{2} \lambda_{i}^{2}-2 \gamma_{i}^{2} \gamma_{j}^{2} \lambda_{i} \lambda_{j}+\gamma_{i}^{2} \gamma_{j}^{2} \lambda_{j}^{2} \tag{22}\\
& =\gamma_{i}^{2} \gamma_{j}^{2}\left(\lambda_{i}-\lambda_{j}\right)^{2} .
\end{align*}
$$

Since $\gamma_{i}^{2}+\gamma_{j}^{2}=1$, the maximum of $\gamma_{i}^{2} \gamma_{j}^{2}$ occurs when $\gamma_{i}^{2}=$ $\gamma_{j}^{2}=\frac{1}{2}$. Also $\left(\lambda_{i}-\lambda_{j}\right)^{2}$ is maximum when $i=1$ and $j=n$. Thus the maximum of the function F is

$$
\frac{\left(\lambda_{1}-\lambda_{n}\right)^{2}}{4}
$$

and this maximum occurs when $z= \pm \frac{q_{1}+q_{n}}{\sqrt{2}}$ and $z= \pm \frac{q_{1}-q_{n}}{\sqrt{2}}$.
Thus depending on initial condition $x(0)$, i.e., whether $x(0)$ has components along the eigenvectors q_{1} and q_{n}, the dynamical system

$$
\begin{equation*}
x^{\prime}=A^{2} x-2 A x x^{T} A x-x x^{T} A^{2} x+2 x\left(x^{T} A x\right)^{2}, \tag{23}
\end{equation*}
$$

may converge to either $z_{1}=\frac{q_{1}+q_{n}}{\sqrt{2}}, z_{2}=-\frac{q_{1}+q_{n}}{\sqrt{2}}, z_{3}=\frac{q_{1}-q_{n}}{\sqrt{2}}$ or $z_{4}=-\frac{q_{1}-q_{n}}{\sqrt{2}}$.

Note $\nabla_{N} F_{4}(x)=0$ if x is any normalized eigenvector of A. In this case $F_{4}(x)=0$, which is the minimum of F_{4} since $F(x) \geq 0$ for all $x \in S$.

3.3.1 Stability Analysis

The system (23) can be shown to be globally stable using the Lyapunov function $V(x)=\frac{1}{4}\left(x^{T} x-1\right)^{2}$. The time derivative of V along a trajectory of (23) is

$$
\begin{align*}
V^{\prime} & =x^{T} A^{2} x-2\left(x^{T} A x\right)^{2}-x^{T} x x^{T} A^{2} x+2 x^{T} x\left(x^{T} A x\right)^{2} \\
& =-\left(x^{T} x-1\right)^{2}\left(x^{T} A^{2} x-2\left(x^{T} A x\right)^{2}\right) \leq 0, \tag{24}
\end{align*}
$$

over the set $\left\{x \in \mathbb{R}^{n \times 1}: x^{T} x \leq \frac{1}{2}\right\}$. Hence (23) is stable [15,16].
Let $x(t)$ be a solution of (23) in the interval $[0, \infty)$, where $x(0)=x_{0}$ is given and has nonzero components along q_{1} and q_{n}. Assume that $x(t) \rightarrow z_{1}$ as $t \rightarrow \infty$. It can be verified that $A z_{1}-z_{1} z_{1}^{T} A z_{1}=\frac{\lambda_{1}-\lambda_{n}}{2 \sqrt{2}}\left(q_{1}-q_{n}\right)=\frac{\lambda_{1}-\lambda_{n}}{2 \sqrt{2}} z_{3}$, and $A z_{3}-$ $z_{3} z_{1}^{T} A z_{3}=\frac{\lambda_{1}-\lambda_{n}}{2 \sqrt{2}}\left(q_{1}+q_{n}\right)=\frac{\lambda_{1}-\lambda_{n}}{2 \sqrt{2}} z_{1}$. Thus to extract q_{1} and q_{n}, we have $q_{1}=\frac{z_{1}+z_{3}}{\sqrt{2}}$, and $q_{n}=\frac{z_{1}-z_{3}}{\sqrt{2}}$.

Remark: It can be shown that the system (23) is stable on the set $S_{1}=\left\{x: x^{T} x=1, x^{T} A x=\frac{\lambda_{1}+\lambda_{n}}{2}, \quad x^{T} A^{2} x=\frac{\lambda_{1}^{2}+\lambda_{n}^{2}}{2}\right\}$. On the set S_{1}, the system (23) transforms into

$$
\begin{align*}
x^{\prime} & =A^{2} x-\left(\lambda_{1}+\lambda_{n}\right) A x+\lambda_{1} \lambda_{n} x \tag{25}\\
& =\left(A^{2}-\left(\lambda_{1}+\lambda_{n}\right) A+\lambda_{1} \lambda_{n} I_{n}\right) x
\end{align*}
$$

The matrix $A^{2}-\left(\lambda_{1}+\lambda_{n}\right) A+\lambda_{1} \lambda_{n} I_{n}$ is negative semi-definite since its eigenvalues are given by $\lambda_{i}^{2}-\left(\lambda_{1}+\lambda_{n}\right) \lambda_{i}+\lambda_{1} \lambda_{n}=$ $\left(\lambda_{i}-\lambda_{1}\right)\left(\lambda_{i}-\lambda_{n}\right) \leq 0$. Equality holds only when $\lambda_{i}=\lambda_{1}$ or $\lambda_{i}=\lambda_{n}$.

3.4 Algorithm 4

This algorithm is based on the following maximization problem:

$$
\begin{align*}
& \text { Maximize } F_{5}(x)=\frac{1}{2} \operatorname{trace}\left(x^{T} A^{2} x\right)-\operatorname{det}\left(x^{T} A x\right) \tag{26}\\
& \text { subject to } x \in \mathbb{R}^{n \times 2}, x^{T} x=I_{2}
\end{align*}
$$

The gradient of F_{5} with respect to the Stiefel manifold S defined in (4) is

$$
\begin{align*}
& \nabla_{N} F_{5}=\nabla F_{5}(x)-x\left(\nabla F_{5}(x)\right)^{T} x \\
& =A^{2} x-2 \operatorname{det}\left(x^{T} A x\right) A x\left(x^{T} A x\right)^{-1}-x x^{T} A^{2} x \tag{27}\\
& +2 x \operatorname{det}\left(x^{T} A x\right)
\end{align*}
$$

One can show through Lagrange multipliers theory that $\nabla_{N} F_{5}=0$ if $x=\left[\begin{array}{ll}q_{i} & q_{j}\end{array}\right] \alpha$, where α is orthogonal. However, this solution is not stable unless $\{i, j\}=\{1, n\}$.

3.4.1 Stability Analysis

Now consider the dynamical system

$$
\begin{equation*}
x^{\prime}=\nabla_{N} F_{5}(x) \tag{28}
\end{equation*}
$$

or equivalently,

$$
\bar{x}^{\prime}=H \bar{x}
$$

where

$$
\begin{aligned}
H & =I \otimes A^{2}-2 \operatorname{det}\left(x^{T} A x\right)\left(x^{T} A x\right)^{-1} \otimes A-x^{T} A^{2} x \otimes I_{n} \\
& +2 \operatorname{det}\left(x^{T} A x\right) I_{2} \otimes I_{n}
\end{aligned}
$$

$=I_{2} \otimes A^{2}-2 \operatorname{det}\left(x^{T} A x\right)\left(x^{T} A x\right)^{-1} \otimes A-x^{T} A^{2} x \otimes I_{n}+2 \operatorname{det}\left(x^{T} A x\right) I_{2} \otimes I_{n}$ It can be shown that the system (28) is stable over the set $\Omega_{1 n}$. The matrix H can be expressed as

$$
\begin{aligned}
H= & \left(\alpha^{T} \otimes I_{n}\right)\left\{I_{2} \otimes A^{2}-2 \operatorname{det}(\Sigma) \Sigma^{-1} \otimes A-\Sigma^{2} \otimes I_{n}\right. \\
& \left.+2 \operatorname{det}(\Sigma) I_{2} \otimes I_{n}\right\}\left(\alpha \otimes I_{n}\right)
\end{aligned}
$$

Hence the eigenvalues of H are the same as those of the matrix:

$$
\left[\begin{array}{cc}
A^{2}-2 \lambda_{n} A-\lambda_{1}^{2} I_{n}+2 \lambda_{1} \lambda_{n} I_{n} & 0 \\
0 & A^{2}-2 \lambda_{1} A-\lambda_{n}^{2} I_{n}+2 \lambda_{1} \lambda_{n} I_{n}
\end{array}\right] .
$$

Let λ_{i} be an eigenvalue of A, then each eigenvalue of H is of the form

$$
\lambda_{i}^{2}-2 \lambda_{1} \lambda_{i}-\lambda_{n}^{2}+2 \lambda_{1} \lambda_{n}=\left(\lambda_{i}-\lambda_{n}\right)\left(\lambda_{i}+\lambda_{n}-2 \lambda_{1}\right)
$$

or the form

$$
\lambda_{i}^{2}-2 \lambda_{n} \lambda_{i}-\lambda_{1}^{2}+2 \lambda_{1} \lambda_{n}=\left(\lambda_{i}-\lambda_{1}\right)\left(\lambda_{i}+\lambda_{1}-2 \lambda_{n}\right)
$$

Clearly, each eigenvalue of H is negative except when $i=1$ or $i=n$, in which case, these quantities are zero.

3.5 Algorithm 5

This algorithm is derived from the following optimization problem:

$$
\begin{aligned}
& \text { Maximize } F_{6}(x)=\frac{1}{2}\left\{\operatorname{trace}\left(x^{T} A x\right)\right\}^{2}-2 \operatorname{det}\left(x^{T} A x\right) \\
& \text { subject to } x \in \mathbb{R}^{n \times 2}, x^{T} x=I_{2}
\end{aligned}
$$

The gradient of F_{6} with respect to the Stiefel manifold $S=\{x \in$ $\left.\mathbb{R}^{n \times r}: x^{T} x=I_{2}\right\}$ is
$\nabla_{N} F_{6}=\nabla F_{6}(x)-x\left(\nabla F_{6}(x)\right)^{T} x$
$=A^{2} x-2 \operatorname{det}\left(x^{T} A x\right) A x\left(x^{T} A x\right)^{-1}-x x^{T} A^{2} x+2 x \operatorname{det}\left(x^{T} A x\right)$
Note $\nabla_{N} F_{6}=0$ if $x=\left[\begin{array}{ll}q_{i} & q_{j}\end{array}\right] \alpha$ for some orthogonal matrix α. Stability of stationary points can be analyzed using the following dynamical system:

$$
\begin{align*}
& x^{\prime}=\nabla F_{6}(x)-x\left(\nabla F_{6}(x)\right)^{T} x \\
& =\operatorname{trace}\left(x^{T} A x\right) A x-2 A x \operatorname{det}\left(x^{T} A x\right) A x\left(x^{T} A x\right)^{-1} \tag{31a}\\
& -x x^{T} A x \operatorname{trace}\left(x^{T} A x\right)+2 x \operatorname{det}\left(x^{T} A x\right)
\end{align*}
$$

3.5.1 Stability Analysis

One way to show that the system (31a) is stable over the set $S=\left\{x \in \mathbb{R}^{n \times 2}: x=\left[\begin{array}{ll}q_{1} & q_{n}\end{array}\right] \alpha, \alpha^{T} \alpha=I_{2}\right\}$, is to examine the associated matrix

$$
\begin{align*}
& I_{2} \otimes A^{2}-2 \operatorname{det}\left(x^{T} A x\right)\left(x^{T} A x\right)^{-1} \otimes A-x^{T} A^{2} x \otimes I_{n} \\
& +2 \operatorname{det}\left(x^{T} A x\right) I_{2} \otimes I_{n} \tag{31b}
\end{align*}
$$

for definiteness. Local stability of this system over the set $\Omega_{1 n}$ follows from analyzing the linearized system. The matrix version of (31b) is
$\left[\begin{array}{cc}\operatorname{tr}\left(x^{T} A x\right) A & 0 \\ 0 & \operatorname{tr}\left(x^{T} A x\right) A\end{array}\right]-2\left[\begin{array}{cc}\frac{\lambda_{1} \lambda_{n}}{\lambda_{1}} A & 0 \\ 0 & \frac{\lambda_{1} \lambda_{n}}{\lambda_{1}} A\end{array}\right]$
$-\left[\begin{array}{cc}\lambda_{1} \operatorname{tr}\left(x^{T} A x\right) I_{n} & 0 \\ 0 & \lambda_{n} \operatorname{tr}\left(x^{T} A x\right) I_{n}\end{array}\right]+2\left[\begin{array}{cc}\lambda_{1} \lambda_{n} I_{n} & 0 \\ 0 & \lambda_{1} \lambda_{n} I_{n}\end{array}\right]$.
(31c)
For each eigenvalue λ_{1} of the matrix A, there are two eigenvalues of the matrix (31c) given by:
${ }^{n}\left(\lambda_{1}+\lambda_{n}\right) \lambda_{i}-2 \lambda_{n} \lambda_{i}-\lambda_{1}\left(\lambda_{1}+\lambda_{n}\right)+2 \lambda_{1} \lambda_{n}=\left(\lambda_{i}-\lambda_{1}\right)\left(\lambda_{1}-\lambda_{n}\right) \leq 0$, and
$\left(\lambda_{1}+\lambda_{n}\right) \lambda_{i}-2 \lambda_{1} \lambda_{i}-\lambda_{n}\left(\lambda_{1}+\lambda_{n}\right)+2 \lambda_{1} \lambda_{2}=\left(\lambda_{i}-\lambda_{n}\right)\left(\lambda_{n}-\lambda_{1}\right) \leq 0$.
Thus all eigenvalues of the linearized system are non-positive and each zero eigenvalue has geometric multiplicity 1 . This indicates that the system (31a) is stable over $\Omega_{1 n}$.

3.6 Algorithm 6

Finally, the last algorithm is derived from the gradient system associated with the following optimization problem:

$$
\begin{align*}
& \text { Maximize } F_{7}(x)=\frac{1}{2} \operatorname{trace}\left\{\left(x^{T} A x\right)^{2}\right\}-2 \operatorname{det}\left(x^{T} A x\right) \tag{32}\\
& \text { subject to } x \in \mathbb{R}^{n \times 2} x^{T} x=I_{2}
\end{align*}
$$

The gradient of F_{7} with respect to the Stiefel manifold $S=\{x \in$ $\left.\mathbb{R}^{n \times r}: x^{T} x=I_{2}\right\}$ is

$$
\begin{align*}
& \nabla_{N} F_{7}=\nabla F_{7}(x)-x\left(\nabla F_{7}(x)\right)^{T} x \\
& =A x x^{T} A x-2 \operatorname{det}\left(x^{T} A x\right) A x\left(x^{T} A x\right)^{-1}-x\left(x^{T} A x\right)^{2} \tag{33}\\
& +2 x \operatorname{det}\left(x^{T} A x\right)
\end{align*}
$$

The associated dynamical system is

$$
\begin{align*}
& x^{\prime}=\nabla F_{7}(x)-x\left(\nabla F_{7}(x)\right)^{T} x \\
& =A x x^{T} A x-\operatorname{det}\left(x^{T} A x\right) A x\left(x^{T} A x\right)^{-1}-x\left(x^{T} A x\right)^{2} \tag{34}\\
& +x \operatorname{det}\left(x^{T} A x\right)
\end{align*}
$$

Clearly, if x is a solution of the equation $\nabla_{N} F_{7}=0$, then $x \in$ $\Omega_{i j}, 1 \leq i, j \leq n$. In the next section $\Omega_{1 n}$ is shown to be stable equilibrium set for the system (34).

3.6.1 Stability Analysis

The system (34) can be expressed as

$$
\bar{x}^{\prime}=H \bar{x}
$$

where

$$
\begin{aligned}
H & =x^{T} A x \otimes A-\operatorname{det}\left(x^{T} A x\right)\left(x^{T} A x\right)^{-1} \otimes A-\left(x^{T} A x\right)^{2} \otimes I_{n} \\
& +\operatorname{det}\left(x^{T} A x\right) \otimes I_{n} . \\
\text { If } x & \in \Omega_{1 n}, \text { then the matrix } H \text { can be equivalently written as }
\end{aligned}
$$

$$
\begin{aligned}
H & =\alpha^{T} \Sigma \alpha \otimes A-\left(\alpha^{T} \Sigma \alpha\right)^{-1} \operatorname{det}\left(\alpha^{T} \Sigma \alpha\right) \otimes A \\
& -\alpha^{T} \Sigma^{2} \alpha \otimes I_{n}+\operatorname{det}\left(\alpha^{T} \Sigma \alpha\right) I_{2} \otimes I_{n} \\
& =\left(\alpha^{T} \otimes I_{n}\right)\left\{\Sigma \otimes A-\Sigma^{-1} \operatorname{det}(\Sigma) \otimes A\right. \\
& \left.-\Sigma^{2} \otimes I_{n}+\operatorname{det}(\Sigma) I_{2} \otimes I_{n}\right\}\left(\alpha \otimes I_{n}\right)
\end{aligned}
$$

This implies that the eigenvalues of H are those of the matrix

$$
\begin{aligned}
& {\left[\begin{array}{cc}
\lambda_{1} A & 0 \\
0 & \lambda_{n} A
\end{array}\right]-\left[\begin{array}{cc}
\frac{\lambda_{1} \lambda_{n}}{\lambda_{1}} A & 0 \\
0 & \frac{\lambda_{1} \lambda_{n}}{\lambda_{1}} A
\end{array}\right]-\left[\begin{array}{cc}
\lambda_{1}^{2} I_{n} & 0 \\
0 & \lambda_{n}^{2} I_{n}
\end{array}\right] } \\
& +\left[\begin{array}{cc}
\lambda_{1} \lambda_{n} I_{n} & 0 \\
0 & \lambda_{1} \lambda_{n} I_{n}
\end{array}\right], \\
= & {\left[\begin{array}{cc}
\lambda_{1} A-\lambda_{n} A-\lambda_{1}^{1} I_{n}+\lambda_{1} \lambda_{n} I_{n} & \lambda_{n} A-\lambda_{1} A-\lambda_{n}^{1} I_{n}+\lambda_{1} \lambda_{n} I_{n}
\end{array}\right] . } \\
& \text { Corresponding to each eigenvalue } \lambda_{i} \text { of } A, \text { there exist two }
\end{aligned}
$$ eignvalues of H given by

$$
\lambda_{1} \lambda_{i}-\lambda_{n} \lambda_{i}-\lambda_{1}^{2}+\lambda_{1} \lambda_{n}=\left(\lambda_{1}-\lambda_{n}\right)\left(\lambda_{i}-\lambda_{1}\right) \leq 0
$$

or

$$
\lambda_{n} \lambda_{i}-\lambda_{1} \lambda_{i}-\lambda_{n}^{2}+\lambda_{1} \lambda_{n}=\left(\lambda_{n}-\lambda_{1}\right)\left(\lambda_{i}-\lambda_{n}\right) \leq 0
$$

This shows that all eigenvalues of the symmetric matrix H are negative except two which occur when $\lambda_{i}=1$ or $\lambda_{i}=\lambda_{n}$.

4 Conclusion

Several dynamical systems for joint computation of minimum and maximum eigenvalues and corresponding eigenvectors are developed. These systems are extensions of the author work [11] for extracting extreme eigenvectors simultaneously. The main challenge in deriving these systems is to come up with the appropriate cost function. Local stability of the proposed systems is established using Lyapunov direct method. There remain many issues to be examined including global convergence and stability. It should be stated that more rigorous proofs of stability can be established using results from central manifold theory. Preliminay simulations, which are not shown here due to space limits, have shown that these systems converge from a wide range of intitial conditions demonstrating global convergence. Also, it is observed that incorporating penalty terms in the cost functions $F_{1}-F_{4}$ leads to significant acceleration in convergence.

References

[1] E. Oja, and J. Karhunen, "On stochastic approximation of the eigenvectors and eigenvalues of the expectation of a random matrix", J. Math. Anal. Appl., 1985, 106, pp. 69-84.
[2] E. Oja, "Principal components, minor components, and linear neural networks. Neural Networks," 5:927-935, November 1992.
[3] G. Cirrincione, M. Cirrincione, J. Herault, and S. Van Huffel, "The MCA EXIN Neuron for the Minor Component Analysis," IEEE Trans. on Neural Networks, Vol. 13, No. 1, pp. 160-187, January 2002.
[4] T. D. Sanger, "Optimal unsupervised learning in a singlelayer linear feedforward network," Neural Networks, 2:459473, 1989.
[5] L. Xu, "Least mean square error recognition principle for self organizing neural nets," Neural Networks, 6:627-648, 1993.
[6] J. H. Manton, Uwe Helmke, and Iven M. Y. Mareels, "Dynamical Systems for Principal and Minor Component Analysis," Proceedings of the 42nd IEEE Conference on Decision and Control, Maui, Hawaii USA, pp. 1863-1868, December 2003.
[7] K. I. Diamantaras and S. Y. Kung, Principal Component Neural Networks: Theory and Applications, John Wiely \& Sons, INC, 1996.
-[8] M.A. Hasan, "Natural Gradient for Minor Component Extraction," proceeding of the 2005 International Symposium on Circuits and Systems, May 2005.
[9] M.A. Hasan, "Diagonally weighted and shifted criteria for minor and principal component extraction," IEEE International Joint Conference on Neural Networks, 2005. IJCNN '05. Proceedings. Volume 2, 31 July-4 Aug. 2005 Page(s):1251 - 1256 vol. 2.
[10] M.A. Hasan, "Revisiting Weighted Inverse Rayleigh Quotient for Minor Component Extraction," Proceedings of the Fifth International Conference on Information, Communications and Signal Processing (ICICS 2005), December 6-9, 2005.
[11] M.A. Hasan, "Dynamical systems for joint principal and minor component analysis," American Control Conference, 14-16 June 2006, Page(s):6 pp.
[12] L. Mirsky. The spread of a matrix. Mathematika, 3:127-130, 1956.
[13] A. Edelman, T.A. Arias, and S.T. Smith, "The geometry of algorithms with orthogonality constraints," SIAM J. Matrix Anal. Appl., vol. 20, pp. 303-353, 1998.
[14] Arthur Albert, Conditions for positive and nonnegative definiteness in terms of pseudoinverses, SIAM Journal on Applied Mathematics, 17 (1969), pp. 434-440.
[15] Hassan K. Khalil, Nonlinear Systems, 3rd edition. Prentice Hall, 2002.
[16] J. J. E. Soltine and W. Li. Applied nonlinear Comtrol. Prentice Hall, 1991.

