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Abstract— Adaptive optics is used in astronomy to obtain
high resolution images, close to diffraction limited, of stars
and galaxies with ground telescopes, otherwise blurred by
atmospheric turbulence. The measurements of one or more
wavefront sensor are used to flatten distorted wavefronts with
one or more deformable mirror in a feedback loop. In this
paper we shall report our experience on the problem of building
an accurate (dynamical) model of the actuation (deformable
mirror) and sensing (wavefront sensor) of adaptive optics
system. This will be done adapting state-of-the-art system
identification and model reduction techniques to the problem
at hand. Our results are based on real data collected under
various operating conditions from a demonstrator developed
at the European Southern Observatory (ESO), which is now
operating in the Paranal observatory (Chile).

Index Terms— Adaptive Optics, Closed Loop Identification,
Subspace Methods.

I. INTRODUCTION

Adaptive optics (AO) is a recent engineering discipline

arising from the interconnection of optics, electro-optics,

electrical engineering, mechanical engineering and chem-

istry, [26].

In order to provide diffraction limited performance, ri-

valling that obtained from the Hubble Space Telescope, with

ground-based telescopes, AO techniques use the measure-

ments of one or more wavefront sensor (WFS) to flatten

distorted wavefronts with one or more deformable mirror

(DM, from a control point of view the “actuator”) in a

feedback loop [25], [26], [11]. The cascade of these two

components (DM + WFS) represents what in this paper will

be called the plant or system.

In this paper we shall work with an adaptive optics sys-

tem called Multi-Conjugate Adaptive Optics Demonstrator

(MAD) [20], which is a demonstrator instrument aiming

at performing large field of view atmospheric turbulence

correction by implementing for the first time an adaptive

optics technique called Multi-Conjugate Adaptive Optics

(MCAO). MCAO and similar atmospheric turbulence correc-

tion techniques have been recognized as strategic both for the
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2nd generation Very Large Telescope (VLT) instrumentation

and for the European Extremely Large Telescope (E-ELT).

State-of-the-art systems, such as MAD considered in this

paper, are based on a very simple static approximation of

the system. Section IV contains a brief description of how

this problem is currently tackled. The main motivation for

using such a simple approximation of the plant is that the

frequency response of the actuators is essentially constant

in the frequency band of interest and that, by physical

considerations, the wavefront sensor can be modeled as an

averaging block on a sampling interval.

Further considerations concerning modeling of an adaptive

optics system can also be found in [18], [19], [23] where an

optimal (minimum variance or LQG) approach to control

design is taken. In any case the models considered, besides

their static gain, are always based on physical considerations

and are not built starting from data. Model based control

techniques have also been put forward in [15], [13]; these

works can be thought of as being complementary to our

work.

In this paper we shall report our experience on the

problem of building an accurate (dynamical) model of (the

deterministic part of) an Adaptive Optics system. Our results

are based on real data collected under various operating

conditions from MAD. Data have been collected when MAD

was sitting at the ESO facilities in Garching, before being

shipped to the Paranal observatory (Chile) for the actual test

on the field.

In our view, the main contribution of this paper is to

show that, indeed, a well designed dynamical model can

outperform (in the sense of improving of about one order

of magnitude in terms of simulation error variance) state-of-

the-art static models which are now being used for control

design. We also expect that the same consideration will

become more and more important in the future; in fact,

the next generation’s AO systems will most likely have a

control loop operating at higher frequency, making it even

less reasonable to model the system with a static gain.

The models have been obtained using very recently de-

veloped subspace techniques [7], which have also allowed

identification to be performed in closed loop, and hence

around the nominal operating conditions. As a side contri-

bution, we have also implemented a recursive version (see

Section V-A) of the PBSIDopt algorithm in [7], which has

allowed to handle the large data sets used in this paper.

Finally, model reduction techniques have been applied to the

models obtained from the identification experiment, allowing

to obtain reasonably sized models, while maintaining good
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performance in validation.

II. ADAPTIVE OPTICS: SCAO VS. MCAO

In the so called single conjugated adaptive optics (SCAO)

systems the wavefront distortion is measured by one wave-

front sensor (see Section III). These measurements are used

to control one deformable mirror (see Section III) which is

used to compensate for the phase delays.

The field of view which benefits from the real-time atmo-

spheric turbulence correction is very limited, typically few

arcseconds for images obtained at infrared wavelengths. This

limitation is coming from the fact that the distorted wavefront

is estimated by the wavefront sensor only in the direction

of a sufficiently bright guide star located at or nearby the

observed astronomical object, and it is corrected for the same

direction by a deformable mirror.

In this configuration only the volume of the atmosphere

probed by the light of the observed guide star is efficiently

sensed while the atmospheric volumes probed by astronom-

ical objects far from the guide star are only partially seen.

This phenomenon is called atmospheric anisoplanatism and

a graphical representation is given in Figure 1.

To overcome these inconveniences, systems based on the

so called Multi-Conjugate Adaptive Optics are being built.

This technology allows to correct for atmospheric turbulence

on a field of view which is much larger than the one typically

covered by the existing adaptive optics systems installed on

8-meter class telescopes. The principle behind MCAO is

described pictorially in Figure 1. MCAO senses and corrects

for the whole atmospheric volume probed by the observed

field of view, [24].

ESO has developed a Multi-Conjugate Adaptive Optics

Demonstrator (MAD) which, after a long period of testing

at the ESO premises, has been installed on a Very Large

Telescope (VLT) in the Paranal observatory on early 2007

for evaluating its correction performance.

Fig. 1. Left to right: SCAO with atmospheric anisoplanatism, MCAO.

MAD is a MCAO systems with 2 deformable mirrors

(bimorph mirror, 60 elements), [2]. The system is equipped

with Multi Shack-Hartmann WFS consisting of 3 Shack-

Hartmann units (SHU).

III. PLANT DESCRIPTION: DEFORMABLE MIRRORS AND

WAVEFRONT SENSORS

This section is dedicated to the description of the main

components of an AO system: the deformable mirror and the

wavefront sensor. In this paper, indeed, we are interested in

providing a mathematical description of how voltages applied

to the deformable mirror map to sensed wavefront gradients.

The deformable mirrors of MAD are made of two piezo-

electric ceramic wafers, bonded together and oppositely

polarized. An array of electrodes is deposited between the

two wafers, while the front and back surfaces are grounded.

When a voltage is applied to an electrode, one wafer con-

tracts locally while the other expands creating a bend. To

ensure the maximum mobility to the DM, it is only fixed on

a tip/tilt mount with three support points, located at the edge

of the mirror and equally spaced. The layout of the actuators

is sketched in figure 2 (left panel). The piezo actuators have

several resonances in high frequency which influence their

dynamic behavior also in the closed-loop bandwidth. This

mirror is also affected by hysteresis. Fortunately when the

system is working in closed loop, this nonlinear effect does

not have a strong impact.

The second fundamental component of any AO system is

the wavefront sensor. This is the device that measures how

far the corrected wavefront is with respect to the ideal (no

atmospheric turbulence or perfect correction) flat wavefront.

In the MAD project the sensor is a Multi Shack-Hartmann

WFS consisting of 3 Shack-Hartmann units (SHU). Each

SH sensor provides the gradients of the 2D shape of the

wavefront in a number of points along a cartesian pattern.

The main components of the SH sensor are a lenslet array

located in a conjugated pupil plane and an array of detectors

placed in the focal plane of each lens (see figure 2, right

panel). The incoming wavefront is spatially sampled by the

lenslet and each subaperture focuses the incident light in the

focal plane. If the wavefront is flat the intensity distribution

is, as a function of wavelength λ, the Fourier transform of

the subaperture; for a tilted wave the intensity distribution is

shifted and possibly blurred. x and y slopes are reconstructed

from the shift.

IV. CONTROL ASPECTS

For ease of exposition, we will consider a SCAO system

schematically described in figure 2. The control loop is

composed by one WFS and one DM. The same procedure

can be extended to the more general MCAO case, involving

several WFSs and several DMs. In this simplified scheme

we shall only consider the piezoelectric part of the mirror

and assume orientation/tip/tilt have been taken care of.

The symbols in figure 2 have the following meaning: w

is the incoming turbulence, c is the DM correction, w̃ is the

residual error, y is the measurement vector (sensed slopes)

and n is the measurement noise. The signal u is the control

input (i.e. the voltages applied to the DM) and d is an

excitation source which is normally zero and has been added

only to the purpose of identification, see Section V.

The signals y, u and n are discrete-time finite-dimensional

vectors. The dimension of y ∈ R
p is twice the number of

illuminated subapertures on which the incoming turbulence

is spatially sampled. The dimension of u ∈ R
m is equal to

the number of actuators of the deformable mirror. On the
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Fig. 2. Top left: deformable mirror. Top right: wavefront sensor principle.
Bottom: Adaptive optics block diagram.

other hand, the quantities w, c and w̃ are continuous signals

in time and space, with a finite spatial support equal to the

pupil size1. The objective of the controller is to produce an

input u such that the mirror compensates for the measured

residual error y. Since the DM + WFS system is usually

modeled as a static mapping MI , i.e. y ≃ MIu, the desired

inputs u are of the form MCy where the so-called control

matrix MC is simply obtained by pseudo-inverting the so-

called interaction matrix MI . These reference signals are fed

into a linear controller, which is usually composed by m PI

controllers of the form CPI(z) = Kp +Ki
Ts

1−z−1 . Therefore

CZ(z) in Figure 2 takes the form

CZ(z) = diag {CPI(z), . . . , CPI(z)}MC (1)

Since the control matrix MC is used to reconstruct the

required DM pattern at the next step from the current

WFS measurements, the performance of the controller (1)

is strictly related to the quality of MC and hence to that of

MI . Finding the matrix MI is normally called calibration.

This problem can be tackled in a number of ways, see

[22], [17]. The most commonly used procedure (and the one

implemented in MAD) is based on exciting the mirror with

a sequence of inputs which are orthogonal to each other; the

input pattern is based on the so-called Hadamard matrix. The

constant input is applied as long as the system reaches steady

state. The (temporal) average of the steady state response is

taken as output.

The results of this paper provide an alternative procedure

for calibration. In fact, once a dynamical model relating

control inputs u to outputs y has been obtained via system

identification, a static approximation can be found by, e.g.

considering the DC gain of the identified model. Of course

the static approximation can be seen as the zero-order

approximation of the identified model. We shall discuss in

Section V-B the application of model reduction techniques

to this problem; the results are quite interesting, see Section

VI.

Note that the dynamic model derived here could be inte-

grated with the data-driven model for the turbulence in [15],

as an input to a model-model based control design technique

1For easy of exposition signal conversion (continuous to discrete time
and viceversa) are not explicitly shown in Figure 2.

where, instead, the standard static modeling approach of the

deterministic part (WFS + DM) has been used (the interac-

tion matrix is called H there, see eq. (30) and Corollary 1

in [15]).

V. IDENTIFICATION

In this paper we address, for the Multi-Conjugate adaptive

optics system, the identification of a dynamical model linking

the control action to one DM to the slope measurements of

one WFS. The disturbance d in Figure 2 has to be injected in

order to guarantee identifiability. During normal operation of

the plant d = 0. It is therefore advisable to keep d as small

as possible also during identification in order to operate the

plant around the nominal working conditions.

We shall get back to this point when discussing the

experimental results. Suffices here to say that the results from

validation experiments on the real plant suggest that d should

be large enough to excite the systems and small enough not

to excite non-linear effects.

One might wonder why one should dare to perform

identification in closed loop; the most important reason is

the non-linearity of the system. In fact, the overall plant can

be considered linear only in the vicinity of the operating

conditions; in particular the wavefront sensor should not

saturate i.e. the sensed slope should be small; this can only

be achieved in closed loop.

To these considerations we might also add that, under

constraints on the input spectrum and/or on the model

structure, sometimes closed-loop identification gives better

results than open-loop [4] as far as identification of the

“deterministic part” (the one we are interested in); note also

it could be desirable to perform identification in closed-loop

when the model have to be used for the purpose of control

design [12], [16]. We shall not further elaborate on this issue

and, for reason of space, we refer the reader to the above

referenced papers.

The system is MIMO with 60 inputs and 104 outputs;

therefore it is quite natural to use a subspace approach.

Our aim here is not to provide an in-depth comparison of

subspace methods applied to the AO system, but rather show

that these methods provide an interesting alternative to the

most commonly used calibration procedures [17] which are

being normally used in the AO community. Note, inciden-

tally, that the recent works [15], [13] consider data-driven

control strategies which concentrate on the “stochastic” part,

i.e. the atmospheric turbulence, while still using the standard

static model (interaction matrix) for the “deterministic” part

of the system (DM + WFS).

The main issue, besides the presence of feedback, is

the large number of inputs (60) and outputs (104); to the

authors’ knowledge the PBDSIopt algorithm described in

[7], [6] is the simplest (in terms of computational load)

subspace algorithm consistent with closed-loop data. It turns

out that the results in [7], [6] imply also that PBDSIopt is

(asymptotically) optimal within a certain class of subspace

algorithms.
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Moreover, in order to deal with the large amount of data

we have implemented a recursive version of the algorithm

which is based on the recursive computation of the VARX2

parameters. In the next subsection we give an outline of the

algorithm; we refer the reader to the papers [3], [7], [6] for

a thorough discussion of the literature on subspace methods

as well as for the properties of the PBSIDopt algorithm.

Our purpose is to estimate the parameters (A,B, C, K) of

the innovation state space model

x(t + 1) = Ax(t) + Bu(t) + Ke(t)
y(t) = Cx(t) + e(t)

(2)

where e(t) is the one step-ahead linear prediction error of

y(t) given {y(s),u(s), s < t}. Note also that we assume

there is a delay between inputs and outputs; this is reasonable

for this application.

We shall also denote with F (z) := C(zI − A)−1B

the transfer function from u (control inputs) to y (sensed

slopes). This is precisely the model for the “deterministic”

system (DM + WFS) we seek for. The “stochastic” part

G(z)e :=
(

C(zI − A)−1K + I
)

e(t) models the contribu-

tion of the measurements noise n (see Fig. 2). Note that in

our identification setup (calibration on beacon) the wavefront

phase variation due to atmospheric turbulence is zero, i.e.

w = 0.

In subspace identification two integers, p for “past” and f

for “future”, have to be selected by the user. These are the

number of block rows in certain block Hankel data matrices

we shall encounter later on. The choice of these parameters

is not entirely trivial, and in fact this is subject of current

research [3], [7]. In Section VI we shall briefly discuss these

choices.

A. Recursive Implementation

In the application we are considering handling large data

sets is quite demanding as both computation and memory

requirements are concerned. Therefore we have implemented

a recursive estimator for the VARX coefficients in the

PBSIDopt algorithm based on the recursive least squares

algorithm [27]. The same algorithm had been used in [8].

In order to provide a fully recursive implementation of

the PBSIDopt algorithm, besides using RLS in the VARX

estimation step, it is also necessary to implement both (i)

the SVD and (ii) the estimation of A,B,C, K from the state

sequences in a recursive manner.

As far as the SVD step, there are a number of techniques

for updating the SVD when more data points become avail-

able. This includes rank-1 updates [5] and subspace tracking

techniques [9], [14], [29].

B. Reduced Order Models

As can be seen from the results reported in Section VI,

in order to obtain good performance, the identified model

order should be in the range [100, 140]. It turns out that this

is a rather large model which might impose limitations to

2Short for Vector AutoRegressive with eXogenous inputs.

the purpose of control design. Therefore we have explored

the possibility of using reduced order models.

In this paper we consider the balanced model reduction.

However standard balanced model reduction does not pre-

serve the DC-gain of the system, which, as we have seen in

the previous sections, plays a crucial role in this application.

Therefore we shall consider a procedure which preserves the

DC gain, called DC-preserving balanced model reduction

[1], also known as singular perturbation approximation.

VI. RESULTS

We have carried out identification and validation experi-

ments using real data operating the system in closed-loop,

under the so-called calibration on beacon setup, i.e. when

the mirror is illuminated with a constant light (no incoming

atmospheric aberrations). The controller used to close the

loop is the same for all data records.

The identification was carried out using N̄ = 40000
data points. The length of the past horizon p has been

chosen using the Akaike (AIC) criterion. The first step of the

algorithm consists in estimating a VARX model of length p

which describes the data. It can be shown that if p̂ is the

minimizer of the AIC criterion, p = Mp̂ with M > 1 is a

possible choice. The AIC criterion reaches the minimum at

p̂ = 7. For M = 2 this would lead to an order selection rule

p = 2p̂ = 14. It turns out, however, that while this choice

meets some asymptotic criterions it is not necessarily the best

choice for finite data length N We have indeed verified in our

experiments that p = 9 or p = 10 seem to provide the best

results while also reducing the computational complexity

(w.r.t. the choice p = 14).

As far as the choice of f , it only makes sense to consider

f ≤ p. We have adopted a validation based approach to the

choice of f . Values of f ≥ 3 have been tested and f ≥ 7
seemed to provide the best results in terms of simulation

error on validation data (without major differences between

f = 7, f = 8 and f = 9.); thus f = 7 has been used.

Several models, with orders ranging in the interval n ∈
[60, 140], have been estimated. Also the identification exper-

iments have been repeated with two different levels of input

injection with standard deviations 0.04 and 0.07 (the white

noise signal d in Figure 2).

All identified models have been validated, according to the

validation measure:

J =
1

N̄

N̄
∑

t=1

Tr
[

(ys(t) − y(t)) (ys(t) − y(t))
⊤

]

(3)

where ys is the simulated output using the identified model

while y is the output from the real plant.

The validation experiments have been carried out using

three different levels of input excitation, namely with stan-

dard deviation 0.07, 0.04 and 0.016 (see figure 3). All

experiments (identification and validation) have been carried

out with a sampling frequency of 200Hz.

As anticipated in Section IV, it is a standard practice

in AO systems to model the input-output behavior using a

static gain (Interaction Matrix, IM) computed as discussed
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Fig. 3. Validation results (simulation error). Left hand side: using the identified model. Right hand side: using the static approximation (DC gain) and
the IM (horizontal line). The injected noise d used in the identification step has standard deviation 0.04 (left) and 0.07 (right). The three curves refer to
validation data with different level of injected disturbance d (0.07, 0.04, 0.016 respectively).

in Section IV. This is justified by the fact that, according

to the discussion in Section III, the system should be

well approximated by a constant gain (and a delay) in the

frequency range of interest. The results of this paper seem to

suggest that this is not the case; in fact the dynamic model

does significantly improve in terms of simulation error.

In our validation experiments we therefore compare the

validation results using: (i) the dynamic model we have

identified, (ii) the standard static model, i.e. the IM computed

using standard techniques (iii) the static approximation of

the identified model, i.e. its DC gain, and (iv) a reduced

order model of order nr using the procedure discussed

in Section V-B; the results are reported for an identified

model of order n = 100 obtained using input excitation

d of standard deviation 0.04. This choice was motivated

by the fact that its static gain gives the best validation

results among all static approximations, see Figure 3, the plot

of the static approximation for identification with standard

deviation 0.043.

The validation results can be summarized as follows:

a) The dynamic model outperforms the static model in

essentially all situations. In fact the validation results

show that an appropriate dynamical model performs

about 40 times better (in terms of normalized error

variance) w.r.t. the static model; this may suggest that

a control design which uses the dynamic model may

compare favorably with standard techniques based on

static linear approximations (using the IM).

b) A reduced order model of order nr (obtained using the

procedure in Section V-B) performs as good as the full

order identified model provided nr ≥ 60. See Figure

4.4

These results are in line with the discussions in [28],

3We have also validated reduced order models starting from different
full order identified models (e.g. order 120 or 140) obtaining very similar
results.

4Unfortunately we do not have any good physical insight as to why
below nr = 60 the performance degrades so rapidly while it is essentially
unchanged for nr ≥ 60.
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Fig. 4. Reduced order model (starting from identified model of order 100)
v.s. Interaction Matrix.)

[16] in that identifying a large order model and then

performing model reduction is sometimes to be pre-

ferred to direct low order model identification.

This may be very useful for the purpose of control

design. Note in fact that currently used PI controllers

require a memory which has the same dimension as

the input space, i.e. 60. Hence a model-based control

scheme could be implemented with about the same

order of complexity as the standard PI controller.

c) The static model obtained from the DC gain of the

(dynamic) identified model is comparable w.r.t. the

static model obtained using the standard approach for

the computation of the IM.

d) The dynamic models identified with large input exci-

tation (standard deviation 0.07) perform slightly worse

than those with standard deviation 0.04; this suggests

that, perhaps, non-linear effects come into play. Also

larger order models are necessary to reach comparable

performance. Compare, for instance, the plots on the

bottom left corners on the left and right panel in Figure

3.

We have also analyzed the spectral content of the simu-

lation errors es(t) := ys(t) − y(t) for both the simulation

using the static and dynamic models. The signal es(t) has

104 components (the number of sensed slopes); we have

computed the power spectrum of its components. For reasons

of space we report the power spectrum of the error only
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for two components; in particular we have selected the two

slopes which yield, respectively, the maximum and minimum

simulation error (normalized). It turns out the these are

respectively slope #18 and #19 along the x axis.

Some representative results are reported in figure 5; it is

clear that the frequency content of the error using the static

models (both the IM computed using the standard tools in

AO and the DC gain of the identified model) has a sharp

peak in high frequency. It is also remarkable that, while the

peak is still present using the dynamic model, its height and

also its width are considerably reduced.

Note also that both the dynamic model and its static

approximation (DC gain) perform better than the IM for low

to medium frequency range.

It should also be stressed that these results have been

obtained when the input is perturbed with a white noise

process. Instead, during normal operating conditions, the

“external excitation” is provided by the incoming turbulence.

It is a well known fact that this perturbation has a “low-pass”

spectrum [21], [10] and hence excites only the systems in the

low to medium frequency range. It is therefore quite natural

to expect that a dynamic model which performs better in

that frequency range is to be preferred. Unfortunately, the

data available does not allow to perform these sort of tests

and, as mentioned in the introduction, we shall not be able

to perform further test until the system will be operating in

the Paranal observatory.

VII. CONCLUSIONS

In this paper we have reported our experience on the

problem of modeling the “deterministic” part of an Adaptive

Optics system. We have tackled the problem applying state-

of-the-art subspace identification techniques to real data

taken from a Multi-Conjugate Adaptive Optics Demonstrator

developed at ESO. In order to be able to handle the large

dimension of the data set we have developed a recursive

version of the PBSIDopt algorithm; the recursive version is

interesting per se and, with minor modifications, can also be

used to tackle identification of slowly time-varying systems.

The validation results are very encouraging, showing that

the identified model outperforms currently used (static) mod-

els. We have also applied model reduction techniques, which

have allowed to obtain reasonably sized models with very

little loss in term of performance on validation data.

Future work will include exploring the possibility of using

such models for the purpose of control design.

REFERENCES

[1] U.M. Al-Saggaf and G.F. Franklin. On model reduction. In Proc. of

the 25th Conf. on Dec. and Cont., pages 1064–1369, Athens, Greece,
1986.

[2] R. Arsenault et al. MACAO-VLTI adaptive optics systems perfor-
mance. Proceedings of SPIE, 5490:47–58, 2004.

[3] D. Bauer. Asymptotic properties of subspace estimators. Automatica,
41:359–376, 2005.

[4] X. Bombois, M. Gevers, and G. Scorletti. Open-loop versus closed-
loop identification of Box-Jenkins models: A new variance analysis.
In Proc. 44th IEEE Conf. on Dec. & Control, Seville, Spain, 2005.

[5] J.R. Bunch and C.R. Nielsen. Updating the Singular Value Decom-
position. Numer. Math., 31:111–129, 1978.

[6] A. Chiuso. On the relation between CCA and predictor-based sub-
space identification. IEEE Trans. on Automatic Control, 52(10):1795–
1812, October 2007.

[7] A. Chiuso. The role of Vector AutoRegressive modeling in predictor
based subspace identification. Automatica, 43(6):1034–1048, June
2007.

[8] A. Chiuso, R. Muradore, and E. Fedrigo. Adaptive optics systems:
A challenge for closed loop subspace identifcation. In Proc. of ACC,
2007.

[9] P. Comon and G.H. Golub. Tracking a few extreme singualr values and
vectors in signal processing. Proceedings of the IEEE, 78(8):1327–
1338, 1990.

[10] J.M. Conan, G. Rousset, and P.Y. Madec. Wave-front temporal spectra
in high-resolution imaging through turbulence. J. Opt. Soc. Am. A,
12(7):1559–1570, 1995.

[11] E. Fedrigo, M. Kasper, L. Ivanescu, and H. Bonnet. Real-time control
of ESO adaptive optics systems. Automatisierungstechnik, 53(10):470–
483, 2005.

[12] M. Gevers and L. Ljung. Optimal experiment design with respect to
the intended model application. Automatica, 22:543–554, 1986.

[13] J.S. Gibson, C. Chang, and B.L. Ellerbroek. Adaptive optics: wave-
front correction by use of adaptive filtering and control. Applied

Optics, 39(16):2525–2538, 2000.
[14] G.H. Golub and C.R. Van Loan. Matrix Computation. The Johns

Hopkins Univ. Press., 2nd ed. edition, 1989.
[15] K. Hinnen, M. Verhaeghen, and N. Doelman. A data-driven H2-

optimal control approach for adaptive optics. IEEE Trans. on Contr.

Syst. Tech., 16(3):381–395, 2008.
[16] H. Hjalmarsson. From experiment design to closed-loop control.

Automatica, 41(3):393–438, 2005.
[17] M. Kasper, E. Fedrigo, D. P. Looze, H. Bonnet, L. Ivanescu, and

S. Oberti. Fast calibration of high-order adaptive optics systems. J.

Opt. Soc. Am. A, 21(6):1004–1008, 2004.
[18] D.P. Looze. Minimum variance control structure for adaptive optics

systems. Journal of the Optical Society of America A, 23(3):603–612,
2006.

[19] D.P. Looze, M. Kasper, S. Hippler, O. Beker, and R. Weiss. Opti-
mal Compensation and Implementation for Adaptive Optics Systems.
Experimental Astronomy, 15(2):67–88, 2003.

[20] E. Marchetti et al. On-sky testing of the multi-conjugate adaptive
optics demonstrator. The Messanger, 129:8–13, 2007.

[21] R.J. Noll. Zernike polynomials and atmospheric turbulence. JOSA,
66(3):207–211, 1976.

[22] S. Oberti et al. Large DM AO systems: synthetic IM or calibration
on sky? Proceedings of SPIE, 6272:627220, 2006.

[23] R.N. Paschall and D.J. Anderson. Linear quadratic Gaussian control
of a deformable mirror adaptive optics system with time-delayed
measurements. Applied Optics, 32(31/1), 1993.

[24] R. Ragazzoni, E. Marchetti, and G. Valente. Adaptive-optics correc-
tions available for the whole sky. Nature, 403(6765):54–6, 2000.

[25] F. Roddier. Adaptive Optics in Astronomy. Cambridge University
Press, 1999.

[26] M.C. Roggemann and B. Welsh. Imaging through Turbulence. CRC
Press, 1996.
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