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Abstract— Gene regulatory networks often occur at such
small scales that their dynamics are controlled by individual
molecular events. This discrete behavior causes significant
quantities of intrinsic noise. In some cases, mechanisms exist
in the system to repress this noise. With different parameters,
the same mechanisms may amplify the noise. By examining
the properties of how noise is transmitted through the system,
one can gather significant information about the system and
aid researchers to identify system properties. In this paper,
we consider a few simple analytical schemes to identify the
parameters of gene transcription and translation processes
with feedback regulation. While protein distributions can be
measured with fluorescent protein tagging and flow cytometry,
it is much more difficult to measure the quantities of messenger
RNAs in a single cell. We show that with the right experimental
procedures involving measurements of proteins alone, one can
identify transcription and translation parameters.

I. INTRODUCTION

Molecules exist in integer quantities that change at ran-
domly distributed discrete times. In a chemical process, if
the molecular population of a species is large, then a one
or two molecule change will make little difference to the
process. Furthermore, these changes occur so frequently that
the process appears to behave continuously. However, if the
population is small, then reactions will be much rarer and
will have a much larger effect on the system dynamics. In a
cell, the rare and discrete nature of chemical components
such as genes, RNA molecules, and proteins, can lead
to large amounts of intrinsic noise [1]–[7]. This intrinsic
noise in gene regulatory networks has attracted much recent
attention, and it is well established that different systems
will exhibit different noise transmission properties. In some
systems noise can be focussed [8], in some noise may cause
or enhance resonant fluctuations [9], some systems may
result in stochastic switching [10], [11], and in some systems,
noise may be repressed [12].

Noise in systems biology is often viewed as a computa-
tional obstacle to be overcome. If one does not include it
in the model, then one cannot hope to match the behavior
of the actual system. However, in many cases, including
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noise in a model results in an explosion of computational
complexity. Many approaches have been proposed to assist
in the modeling of discrete stochastic systems such as kinetic
Monte Carlo algorithms [13]–[16], stochastic differential
equation approaches [17]–[19], the linear noise approxima-
tion and other moment matching techniques [20]–[23] and
finite state projection approaches [24], [25]. At present, none
of these approaches suffices to handle all systems, and there
remains much work to be done to improve our computational
capabilities. However, as these tools develop, it becomes
more possible to overcome the obstacle of intrinsic noise and
gain significant benefits in analytical studies. In this paper,
we show how careful consideration of the transmission of
noise provides a significant amount of information about the
process. This information will, in turn, enable one to better
identify properties of the system from experimental data.

In the next section we will present a simple mathematical
description of a stochastic gene regulatory system with
transcription and translation. Then in Sections III through V
we show how the parameters of this model can be identified
from various pieces of limited information. Finally, in section
VII we make some concluding remarks.

II. MOMENT ANALYSIS OF A SIMPLE GENE NETWORK

Here we consider a simple description of gene transcrip-
tion and translation. Let x denote the population of mRNA
molecules, and let y denote the population of proteins in the
system. The system population is assumed to change only
through four reactions:

∅ → mRNA

mRNA→ ∅

mRNA→ mRNA+ protein

protein→ ∅

for which the propensity functions, wi(x, y), are

w1(x, y) = k1+k21y,

w2(x, y) = γ1x,

w3(x, y) = k2x, and

w2(x, y) = γ2y.

Here, the terms ki and γi are production and degradation
rates, respectively, and k21 corresponds to a feedback effect
that the protein is assumed to have on the transcription
process. In positive feedback, k21 > 0, the protein increases
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transcription; in negative feedback, k21 < 0, the protein
inhibits transcription.

For this system, one can write the master equation [20]:

Ṗi,j(t) = −(k1+k21j + γ1i+ k2i+ γ2j)Pi,j(t)
+ (k+k21j)Pi−1,j(t)
+ γ(i+ 1)Pi+1,j(t)
+ k2iPi,j−1(t)
+ γ2(j + 1)Pi,j+1(t), (1)

where Pi,j(t) is the probability that (x, y) = (i, j) at the time
t, conditioned on some initial probability distribution P(t0).
In this expression, the first negative term corresponds to the
probability of transitions that begin at the state (x, y) = (i, j)
and leave to another state, and the remaining positive terms
correspond to the reactions that begin at some other state
(x, y) 6= (i, j) and transition into the state (i, j).

The mean values of x and y can be written as:

v1(t) = E{x} =
∞∑
i=0

∞∑
j=0

iPi,j(t)

v3(t) = E{y} =
∞∑
i=0

∞∑
j=0

jPi,j(t). (2)

The derivatives of these mean values are found simply by
substituting (1) into (2):1

v̇1(t) =
∞∑
i=0

∞∑
j=0

iṖi,j(t) = k1+k21v3 − γ1v1,

and

v̇3 =
∞∑
i=0

∞∑
j=0

jṖi,j(t) = k2v1 − γ2v3.

Similarly, expressions for the second uncentered moments
can be written:

v2 = E{xx} =
∞∑
i=0

∞∑
j=0

iiPi,j ,

v4 = E{yy} =
∞∑
i=0

∞∑
j=0

jjPi,j ,

v5 = E{xy} =
∞∑
i=0

∞∑
j=0

ijPi,j , (3)

and evolve according to the set of ordinary differential
equations:

v̇2 =
∞∑
i=0

∞∑
j=0

i2Ṗi,j(t)

= k1 + (2k1 + γ1)v1 − 2γ1v2+k21v3 + 2k21v5,

v̇4 =
∞∑
i=0

∞∑
j=0

j2Ṗi,j

= k2v1 + γ2v3 − 2γ2v4,+2k2v5,

1Sample derivations for d
dt
v1 and d

dt
v5 are provided below in the

appendix.

v̇5 =
∞∑
i=0

∞∑
j=0

ijṖi,j

= k2v2 + k1v3+k21Ev4 − (γ1 + γ2)v5.

Altogether the various components of the first two moments,
v(t) :=

[
E{x} E{x2} E{y} E{y2} E{xy}

]T
,

evolve according to the linear time invariant ODE:

v̇ =

26664
−γ1 0 k21 0 0

γ1 + 2k1 −2γ1 k21 0 2k21

k2 0 −γ2 0 0
k2 0 γ2 −2γ2 2k2

0 k2 k1 k21 −γ1 − γ2

37775v+

26664
k1

k1

0
0
0

37775
= Av + b (4)

Now that we have expressions for the dynamics of the first
two moments, we will show in the following sections how
these expressions can be used to help identify the various
parameters: [k1, γ1, k2, γ2, k21] from properly chosen data
sets.

III. IDENTIFYING TRANSCRIPTION PARAMETERS

We begin by considering a simpler birth-death process of
mRNA transcripts, whose populations are denoted by x. The
moment equation for this system is:

d

dt

[
v1
v2

]
=
[
−γ 0

γ + 2k −2γ

] [
v1
v2

]
+
[
k
k

]
,

where we have dropped the subscripts on k1 and γ1. By
applying the nonlinear transformation:[

µ
σ2 − µ

]
=
[

v1
v2 − v2

1 − v1

]
,

where µ and σ2 refer to the mean and variance of x,
respectively, we arrive at the transformed set of equations:

d

dt

»
µ

σ2 − µ

–
=

»
v̇1

v̇2 − 2x̄ ˙̄x− v̇1

–
=

»
−γ1v1 + k

(γ1 + 2k)v1 − 2γv2 + k − (2v1 + 1)(−γv1 + k)

–
=

»
−γ 0
0 −2γ

– »
µ

σ2 − µ

–
+

»
k
0

–
. (5)

Suppose that µ and σ2 are known at two instances in time,
t0 and t1 = t0 + τ , and denote their values at time ti as µi
and σ2

i , respectively. The relationship between (µ0, σ
2
0) and

(µ1, σ
2
1) is governed by the solution of (5), which can be

written:»
µ1

σ2
1 − µ1

–
=

»
exp(−γτ)µ0

exp(−2γτ)(σ2
0 − µ0)

–
+

»
k
γ

(1− exp(−γτ))
0

–
(6)

In this expression there are 2 unknown parameters, γ and
k, that we wish to identify from the data {µ0, σ

2
0 , µ1, σ

2
1}. If

µ0 = σ2
0 , the second equation is trivial, and we are left with

only one equation whose solution could be any pair:(
γ, k = γ

µ1 − exp(−γτ)µ0

1− exp(−γτ)

)
.
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If for the first measurement µ0 6= σ2
0 and for the second

measurement µ1 6= σ2
1 , then we can solve for:

γ = − 1
2t

log
(
σ2

1 − µ1

σ2
0 − µ0

)
k = γ

µ1 − exp(−γt)µ0

1− exp(−γτ)
.

Note that if µ1 and σ2
1 are very close, the sensitivity of γ

to small errors in this difference becomes very large. From
(6), one can see that as τ becomes very large (σ2

1 − µ1)
approaches zero, and steady state measurements do not
suffice to uniquely identify both parameters.

IV. IDENTIFYING TRANSCRIPTION AND TRANSLATION
PARAMETERS

The full system in (4) has the solution:

v1 = eAτv0 +
∫ τ

0

eA(τ−s)bds, (7)

where we have again adopted the notation that vi = v(ti)
and ti+1 = ti+τ . Drawing upon the fact that the parameters
{k1, γ1, k2, γ2} are all positive, one can show that the matrix
A is stable and invertible so long as the following condition
holds on the feedback term:

k21 ≤
γ1γ2

k2
.

Under this condition, (7) can be written as:

v1 = eAτv0 −A−1
(
I− eAτ

)
b. (8)

Suppose that vj has been measured at some equally
distributed points in time {t0, t1, . . . , tm}, and one wishes to
identify the parameters λ = {k1, γ1, k2, γ2, k21} that satisfy:

J(λ) :=
m∑
j=1

∣∣vj − eAτvj−1 + A−1
(
I− eAτ

)
b
∣∣ = 0.

The following subsections provide a few possible approaches
to identify these parameters.

A. Looking at the invariant distribution

If the probability distribution dynamics described in (4)
has an invariant distribution, then the steady state moments,

v∞ = lim
t→∞

[v1, v2, v3, v4, v5]T ,

must satisfy:
Av∞ − b = 0.

This equation can be rewritten in terms of the unknown
parameters as:

Ψ∞λ = lim
t→∞

Ψ(t)λ = 0,

where

Ψ(t) =

26664
1 −v1 0 0 v3
1+2v1 v1 − 2v2 0 0 v3+2v5
0 0 v1 −v3 0
0 0 v1+2v5 v3−2v4 0
v3 −v5 v2 −v5 v4

37775 .

From this expression, it is obvious that there are two possible
cases: (1) the rank of the matrix is full and we are left
with the trivial solution λ = 0, or (2) the matrix has a
null-space spanned by {φ1, . . . , φp} and there are an infinite
number of parameter sets that will result in the same invariant
distribution:

λ =
p∑
i=1

αiφi, for any [α1, . . . , αp] ∈ Rp.

So long as the parameters enter linearly into the propensity
functions w(x) =

∑M
µ=1 cµf(x), then one can extend

this argument for any finite number of n moments of the
stationary distribution. This tells us that the steady state
distribution cannot provide enough information to uniquely
identify the set of system parameters. Additional information
is needed. For example, if the rank of the null space is one,
then the knowledge of any one parameter from the set λ
can provide an additional linearly independent equation, and
can enable the unique determination of the parameters. If the
rank of the null space is p, then at least p additional, linearly
independent, pieces of information will be required.

B. Identifying parameters with full state and derivative in-
formation

Suppose that it is possible to measure both the moments
and their time derivatives at specific instances in time. In this
case, we have the same expressions as above but at a finite
time where the time derivatives are non-zero:

Ψ(t)λ = v̇(t)

Depending on the values of v(t), the matrix Ψ(t) may or
may not have full rank. In particular, if the system is at
an invariant distribution as above, then Ψ(t) will not be
invertible. As another example, if the measurements are taken
when y = 0 then E{y} = E{y2} = E{xy} = 0 and the
4th and 5th columns of Ψ(t) will be zero, and the rank will
be at most 3. In this case, the parameters γ2 and k12 will
not be identifiable. If v(t) can be specified such that Ψ(t)
is invertible, then the parameters can be identified directly
from the measurement of v(t) and its derivative, v̇(t).

C. Identification without derivative knowledge

In most cases it is not feasible to measure the time
derivative of the moments. More likely, one will only be
able to measure the moments at discrete instances in time.
In this case one must perform the identification analysis in
discrete time according to (8), which can be rewritten as:

vj = Gvj−1 + ψ.

Here, the matrix G and the vector ψ are the unknown
quantities that we wish to identify. These matrices will be
subject to some nonlinear constraints of the form

G = exp (Aτ) , and

ψ = −A−1
(
I− eA(t1−t0)

)
b, (9)

where A = A(λ) and b = b(λ) are given as above in (4).
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The relation between vi and vi−1 in (8) can be rearranged
as:

vi = [G, ψ]
[

vi−1

1

]
.

For now, ignore the constraints in (9) and suppose that we
want to solve for the 5×6 matrix [G, ψ]. With measurements
of v0 and v1, we would have only five equations but 30
unknown values (25 in G and 5 in ψ). This is not yet
enough. However, if we take measurements at seven equally
distributed points in time {v(ti)}, we can write:[

v1 . . . v6

]
= [G, ψ]

[
v0 . . . v5

1 . . . 1

]
Vf = ĜVi, (10)

where Ĝ = [G, ψ] is the matrix of unknown values. Now
we have thirty equations with which we can find the thirty
unknown values provided that the equations are linearly
independent–a fact that can be checked by examining the
rank of the matrix Vi. As long as Vi has full rank, then the
solution for Ĝ is given by:

Ĝ = VfV−1
i .

In the case of measurement noise it is often advantageous
to have more than the minimum number of measurements in
(10). In this case Ĝ should be chosen as the argument that
minimizes Vf − ĜVi in the least squares sense:

Ĝ = VfV−Ri .

Once we have extracted G from Ĝ, we can diagonalize
it:

G = eAτ = S−1eΛτS,

and solve for the matrix A:

A = S−1ΛS =
1
τ

S−1 log(SGS−1)S,

where log(SGS−1) corresponds to the natural logarithm of
the elements of diagonal matrix SGS−1. Finally, we also
have

ψ = −A−1 (I−G) b,

which gives:
b = − (I−G)−1 Av.

Now, it is relatively easy to solve for the parameters:
{k1, γ1, k2, γ2, k21} from the definition of A in (4).

V. NON-LINEAR OPTIMIZATION BASED IDENTIFICATION

In the previous section, we did not apply the nonlinear
constraints (9) on the unknown values of G and ψ. As
a result, we were left with thirty unknowns for which we
required thirty linearly independent equations. The advan-
tage of such an approach is that the parameters are easily
identified from the data by performing a few simple matrix
operations. However, to get these equations, we are forced
to measure vi at seven different points in time. Since G and
ψ are defined by non-linear equations of only five variables,

it is reasonable to expect that these parameters should be
recoverable with far fewer measurements. However, in this
case it is no longer easy to find closed analytical expressions
to determine the parameters from the measurements. Instead
we must seek to find the argument that minimizes

J(λ) =
∣∣∣∣∣∣Vf − ĜVi

∣∣∣∣∣∣
F
,

where the ||.||F refers to the Frobenious norm (sum of
squares of all elements). In the examples below, this min-
imization is done numerically under the constraints in (9),
and the definitions of A and b in (4).

A. Identifying parameters with protein distributions only

While it is not currently possible to measure the cell
by cell distribution of mRNAs, it is possible to get this
information for protein distributions. To do this, one can
attach florescent tags, such as green florescent protein (GFP),
to the protein of interest and then measure the expression of
that protein using flow cytometry or fluorescence activated
cell sorting (FACS). Such an approach will yield a histogram
of the number of cells containing different levels of the
protein. In this section, we present an identification approach
with which this protein distribution information is sufficient
to identify rates for transcription and translation.

Supposing that it is only possible to measure the first
and second moment of the protein distribution, then these
measurements are of the form: qi = Cvi, where

C =
[

0 0 1 0 0
0 0 0 1 0

]
.

In the previous cases, it has been assumed that the initial
distribution is known or measurable, but in this case the
five initial values of v0 must now also be estimated in the
identification procedure. The identification problem is now
to find the set of parameters λ = [k1, γ1, k2, γ2, k21]

⋃
v̂0 ∈

R10, all positive except k21 that minimizes

J(λ) =
m∑
i=0

|qi −Cv̂i|2 ,

where qi is the measurement at the ith time point, and v̂i is
the corresponding estimate of vi. Substituting the expression
(8) for v̂ yields

J(λ) = |q0 −Cv̂0|2 +
m∑
i=1

∣∣∣∣∣∣qi −C

Giv̂0 +
i−1∑
j=0

Gjψ

∣∣∣∣∣∣
2

where G and ψ are functions of (k1, γ1, k2, γ2, k21) subject
to the constraints in (9), and the definitions of A and b in
(4).

In order to fit the ten unknown quantities in λ, we
require at least ten independent equations and ten data points.
In the case where the protein first and second moments
are measured, this requires measurements at five different
time points. With full state measurement, C = I, as few
as two time points will be sufficient, provided that those
measurements are rich in all transient dynamics.
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VI. EXAMPLES

To examine the utility of the above identification tech-
niques, we have numerically generated a set of over 2200
gene regulatory networks in which the parameters are ran-
domly chosen:

k1 = U(0, 0.2), k2 = U(0, 0.2), k21 = U(−0.0002, 0)
γ1 = U(0, 0.002), γ2 = U(0, 0.002)

where we have used the notation U(a, b) to denote a uniform
random number between a and b. The initial distributions are
also chosen randomly according to:2

v0
1 = E{x(0)} = U(0, 10),

v0
2 = E{x2(0)} = (v0

1)2U(1, 2),

v0
3 = E{y(0)} = U(0, 100),

v0
4 = E{y2(0)} = (v0

3)2U(1, 2), and

v0
5 = E{x(0)y(0)} = v0

3v
0
1 .

We seek to identify these parameters and initial conditions
through three approaches.

1. Using full state knowledge without non-linear con-
straints (FL, Section IV-C).

2. Using full state knowledge with non-linear constraints
(FNL, Section V).

3. Using partial state knowledge with non-linear con-
straints (PNL, Section V-A).

Each identification is conducted under the assumption that
there is no measurement noise contained in the identification
data. For the non-linear optimization approaches (FNL and
PNL), the initial guess for each parameter is randomly
chosen to be within one degree of magnitude of its true
value. All non-linear optimizations use MATLAB’s standard
optimization routine “fminsearch”. In cases when the opti-
mization terminates with a loss function that is greater than
ε, the optimization routine makes a new random initial guess
and reattempts the optimization. Three cases are possible: (i)
If the optimization does not converge within twenty attempts,
then identification is deemed inconclusive. (ii) When the loss
function converges to less than ε, and the corresponding
parameters, λ̂i, satisfy

∑
i

(
λ̂i − λi
λi

)2

≤ δ2,

then that identification is considered to have been successful.
(iii) Finally, if the optimization routine converges within ε,
but the parameters are not satisfactorily close to the true
values, the optimization is considered to have yielded a false
positive. For our analyses, we have chosen values ε = 10−7

and δ = 0.01.
In every case the FL optimization procedure successfully

identified all of the unknown parameters. Also, because this
procedure relies only upon a few relatively simple matrix
operations and not a numerical optimization, this approach

2The initial distributions are chosen in this manner to guarantee that the
variance is non-negative, and the covariance of x and y is zero.
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Fig. 1. Comparison of the dynamics of the true (solid lines) and estimated
(dashed lines) system moments for a random set of parameters and initial
distribution. Here the FNL estimation uses all five elements of the first two
moments (v1 through v5). (left) Estimation based upon the measurements
at two time points shown in squares. (right) Estimation based upon the
measurements at three time points.
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Fig. 2. Comparison of the dynamics of the true (solid lines) and estimated
(dashed lines) system moments for a random set of parameters and initial
distribution. Here the PNL estimation uses only data about the protein mean
and second moments only (v3 and v4). (left) Estimation based upon the
measurements at five time points shown in squares. (right) Estimation based
upon the measurements at six time points.

is by far the most efficient. However, this identification ap-
proach requires a total of thirty-five measurement quantities
for each system (five states at seven time points). In practice
such experimental results may be prohibitively expensive or
otherwise impossible to obtain.

The FNL routine has been applied for measurements of
all five states in v(t), but at only two points in time. The
numerical optimization converged in every case but two, but
falsely identified the system parameters for about 8.5% of
the systems. By increasing the number of measurements to
three time points (less than half the number of measurements
required for the FL method), the success rate of the FNL on
the same systems and same initial conditions rose to 100%.
Fig. 1 illustrates one case in which the FNL identification
failed dramatically for a data set of two time points, but
succeeded with one additional time point.

For the PNL identification, we have sought to find the
parameters using only the protein information at five separate
equally distributed points in time. This more computationally
intensive approach identified the parameters for about 66.5%
of the systems. However this approach failed to converge
for 16.1% of the systems and provided false identifications
for 17.4% of the systems. Once again, the addition of more
time points confers a large advantage (See for example Fig.
1). With protein measurements at 6 time points, the false
identification rate dropped to less than 0.2%.

VII. CONCLUSIONS

Due to the inherently discrete nature of gene regulatory
networks, intrinsic noise is an important concern for many
systems biologists. Although the inclusion of noise makes
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the analysis of these networks more difficult to conduct,
there is much benefit to including noise in one’s model.
In this paper, we have illustrated how stochastic analysis
of gene transcription and translation enables one to identify
model parameters. We have presented several approaches
with which to conduct this identification. Should it become
possible to accurately measure the joint distributions of
mRNA and protein molecules at many points in time, then
all parameters of the system can be identified through a few
relatively simple matrix operations. However, in many cases,
it will not be possible to obtain such a wealth of information.
By utilizing the structure of the system of moment dynamics,
one can often identify the parameters from a much smaller
data subset. In particular, we have shown that transcription
and translation parameters can simultaneously be identified
solely from protein data. In all cases, the identification
procedure relies upon precise measurement of transient data.
If the initial condition is too close to an invariant manifold,
or if the time between measurements is too long, then the
parameters will not be uniquely identifiable. In these case
additional experiments or alternate initial conditions must
be examined. The current work focusses on a simple toy
model of a single gene, mRNA, protein triplet. In more
realistic problems, there will be many more chemical players.
Such studies remain to be done, but it is envisioned that
the conclusions will be the same: more information about
transient noise transmission will allow one to better identify
any system.
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APPENDIX

For the reader’s convenience, this appendix provides the
detailed derivation of the moment dynamics of E{xy}.
The derivations for the other uncentered moments are very
similar. In each case, simply substitute the master equation
(1) into the definition of the moment of interest and carry
out some algebraic manipulations:

v̇5(t) =
d

dt
E{xy} =

∞X
i=0

∞X
j=0

ijṖi,j

=

∞X
i=0

∞X
j=0

ij {−(k1+k21j + γ1i+ k2i+ γ2j)Pi,j(t)

+ (k1+k21j)Pi−1,j(t) + γ1(i+ 1)Pi+1,j(t)

+k2iPi,j−1(t) + γ2(j + 1)Pi,j+1(t)}

=

∞X
i=0

∞X
j=0

−(k1ij+k21ij
2 + γ1i

2j + k2i
2j + γ2ij

2)Pi,j(t)

+ (k1ij+k21ij
2)Pi−1,j(t) + γ1(i+ 1)ijPi+1,j(t)

+ k2i
2jPi,j−1(t) + γ2(j + 1)ijPi,j+1(t)

= −k1E{xy}−k21E{xy2} − γ1E{x2y} − k2E{x2y}
− γ2E{xy2}+ k1E{(x+ 1)y}+k21E{(x+ 1)y2}
+ γ1E{x(x− 1)y}+ k2E{x2(y + 1)}}
+ γ2E{yx(y − 1),

= k2E{x2}+ k1E{y}+k21E{y2} − (γ1 + γ2)E{xy},
= k2v2 + k1v3 + k21v4 − (γ1 + γ2)v5.
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