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Abstract— This paper analyze stability of an object grasped
by a pair of soft-fingers in two-dimensional space based on
moment stability. We firstly define the moment stability as a
criterion for stability of a grasped object when the object is
perturbed for the orientation. Based on the moment stability,
the stability condition of an object grasped by a pair of hard-
fingers is derived. We indicate that contact points to satisfy
the condition are restricted to upper locations of the center
of mass. Next, the condition of an object grasped by a pair
of semispherical soft-fingers thirdly is considered. We derive a
sufficient condition for the moment stability and indicate that
the contact points to satisfy the condition can be in both upper
and lower locations of the center of mass. Numerical examples
finally are shown. An example shows the grasp situation not to
satisfy the condition is established by a slender object with far
lower contact locations and its grasp is stable for the faults.

I. INTRODUCTION

Many researchers have tried to introduce robots into
human’s daily environments. Since the robots are aimed to do
various tasks instead of human, multi-fingered robot hands
are effective as end-effectors. Multi-fingered robot hands
have capability to grasp variously-shaped objects because the
hands can grasp with multi contacts and can control grasping
force via multi joint inputs.

There are many research for grasp stability of an object
grasped by balanced contact forces when the object is
perturbed from its equilibrium point. When the object is
displaced and the balanced forces are invariant, the forces
generate the resultant force and moment to the object. This
is referred to as the stiffness effect and is a direct measure
of quasi-static grasp stability [1]. Cutkosky and Kao [2]
derived the stiffness matrix between resultant force/moment
and small displacement of a grasped object as a function
of geometry of the grasped object and contact condition.
Montana [3] analyzed the stiffness effect of an grasped object
with rolling contact in 2D space concerned with the curvature
of the object. Maekawa et al. [4] analyzed the stiffness effect
with rolling contact in 3D space and derived the stiffness ma-
trix to evaluate the stiffness effect of the translation/rotation
of the object and the contact movement due to the rolling
contact. Since it is assumed that finger-tips are rigid bodies
in the all studies, the stiffness effect destabilize the grasped
object except for the stiffness effect due to rolling contact
[4]. While these studies do not control contact forces, there
are studies where the stiffness effect is controlled by contact
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forces to stabilize a grasped object around its equilibrium
[5], [6], [7]. In this paper, we concentrate on the stiffness
effect without controlling contact forces.

Recently, soft-fingers made from soft materials has been
studied. Compared with hard-fingers made from hard ma-
terials, the soft-fingers have a lot of advantages [8]: the
contact friction is larger than that of the hard-finger since
the contact is surface; the soft-finger can reduce the impact
force in contact establishment; it can fit on varrious shapes
of the object; there exists moment friction about the contact
normal. Inoue et al. [9], [10] considered an one-dimensional
deformation model of a semispherical soft fingertip with the
geometric and material nonlinearities and proposed a quasi-
static manipulation method based on the local minimum
elastic energy with the rolling contact in two-dimensional
space. Furtheremore, they proposed a two-dimensional de-
formation model and studied dynamic stability [11], [12].
However, they showed the stability of the soft-finger grasp
by only numerical simulations. Furthermore, since they did
not decouple the contact movements due to the rolling and
deformation, the stability effect of the rolling was not shown.

In this paper, we analytically study stability of an object
grasped by a pair of soft-fingers in two-dimensional space
based on the stiffness effect. The study [4] showed that the
stiffness effect due to the object rotation is much larger than
the one due to the object translation and the stiffness effect
due to the rolling contact stabilize the object. Therefore,
we consider the object rotation and the rolling contact. We
firstly define the moment stability as a criterion for stability
of a grasped object when the object is perturbed for the
orientation. Based on the moment stability, the stability
condition of an object grasped by a pair of hard-fingers
is derived. We indicate that contact points to satisfy the
condition are restricted to upper locations of the center of
mass. Next, the condition of an object grasped by a pair of
semispherical soft-fingers thirdly is considered. We derive
a sufficient condition for the moment stability and indicate
that the contact points to satisfy the condition can be in both
upper and lower locations of the center of mass. Numerical
examples finally are shown. An example shows the grasp
situation not to satisfy the condition is established by a
slender object with far lower contact locations and its grasp
is stable for the faults.

II. STABILITY ANALYSIS OF HARD-FINGER GRASP

We firstly analyze stability of an object grasped by a pair
of hard-fingers in 2D space as shown in Fig. 1. The object
is assumed to be a convex polyhedron. ΣO is the reference
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Fig. 1. An object grasped by a pair of two hard-fingers.

frame attached at the center of mass of the object. Note
that vectors without left superscripts are expressed in ΣO.
f i, pi ∈ R

2 (i = 1, 2) are the contact force and the position
vector at the ith contact point respectively. li and hi are the
distances of the ith contact point from the center of mass
along the normal and tangent, respectively. αi is the angle of
the side grasped by the ith finger from the y-axis of ΣO. The
two red thick dashed lines at the ith contact point represent
the boundaries of the friction cone, which is defined as

fT
i eti

≤ μi|fT
i eni

|, (1)

where eni
, eti

∈ R
2 are the normal and tangent vectors and

μi is the static friction coefficient.The grasp of the object is
defined as the following equilibrium equations:

f1 + f2 +

[
0

−mg

]
= 0, (2)

[p1×] f1 + [p2×] f2 = 0, (3)

where m is the mass of the object, g is the gravitational
constant and [pi×] ∈ R

1×2 is the 2D cross product defined
as

[pi×] := [−pyi
pxi

], pi := [pxi
pyi

]T. (4)

For the system of the hard-finger grasp, we consider the
stiffness effect due to the object rotation θ. It is assumed that
the object is only rotated around the center of mass and the
contact force f i is invariant. We define the moment stability
as

M(θ)θ < 0, (5)
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Fig. 2. Moment stability for rotation perturbation.
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Fig. 3. Grasp situations to satisfy the sufficient condition (10).

where M(θ) is the moment caused by the object rotation θ.
(5) means that M(θ) is the restoring force for the rotational
displacement θ as shown in Fig. 2.

The moment M(θ) in the hard-finger grasp is given by

M(θ) = [(R(θ)p1)×]f1 + [(R(θ)p2)×]f2, (6)

where R(θ) ∈ R
2×2 is the rotation matrix. Calculating

[(R(θ)pi)×] with (4) leads to

[(R(θ)pi)×]=
[−pix

sin θ − piy
cos θ pix

cos θ − piy
sin θ

]
= [pi×]RT(θ). (7)

Substituting (7) into (6), we get

M(θ) =

2∑
i=1

[pi×]

[
cos θ sin θ

− sin θ cos θ

] [
fix

fiy

]

=

2∑
i=1

[pi×]

{
cos θ

[
fix

fiy

]
+ sin θ

[
fiy

−fix

]}

=

(
2∑

i=1

[pi×]f i

)
︸ ︷︷ ︸

0

cos θ −
(

2∑
i=1

pT
i f i

)
sin θ

= −(pT
1 f1 + pT

2 f2) sin θ, (8)

where the first term of the third row equals 0 from (3). The
following theorem holds:

Theorem 1: The necessary and sufficient condition of the
moment stability for the hard-finger grasp is

pT
1 f1 + pT

2 f2 > 0. (9)

Let us substitute the condition (9) of Theorem 1 by the
following sufficient condition

pT
i f i > 0, i = 1 and 2. (10)

For simplicity, the side angles are set to αi = 0. The areas
of f1 and f2 to satisfy (10) are represented by the shaded
areas in (a) and (b) of Fig. 3. It is obvious that there do not
exist f1 and f2 when the contact positions are under the
center of mass. In order to construct the grasp of the object,
the contact force f i also has to satisfy the friction condition
(1), which is illustrated in (c) of Fig. 3. γfi

and γmi
are the
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angles of the boundaries of the friction cone and (10) from
the contact normal, respectively. These angles are defined as

γfi
:= tan−1 μi, γmi

:= tan−1 hi

li
. (11)

Therefore, it is necessary for the distances li and hi of the
contact point to satisfy

γmi
≤ γfi

⇔ hi

li
≤ μi (12)

as shown in (c) of Fig. 3.
Remark 1: From (12), it is easy to grasp a slender object

with the upper contact points while it is difficult to grasp a
wide object with central contact points. In other words, the
contact locations for the stability are restricted to far upper
from the center of mass.

III. STABILITY ANALYSIS OF SOFT-FINGER GRASP

A. System Configuration

In this section, we secondly analyze stability of an object
grasped by a pair of soft-fingers in 2D space. The deforma-
tion model of the soft-finger is 2D reduction model of the
3D model proposed in [13]. Fig. 4 shows the semi-spherical
soft finger with the radius ri. ΣFi

is fixed at the center of
the ith finger and the yFi

-axis is perpendicular to the base.
The deformation area of the soft-finger is defined as the
dashed area, which is the overlapped area between the finger
and the object. The contact point before the deformation is
represented by the contact angle φi. Since the contact surface
is the circle from the geometry of the deformation definition,
the contact point after the deformation is defined as the
center of the contact surface. In the latter, the contact point
after the deformation is simply called the contact point. We
define the deformation displacements δri

and δφi
as the polar

coordinates of the contact point. δri
is the radial displacement

and δφi
is the angle displacement in the inverse direction

of φi. ΣCFi
is the contact frame attached to the contact

point and the xFi
-axis is in the contact normal. The forces

produced by the deformation are assumed to be generated
based on Hook’s law with respect to the small elements of the
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Fig. 4. Deformation model of a semi-spherical soft finger.
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Fig. 5. An object grasped by a pair of soft-fingers.

deformation displacements. From Hook’s law, the generated
forces by the deformation δri

and δφi
are derived as

Fri
:= kri

πδ2
ri

(13)

Fφi
:=

2

3
kφi

πr3
i

δφi

φi(π − φi)
× 1

ri − δri

, (14)

where kri
and kφi

are the stiffness coefficients. The direc-
tions of Fri

and Fφi
are in xCFi

and yCFi
-axes, respectively.

The derivation and experimental validation are shown in
Appendices A and B.

Fig. 5 shows the object grasped by the soft-fingers. Note
that Fri

and Fφi
are normal and tangential to the object

surface. Fri
and Fφi

satisfy the following equilibrium equa-
tions:

ROCF1
F1 + ROCF2

F2 = 0, (15)

[p1×]ROCF1
F1 + [p2×] ROCF2

F2 = 0, (16)

where Fi := [Fri
Fφi

]T ∈ R
2, ROCFi

:= R(θFi
)R(φi −

δφi
), R(θFi

) is the rotation matrix from ΣFi
to ΣO, and

R(φi − δφi
) is the rotation matrix from ΣCFi

to ΣFi
. Li is

the length of the line segment between the centers of the ith
finger and the object. βi is the angle of this line segment
from the normal to the grasped edge. These are defined as

βi := tan−1 li

ri − δri
(0) + hi

, (17)

Li :=
ri − δri

(0) + hi

cos βi

, (18)

where δri
(0) and δφi

(0) are the deformation displacements
in the initial equilibrium grasp to satisfy (15) and (16). The
other parameters and vectors are the same as in Fig. 1.

B. Rolling Contact with Deformation

The contact point FipCFi
∈ R

2 expressed in ΣFi
is given

by
FipCFi

=

[
(ri − δri

) cos(φi − δφi
)

(ri − δri
) sin(φi − δφi

)

]
. (19)
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Fig. 6. Rolling motion with the deformation.

Differentiating (19) leads to

Fi ṗCFi
= Fi ṗr

CFi
− Fi ṗd

CFi
, (20)

where

Fi ṗr
CFi

= R(φi − δφi
)

[
0

ri − δri

]
φ̇i, (21)

Fi ṗd
CFi

= R(φi − δφi
)

[
1 0
0 ri − δri

] [
δ̇ri

δ̇φi

]
. (22)

Fi ṗr
CFi

represents the contact movement which is caused
by the rolling of the fingertip of the radius ri − δri

with
the rotation velocity φ̇i, while Fi ṗd

CFi
represents the contact

movement which is caused by the deformation movement
of the fingertip with the deformation velocity δ̇ri

and δ̇φi
.

This is illustrated in Fig. 6, where FipCFi
and Fip′

CFi
are

the contact points before and after the contact movement,
and dφi, dδri

and dδφi
are the increments of φi, δri

and δφi

respectively. The contact point FipCFi
moves to Fip′

CFi
by

the movements d(Fipr
CFi

) and d(Fipd
CFi

) due to the rolling
and deformation. Since Fi ṗr

CFi
is the contact movement on

the fingertip surface while Fi ṗd
CFi

is not the movement on the
surface but rather the deformation movement, only Fi ṗr

CFi

equals the velocity of the contact point on the object surface:

Fi ṗr
CFi

= R(φi − δφi
)

[
0

L̇Oi

]
, (23)

where the right term is the contact velocity on the object
and LOi

is the increment of the contact point on the object.
Substituting (21) into (23), we get

(ri − δri
)φ̇i = L̇Oi

. (24)

This equation is significant to derive the deformation due to
the object rotation θ in the next subsection.

C. Derivation of Moment due to Object Rotation

The moment M(θ) caused by the rotation displacement
θ is derived here. From the geometric relations between the
contact points and the center of mass shown in Fig. 5, M(θ)
is easily given by

M(θ) = Mr(θ) + Mφ(θ), (25)

where

Mr(θ) :=

2∑
i=1

Li sin(βi − θ)Fri
(θ), (26)

Mφ(θ) :=

2∑
i=1

−hiFφi
(θ). (27)

Mr(θ) and Mφ(θ) are the moments generated by Fri
(i =

1, 2) and Fφi
(i = 1, 2) respectively. Since Fri

(θ) and
Fφi

(θ) are composed of δri
, δφi

and φi from (13) and (14),
we derive δri

, δφi
and φi as functions of θ in the following.

Fig. 7 shows the geometric relation at ith contact point
when the object is rotated through θ. The left and right
figures show the relations before and after the rotation
respectively. In the right figure, rai

(θ) is the distance of the
contact point from the center of the finger. From the similar
triangles with respect to the point a, rai

(θ) is obtained as

rai
(θ) = Li cos(βi − θ) − hi. (28)

From (28), we get the radius deformation δri
(θ):

δri
(θ) = ri − rai

(θ) = ri + hi − Li cos(βi − θ). (29)

Next, we derive the rotation deformation δφi
(θ) and the

contact angle φi(θ):

δφi
(θ) := δφi

(0)+Δδφi
(θ), φi(θ) := φi(0)+Δφi(θ), (30)

where Δδφi
(θ) and Δφi(θ) are the increments from the

grasping equilibrium due to the rotation θ. From Fig. 7, the
increment of the relative angle δφi

(θ) − φi(θ) equals to θ:

δφi
(θ)−φi(θ)− (δφi

(0)−φi(0)) = Δφi(θ)−Δδφi
(θ) = θ.

(31)
In addition to the equation (31), the following rolling contact
equation holds from (24):

(ri − δri
(θ))d(Δφi(θ)) = d(LOi

(θ)). (32)

The contact displacement LOi
(θ) on the object due to the

rotation θ is obtained as

LOi
(θ) = Li sinβi − Li sin(βi − θ), (33)

where the first and second terms are the distances of the
contact points from the center of mass along the object
surface before and after the object rotation θ respectively.
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Fig. 7. Geometry at the ith contact point with object rotation θ.
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From the two equations (31) and (32), we can derive δφi
(θ)

and φi(θ). From (32), (33) and (28), d(Δφi) is expressed as

d(Δφi) =
Li cos(βi − θ)

rai
(θ)

dθ =
rai

(θ) + hi

rai
(θ)

dθ

=

(
1 +

hi

rai
(θ)

)
dθ. (34)

Integrating (34) from 0 to θ leads to

Δφi(θ) = θ +
hi√

L2
i − h2

i

(f(0) − f(θ)), (35)

where

f(θ) := ln

∣∣∣∣∣∣
tan βi−θ

2 +
√

Li−hi

Li+hi

tan βi−θ
2 −

√
Li−hi

Li+hi

∣∣∣∣∣∣ . (36)

From (31), δφi
(θ) is obtained as

δφi
(θ) =

hi√
L2

i − h2
i

(f(0) − f(θ)). (37)

Remark 2: The deformation displacements δri
(θ) and

δφi
(θ) are derived as the functions of θ since the contact

movement due to the deformation Fi ṗd
CFi

is not included in
(32). If Fi ṗd

CFi
is not decoupled from (32), δri

(θ) and δφi
(θ)

can not be driven analytically.

D. Sufficient Condition of Moment Stability

We consider a condition for the moment (25) to satisfy the
moment stability condition (5). The condition (5) is rewritten
as

M(θ)θ=(Mr(θ)−Mr(0))θ+(Mφ(θ)−Mφ(0))θ < 0, (38)

where Mr(0) = −Mφ(0) from M(0) = 0.
First, consider the moment Mr(θ) of (26). Since rai

(θ)
of (28) is the distance of the contact point, the following
inequality has to be satisfied:

0 < rai
(θ) < ri. (39)

Substituting (28) into (39) and solving the resultant equation
with respect to cos(βi − θ) lead to

hi

Li

< cos(βi − θ) <
ri + hi

Li

. (40)

Under the condition (40), the following lemma holds:
Lemma 1: Suppose that (40) holds. Then, the following

relations hold:
d

dθ
Mr(θ) ≤ 0, (Mr(θ) − Mr(0))θ < 0. (41)

Proof: Differentiating (26) results in

dM(θ)

dθ
=

kri
πδri

3
g(θ), (42)

where

g(θ) :=

(
cos(βi − θ) − ri + hi

6Li

)2

−
(

ri + hi

6Li

)2

− 2

3
. (43)

Since dM(θ)
dθ

of (42) is convex downward with respect to
cos(βi − θ), the maximum of dM(θ)

dθ
is given by the left or

right boundaries of (40). Firstly consider the case ri+hi

Li
≤ 1.

Then,

g(θu) =

(
5
ri + hi

6Li

)2

−
(

ri + hi

6Li

)2

− 2

3

=
2

3

{(
ri + hi

Li

)2

− 1

}
≤ 0, (44)

g(θl) =

(
5
ri + hi

6Li

− ri

Li

)2

−
(

ri + hi

6Li

)2

− 2

3

<
2

3

{(
ri + hi

Li

)2

− 1

}
≤ 0, (45)

where θu and θl are defined as

cos(βi − θu) =
ri + hi

Li

, cos(βi − θl) =
hi

Li

.

Next consider the case ri+hi

Li
> 1. Then, g(θu) takes the

different value given by

g(θu) =
Li − (ri + hi)

3Li

< 0, (46)

where θu is defined as

cos(βi − θu) = 1.

The maximum of g(θ) is one of (44), (45) and (46). There-
fore, from (42), (43), (41) holds.

Remark 3: Lemma 1 indicates that the moment produced
by the radius forces Fri

(θ) (i = 1, 2) always effects on the
restoring force to stabilize the object against the rotational
perturbation.

Second, consider the moment Mφ(θ) of (27). Substituting
the following formula of trigonometric functions

cos(βi − θ) =
1 − tan2 βi−θ

2

1 + tan2 βi−θ
2

into (40) and solving the resultant inequality with respect to
tan βi−θ

2 yield ∣∣∣∣tan
βi − θ

2

∣∣∣∣ <

√
Li − hi

Li + hi

. (47)

Under the condition (47), the following lemma holds:
Lemma 2: Suppose that (47) holds. Then, Δφi(θ) and

Δδφi
(θ) of (35) and (37) are monotone increasing.

Proof: From (35) and (37), it is sufficient to check the
property of f(θ) of (36). f(θ) is rewritten as

f(θ) = ln f1(f2(θ)), (48)

where

f1(x) :=

∣∣∣∣x + ai

x − ai

∣∣∣∣ , ai :=

√
Li − hi

Li + hi

(49)

f2(x) := tan
βi − θ

2
. (50)

As for the function f1(x),(
x + a

x − a

)
′

=
−2ai

(x − ai)2
< 0, f(−ai) = 0.
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Therefore, f1(x) > 0 and f ′

1(x) > 0 in the case |x| < ai

from (47). On the other hand, the function f2(x) is monotone
decreasing because(

tan
βi − x

2

)
′

= − 1

2 cos2 βi−x
2

< 0.

Furthermore, |f2(x)| < ai from (47). Since f1(f2(θ)) is
monotone decreasing and lnx is monotone increasing, f(θ)
is monotone decreasing. Therefore, Δφi(θ) and Δδφi

(θ) of
(35) and (37) are monotone increasing because Δφi(θ) and
Δδφi

(θ) have −f(θ).
A sufficient condition for the moment (25) to satisfy the

moment stability condition (5) is derived:
Theorem 2: Suppose that

δφi
{(2φi − π)(rai

+ hi) − Li sin(βi − θ)φi(π − φ)}
+φi(π − φi)hi > 0. (51)

Then, (5) holds.

Proof: From (14), differentiating Fφi
(θ) leads to

d

dθ
Fφi

(θ) =
2

3
kφπr3

i × 1

{rai
φi(π − φi)}2

×{
δφi

(2φ − π)(rai
+ hi) +

φi(π − φi) {hi − Liδφi
sin(βi − θ)}

}
. (52)

From (52) and (51), the following holds:

d

dθ
Fφ(θ) > 0. (53)

From (27), (53) yields to

(Mφ(θ) − Mφ(0))θ < 0. (54)

Therefore, from (38) and Lemma 1, (5) holds.
Remark 4: The next section shows an example not to

hold the condition (51). However, the grasped object is stable
since the moment produced by the radius forces Fri

(θ) (i =
1, 2) are much larger than the moment produced by the
rotation forces Fφi

(θ) (i = 1, 2). The grasp situation of the
shown example is sinular. This can imply that the condition
(51) can hold in ordinary cases of grasping.

IV. NUMERICAL EXAMPLES

Numerical examples are shown to confirm the stability of
the soft-finger grasp.

Fig. 8 (a) shows the case where the rectangular object is
grasped at the upper contact points. The radius of the finger
is ri = 10[mm] and the coefficients are kri

= 0.377, kφi
=

0.166[N/mm2] as shown in Appendix B. The height, width
and mass of the object are 120, 100[mm] and m = 0.3[kg]
respectively. The distances of the ith contact point from the
center of mass are li = 50 and hi = 50[mm]. The contact
angles are φ1 = φ2 = 90[deg]. The initial deformation
displacements are δr1(0) = δr2(0) = 2[mm] and δφ1(0) =
−δφ2

(0) = 10[deg]. From these parameters, (17) and (18),
β1 = −β2 = 41[deg] and L1 = L2 = 76.5[mm]. The
parameters satisfy the condition (51). Fig. 8 (a) shows the

(a) Initial grasp. (b) Moments when the object is rotated.

Fig. 8. Numerical example 1.

initial situation of the grasping. The red, blue and black
arrows are the radial forces Fri

, rotational forces Fφi
and

gravity force mg respectively. Fig. 8 (b) shows the moments
Mr(θ), Mφ(θ), M(θ) and Mh(θ), which are dashed blue
line, red line, solid green line and black line, respectively.
Mh(θ) is the moment in the case of the hard-finger grasp,
which is defined as (8). Note that the black line represents
Mh(θ) × 10. We confirm that the all moments are the
restoring forces and M(θ) is much larger than Mh(θ). This
shows that the stability of the soft-finger grasp is much better
than that of the hard-finger grasp. Note that the range of θ

is given by the product set of the ranges of θ to satisfy (40),
−π < δφi

(θ) < π and 0 < φi(θ) < π with (30), (35)–(37).
Fig. 9 shows Fri

and Fφi
when the object is rotated in the

positive and negative directions. In the case θ > 0, the forces
Fr1 and Fφ1 to stabilize the object increase while the forces
Fr2

and Fφ2 to destabilize the object decrease. This indicate
that the forces produced by the soft-finger deformation effect
on the stability well. The case θ < 0 is similar to the case
θ > 0.

Figs. 10-11 show the case where the object is grasped
at the lower contact points. The parameters and definitions
of the arrows and lines are the same as Figs. 8-9. In
Fig. 10 (a), we confirm that the moments Mr, Mφ and M

are the restoring forces while the moment Mh destabilizes
the grasped object. This shows that the soft-finger grasp is
stable even when the hard-finger grasp is unstable. In the
case θ > 0 of Fig. 11, the forces Fr2 and Fφ1 to stabilize the

θ θ−

Fig. 9. Fri and Fφi
of the example 1 when the object is rotated.
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(a) Initial grasp. (b) Moments when the object is rotated.

Fig. 10. Numerical example 2.

object increase while the forces Fr1 and Fφ2 to destabilize
the object decrease. This indicate that the forces produced
by the soft-finger deformation effect on the stability although
the contact locations are changed. The case θ < 0 is similar
to the case θ > 0.

Let us consider a situation not to satisfy the sufficient
condition (51). In the condition (51), it is obvious that
rai

+hi > 0 and φi(π−φi) > 0 from (39) and 0 < φi < π.
Therefore, the following conditions have to hold not to
satisfy (51):

δφi
> 0 : 2φi − π < 0, sin(βi − θ) > 0, (55)

δφi
< 0 : 2φi − π > 0, sin(βi − θ) < 0. (56)

(55) and (56) lead to

δφi
> 0 : φi � 1, βi � 1, (57)

δφi
< 0 : φi � 1, βi � −1. (58)

In the initial grasp, δφ1 > 0 and δφ2 < 0. Therefore, (57)
and (58) correspond to i = 1 and i = 2 respectively. In
order to achieve (57) and (58), the object with the height
192[mm] and width 20[mm] is grasped. The distances of the
lower ith contact point from the center of mass are li = 80
and hi = 10[mm]. The contact angles are φ1 = 30 and
φ2 = 150[deg]. The initial deformation displacements are
δr1

(0) = δr2(0) = 2[mm] and δφ1(0) = −δφ2(0) = 6[deg].
From these parameters, β1 = −β2 = 77[deg] and L1 =
L2 = 81.2[mm]. Fig. 12 (a) shows the initial grasp and
Fig. 12 (b) shows the moments when the object is rotated.
Note that the dashed red line represents Mφ(θ) × 100. We

θ θ−

Fig. 11. Fri and Fφi
of the example 2 when the object is rotated.

(a) Initial grasp. (b) Moments when the object is rotated.

Fig. 12. Numerical example 3.

confirm that the moment M(θ) stabilizes the object while
the moment Mφ(θ) produced by Fφi

destabilizes the object.
This is because the moment produced by Fri

is much larger
than the moment Mφ. Note that the condition δφi

> 0 (< 0)
of (55) or (56) is broken when the rotation displacement θ

decreases (increases) becase δφi
(θ) is monotone increasing

from Lemma 2. Therefore, Fφ1 or Fφ2 can satisfy the con-
dition (51). This result indicates that the grasping situation
not to satisfy (51) is composed of only particular the shape
of the object, contact points and contact angles and in that
situation the soft-finger grasp also is stable.

V. CONCLUSIONS AND FUTURE WORKS

This paper analyzed stability of an object grasped by
a pair of soft-fingers in two-dimensional space based on
moment stability. We firstly defined the moment stability as
a criterion for stability of a grasped object when the object is
perturbed for the orientation. Based on the moment stability,
the stability condition of an object grasped by a pair of
hard-fingers was derived. We indicated that contact points to
satisfy the condition are restricted to upper locations of the
center of mass. Next, the condition of an object grasped by a
pair of semispherical soft-fingers thirdly was considered. We
derived a sufficient condition for the moment stability and
indicated that the contact points to satisfy the condition can
be in both upper and lower locations of the center of mass.
Numerical examples finally were shown. An example shows
the grasp situation not to satisfy the condition is established
by a slender object with far lower contact locations and its
grasp is stable for the faults.

In future works, it is necessary to consider the friction
condition and the limitation of finger joints. We will try to
optimize the soft-finger grasp with respect to the mentioned
conditions.
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APPENDIX

A. Derivation of Forces by Deformation

(1) Derivation of δFri
:

Consider the dashed area of the small element dθi rotated
about the center axis of the contact surface through dψi in
Fig. 13 (a). dfri

is the force generated by the deformation
at the point a. Since the force parallel to the contact
surface dfri

sin θi is counteractive against −dfri
sin θi at the

symmetric point b of a with respect to the center axis, it
is sufficient to consider forces in the center axis dfri

cos θi.
Since the compression ratio at a is 1− ri−δri

ri cos θi
, the generated

force d(δFri
) of the small area at a is given by d(δFri

) =

2 × kri
(1 − ri−δri

ri cos θi
)ridθiri sin θidψi × cos θi, where kri

is
the stiffness coefficient. Then,

δFri
=

∫ αi

0

∫ π

0

2kri

(
1 − ri−δri

ri cos θi

)
r2
i sin θi cos θidψidθi

= πkri
δ2
ri

, (59)
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Fig. 14. Experimental validation of the force model.

where αi := arccos
(

ri−δri

ri

)
.

(2) Derivation of δFφi
:

Fig. 13 (b) shows the cross section such that the cross
section of Fig. 13 (a) is moved along z′Fi

-axis with the
distance zi. Consider the dashed area of the small element
dli with the width dzi. Since the compression ratios of
the compressive and extensive directions are

δφi

φi
and

δφi

π−φi
,

the generated moment of the dashed area is given by
d(Mφi

) = li × kφi
(

δφi

π−φi
+

δφi

φi
)dlidzi, where kφi

is the
stiffness coefficient. Then,

Mφi
=

∫ ri

−ri

∫ √
r2

i −z2
i

0

likφi

(
δφi

π − φi

+
δφi

φi

)
dlidzi

=
2

3
kφi

r3
i

(
1

π − φi

+
1

φi

)
δφi

. (60)

Since the point of application of the moment Mφi
is the

contact point with the length ri − δri
from the center of the

finger, the force produced by rotational deformation δφi
is

given by

Fφi
:=

Mφi

ri − δri

. (61)

B. Experimental validation of the force model

The material of the soft fingers is an urethane resin with
the hardness C-5. The radius of the soft-finger is 10[mm].
Fig. 14 show the experimental results of Fri

and Fφi
of

(13) and (14). The stiffness coefficients in (13) and (14)
are calculated by the least-squares method with the force
model of (13) and (14) and the experimental data. The
coefficients are kri

= 0.377, kφi
= 0.166[N/mm2]. The lines

represent the force model of (13) and (14) with the estimated
coefficients. In Fig. 14 (a), the cross, square, triangle and
circle represent the forces of Fri

with φi = 90, 80, 70
and 60[deg] respectively. In Fig. 14 (b), the solid, dashed,
dashed and single-dotted and dotted lines correspond to the
experimental data with the cross, square, triangle and circle
which are the same as Fig. 14 (a). In Fig. 14 (a) and (b), we
confirm that the lines are approximate to the experimental
data.
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