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Abstract— In this paper, a novel model predictive control
(MPC) formulation has been proposed to solve tracking prob-
lems, considering a generalized offset cost function. Sufficient
conditions on this function are given to ensure the local
optimality property. This novel formulation allows to consider
as target operation points, states which may be not equilibrium
points of the linear systems. In this case, it is proved in
this paper that the proposed control law steers the system to
an admissible steady state (different to the target) which is
optimal with relation to the offset cost function. Therefore, the
proposed controller for tracking achieves an optimal closed-
loop performance during the transient as well as an optimal
steady state in case of not admissible target. These properties
are illustrated in an example.

I. INTRODUCTION

Model predictive control (MPC) is one of the most

successful techniques of advanced control in the process

industry. This is due to its control problem formulation, the

natural usage of the model to predict the expected evolution

of the plant, the optimal character of the solution and the

explicit consideration of hard constraints in the optimization

problem. Thanks to the recent developments of the underly-

ing theoretical framework, MPC has become a mature control

technique capable to provide controllers ensuring stability,

robustness, constraint satisfaction and tractable computation

for linear and for non linear systems [1].

The control law is calculated by predicting the evolution

of the system and computing the admissible sequence of

control inputs which makes the system evolve satisfying the

constraints. This problem can be posed as an optimization

problem. To obtain a feedback policy, the obtained sequence

of control inputs is applied in a receding horizon manner,

solving the optimization problem at each sample time. Con-

sidering a suitable penalization of the terminal state and

an additional terminal constraint, asymptotic stability and

constraints satisfaction of the closed loop system can be

proved [2]. Moreover, if the terminal cost is the infinite-

horizon optimal cost of the unconstrained system, then the

MPC control law results to be optimal in a neighborhood

of the steady state. This property is the so-called local

optimality property and allows to design finite horizon MPC

controllers for constrained system with an optimal closed-

loop performance (in the latter neighborhood).
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Most of the results on MPC consider the regulation

problem, that is steering the system to a fixed steady state

(typically the origin), but when the target operating point

changes, the feasibility of the controller may be lost and the

controller fails to track the reference [3]. In [4] an MPC for

tracking is proposed, which is able to lead the system to any

admissible set point in an admissible way. This controller

ensures that under any change of the steady state target, the

closed loop system maintains the feasibility of the controller

and ensures the convergence to the target if admissible. The

main drawback of this controller is the potential loss of the

optimality property due to the addition of the artificial steady

state together with the proposed cost function.

In this paper, this controller is extended considering a

general offset cost function. Sufficient conditions on this

function are given to ensure the local optimality property.

Besides, this novel formulation allows to consider as target

operation points, states which may be not equilibrium points

of the linear system. In this paper it is proved that in this case

the proposed control law steers the system to an admissible

steady state (different to the target) which minimizes the

offset cost function. Thanks to the proposed generalization

of the offset cost function, this could be chosen according

to some steady performance criterium.

This paper is organized as follows: in the following section

the constrained tracking problem is stated. In section III the

new MPC for tracking is presented and in section IV the

property of local optimality is introduced and proved. Finally

an illustrative example is shown and some conclusions are

drawn.

II. PROBLEM DESCRIPTION

Let a discrete-time linear system be described by:

x
+ = Ax + Bu (1)

y = Cx + Du

where x ∈ R
n is the current state of the system, u ∈ R

m is

the current input, y ∈ R
p is the current output and x+ is the

successor state. Note that no assumption is considered on the

dimension of the states, inputs and outputs. Hence, under-

actuated (namely p > m) or over-actuated systems (namely

p < m) might be considered.

The state of the system and the control input applied at

sampling time k are denoted as x(k) and u(k) respectively.

The system is subject to hard constraints on state and control:

(x(k), u(k)) ∈ Z

for all k ≥ 0. Z ⊂ R
n+m is a compact convex polyhedra

containing the origin in its interior.
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Assumption 1: The pair (A,B) is stabilizable.
Under this assumption, the set of steady states and inputs

of the system (1) is a nθ-dimensional linear subspace of
IRn+m [5] given by

(xs, us) = Mθθ

Every pair of steady state and input (xs, us) ∈ IRn+m is

characterized by a given parameter θ ∈ IRnθ .

The problem we consider is the design of an MPC

controller κO
N(x, zt) to track a (possible time-varying) target

operation point zt = (xt, ut). If the target operating point zt

is an admissible steady state, the closed loop system evolves

to this target state without offset. If zt is not consistent

with the linear model considered for predictions, namely,

it is not an admissible steady state of system (1), the closed

loop system evolves to an admissible steady state which

minimizes a given performance index.

III. ENHANCED FORMULATION OF THE MPC FOR

TRACKING

In this section we present a novel formulation of the MPC

for tracking which generalizes and improves the one pre-

sented by the authors in [4]. The way this controller handle

the tracking problem is characterized by (i) considering an

artificial steady state and input as decision variables, (ii)

penalizing the deviation of the predicted trajectory with the

artificial steady conditions, (iii) adding a quadratic offset-cost

function to penalize the deviation between the artificial and

the target equilibrium point and (iv) considering an extended

terminal constraint. In this paper, this controller is extended

to the case of considering a general offset cost function. As

it will be demonstrated later on, under mild assumptions,

this function provides significant properties to the controlled

system.
The proposed cost function of the MPC is given by:

V
O

N (x, zt;u, θ̄) =
N−1∑

i=0

‖x(i)−x̄s‖
2
Q+‖u(i)−ūs‖

2
R

+‖x(N)−x̄s‖
2
P + VO(z̄s − zt)

where x(i) denotes the prediction of the state i-samples
ahead, the pair (x̄s, ūs) = Mθθ̄ is the artificial steady state
and input parametrized by θ̄ and zt is the target operating
point. The controller is derived from the solution of the
optimization problem PO

N (x, zt) given by

V
O∗

N (x, zt) = min
u,θ̄

V
O

N (x, zt,u, θ̄)

s.t. x(0) = x,

x(j + 1) = Ax(j) + Bu(j),

(x(j), u(j)) ∈ Z, j =0, · · · , N−1

(x̄s, ūs) = Mθ θ̄,

(x(N), θ̄) ∈ Ωw
t,K

Considering the receding horizon policy, the control law is

given by

κO
N (x, zt) = u∗(0; x, zt)

Since the set of constraints of P 0
N (x, zt) does not depend

on zt, its feasibility region does not depend on the target

operating point zt. Then there exists a polyhedral region XN

such that for all x ∈ XN , PO
N (x, zt) is feasible. This is

the set of initial states that can be admissibly steered to the

projection of O
w
t,K onto x in N steps or less.

Consider the following assumption on the controller

parameters:

Assumption 2:

1) Let Q ∈ R
n×n and R ∈ R

m×m be positive definite

matrices.

2) The offset cost function is a convex function such that

α1‖(x̄s − xt)‖1 ≤ VO(z̄s − zt) ≤ α2‖(x̄s − xt)‖1

where α1, α2 are positive real constant.

3) Let K ∈ R
m×n be a stabilizing control gain such that

(A + BK) is Hurwitz.

4) Let P ∈ R
n×n be a positive definite matrix such that:

(A+BK)TP(A+BK)−P=−(Q+KTRK)

5) Let Ow
t,K ⊆ R

n+nθ be an admissible polyhedral

invariant set for tracking for system (1) subject to (2),

for a given gain K [4].

The set of admissible steady states and inputs contained in

the invariant set for tracking O
w
t,K is given by:

Zs = {(xt, ut) = Mθθ : (xt, θ) ∈ O
w
t,K}

This set is potentially the set of all admissible steady states

and inputs [4].

Taking into account the proposed conditions on the

controller parameters, in the following theorem it is proved

asymptotic stability and constraints satisfaction of the

controlled system.

Theorem 1 (Stability): Consider that assumptions 1 and

2 hold and consider a given target operation point zt =
(xt, ut). Then for any feasible initial state x0 ∈ XN , the

system controlled by the proposed MPC controller κO
N (x, zt)

fulfils the constraints along the time and, besides

(i) If zt = (xt, ut) ∈ Zs then zt is an asymptotically stable

steady state for the closed loop system.

(ii) In other case, the steady state and input z∗s = (x∗

s , u
∗

s)
given by

z∗s = arg min
zs∈Zs

VO(zs − zt)

is an asymptotically stable steady state for the closed

loop system.

Proof: The first part of the proof is devoted to prove the
feasibility of the controlled system, that is, x(k + 1) ∈ XN ,
for all x(k) ∈ XN , and zt. Consider the optimal solution of
PN (x(k), zt), then the successor state is x(k+1) = Ax(k)+
BκO

N (x(k), zt). Define the following sequences:

u(x(k+1),zt)
∆
= [u∗(1; x(k),zt), · · · , u

∗(N−1; x(k),zt),

K(x∗(N−1; x(k),zt) − x̄
∗
s(x(k),zt))

+ū
∗
s(x(k),zt)]

θ̄(x(k+1),zt)
∆
= θ̄

∗(x(k),zt)
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Then, (u, θ̄) is a feasible solution for the optimization

problem PN (x(k + 1), zt) due to:

• Since x(x(k+1), zt) = x∗(1; x(k), zt), then x(i; x(k+
1), zt) = x∗(i + 1; x(k), zt) i = 0, 1, · · · , N − 1; then

the first N − 1 terms of the trajectory are admissible.

Admissibility of x(N ; x(k + 1), zt) is derived from the

fact that (x(N − 1; x(k + 1), zt), θ̄(x(k + 1), zt)) ∈
Ωw

t,K and hence the control action u(N−1; x(k+1), zt)
ensures that (x(N ; x(k+1), zt), θ̄(x(k+1), zt)) ∈ Ωw

t,K .

• Feasibility of u
∗(x(k), zt) and admissibility of set Ωw

t,K

ensures the feasibility of u(x(k + 1), zt).
• The terminal constraint satisfaction stems from the same

arguments.

Convergence is derived proving that the optimal cost is a
Lyapunov function. Consider the proposed feasible solution.
Taking into account the properties of the feasible nominal
trajectories for x(k + 1), the condition (iv) of Assumption 2
and using standard procedures in MPC [2] it is possible to
obtain:

∆V O
N (x, zt) = V O

N (x(k + 1), zt;u, θ̄) − V O∗
N (x(k), zt)

≤ −‖x∗(x(k), zt) − x̄∗
s(x(k), zt)‖

2
Q

−‖u∗(0; x(k), zt) − ū∗
s(x(k), zt)‖

2
R

≤ −‖x∗(x(k), zt) − x̄∗
s(x(k), zt)‖

2
Q

By optimality, we have that V O∗

N (x(k+1), zt) ≤ V O
N (x(k+

1), zt;u, θ̄) and then:

∆V O∗
N (x, zt) = V O∗

N (x(k + 1), zt) − V O∗
N (x(k), zt)

≤ −‖x∗(x(k), zt) − x̄∗
s(x(k), zt)‖

2
Q

Taking into account that Q > 0, then

lim
k→∞

‖x∗(x(k), zt) − x̄∗

s(x(k), zt)‖
2
Q = 0

and hence the system evolves to an admissible steady state

x̄∗

s ∈ Zs. In virtue of lemma 2 we can deduce that (x̄∗

s , ū
∗

s)
is the minimizer of the offset cost function VO(zs − zt),
proving the second assertion of the theorem. The first one

is a direct consequence of the latter.

In the following section it is demonstrated that the pro-

posed controller could provide a locally optimal control law.

IV. LOCAL OPTIMALITY

Consider that system (1) is controlled by the control law

u = κ(x, zt) to steer the system to the target zt = (xt, ut) ∈
Zs. Consider also a quadratic cost function of the closed-loop

system evolution when the initial state is x, given by

V∞(x, zt, κ(·, zt))

∞∑

i=0

‖x(i) − xt‖
2
Q + ‖κ(x(i), zt) − ut‖

2
R

where x(i) = φ(i; x, κ(·, zt)) is calculated from the recursion

x(j + 1) = Ax(j) + Bκ(x(j), zt) for j = 0, · · · , i − 1
with x(0) = x. A control law κ∞(x, zt) is said to be

optimal if it is admissible (namely, the constraints are fulfiled

along the closed loop evolution) and it is the one which

minimizes the cost V∞(x, zt, κ(·, zt)) for all admissible x.

It is clear that the optimal control law (the so-called Linear

Quadratic Regulator) is the best control law to be designed

according to the given performance index. The optimal cost

function is denoted as V ∗

∞
(x, zt) = V∞(x, zt, κ∞(·, zt)).

The calculation of the optimal control law κ∞(x, zt) may be

computationally unaffordable for constrained systems, while

for unconstrained, it can be obtained from the solution of a

Riccati’s equation.
Model predictive controllers can be considered as subopti-

mal controllers since the cost function is only minimized for
a finite prediction horizon. The standard MPC control law
to regulate the system to the target zt, κr

N(x, zt), is derived
from the following optimization problem P r

N (x, zt)

V
r∗
N (x, zt) = min

u,θ̄

N−1∑

i=0

‖x(i)−x̄s‖
2
Q+‖u(i)−ūs‖

2
R

+‖x(N)−x̄s‖
2
P

s.t. x(0) = x,

x(j + 1) = Ax(j) + Bu(j),

(x(j), u(j)) ∈ Z, j = 0, · · · , N−1

(x̄s, ūs) = Mθ θ̄,

(x(N), θ̄) ∈ Ωw
t,K

‖z̄s − zt‖1 = 0

This optimization problem is feasible for any x in a

polyhedral region denoted as Xr
N(zt). Under certain

assumptions [2], for any feasible initial state x ∈ Xr
N (zt),

the control law κr
N (x, zt) steers the system to the target

fulfilling the constraints. However, this control law is

suboptimal in the sense that it does not minimizes

V∞(x, zt, κ
r
N (·, zt)). Fortunately, as stated in the following

lemma, if the terminal cost function is the optimal cost of

the unconstrained LQR, then the resulting finite horizon

MPC is equal to the constrained LQR in a neighborhood of

the terminal region [6], [7].

Lemma 1: Consider that assumptions 1 and 2 hold. Con-

sider that the terminal control gain K is the one of the

unconstrained linear quadratic regulator and zt = Mθθt.

Define the set ΥN (zt) ⊂ IRn as

ΥN (zt) = {x̄ ∈ IRn : (φ(N ; x̄, κ∞(·, zt), θt) ∈ O
w
t,K}

where φ(N ; x̄, κ∞(·, zt)) denotes the state at sampling time

N for system (1) controlled by u(k) = κ∞(x(k), zt) when

the initial state is x̄.

Then for all x ∈ ΥN(zt), V
r,∗
N (x, zt) = V ∗

∞
(x, zt) and

κr
N (x, zt) = κ∞(x, zt).

This lemma directly stems from [6, Thm. 2].

The proposed MPC for tracking might not ensure this

local optimality property under assumptions of lemma 1

due to the artificial steady state and input and the functional

cost to minimize. However, as it is demonstrated in the

following property, under some conditions on the offset cost

function VO(·), this property holds.

Property 1 (Local optimality):

Consider that assumptions 1 and 2 hold. Then there exists a

α∗ > 0 such that for all α1 ≥ α∗:
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• The proposed MPC for tracking is equal to the MPC

for regulation, that is κO
N (x, zt) = κr

N (x, zt) and

V O∗

N (x, zt) = V r∗
N (x, zt) for all x ∈ Xr

N(zt).
• If the terminal control gain K is the one of the

unconstrained linear quadratic regulator, then the MPC

for tracking control law κO
N (x, zt) is equal to the

optimal control law κ∞(x, zt) for all x ∈ Υ(zt).

Proof: First, define the following optimization problem
Pm

N,α(x, zt) as:

V
m∗

N,α(x, zt) = min
u,θ̄

N−1∑

i=0

‖x(i)−x̄s‖
2
Q+‖u(i)−ūs‖

2
R

+‖x(N)−x̄s‖
2
P + α‖x̄s − xt‖1

s.t. x(0) = x,

x(j + 1) = Ax(j) + Bu(j),

(x(j), u(j)) ∈ Z, j = 0, · · · , N−1

(x̄s, ūs) = Mθ θ̄,

(x(N), θ̄) ∈ Ωw
t,K

This optimization problem Pm
N,α(x, zt) results from the

optimization problem P r
N (x, zt) with the last constraint

posed as an exact penalty function [8]. Therefore, there

exists a finite constant α∗ > 0 such that for all α ≥ α∗,

V m∗

N,α(x, zt) = V r∗
N (x, zt) for all x ∈ Xr

N (zt) [8], [9].

Consider the problem PO
N (x, zt). From the assumption on

VO(·), we derive that

V m∗

N,α1
(x, zt) ≤ V O∗

N (x, zt) ≤ V m∗

N,α2
(x, zt)

Since α2 ≥ α1 ≥ α∗, we have that for all x ∈ Xr
N (zt)

V r∗
N (x, zt) ≤ V O∗

N (x, zt) ≤ V r∗
N (x, zt)

and hence V O∗

N (x, zt) = V r∗
N (x, zt).

The second claim is derived from lemma 1 observing that

ΥN (zt) ⊆ X
r
N(zt).

A. Determination of the lower bound of VO(·) for optimality

The aim of this section is to present a method to compute

the value of α∗ presented in property 1 such that for all

α1 ≥ α∗, then V O∗

N (x, zt) = V r∗
N (x, zt).

In virtue of the well-known result on the exact penalty

functions [8], the constant α∗ can be chosen as the Lagrange

multiplier of the equality constraint ‖x̄s − xt‖1 = 0 of

the optimization problem P r
N (x, zt). Since the optimization

problem depends on the parameters (x, zt), the value of

this Lagrange multiplier also depends on (x, zt). In order to

ensure the local optimality property, the constant α∗ should

be chosen as the maximum of the Lagrange multiplier in the

set of the parameters (x, zt) ∈ XN × Zs.
Firstly, notice that using standard techniques of convex

optimization [9], the optimization problem P r
N (x, zt) can be

casted as a multiparametric quadratic programming (mp-QP)
problem [7], which can be defined as:

min
z

1

2
z
′
Hz

s.t. Gz ≤ W + Sx
Fz = Y + Tx

(2)

Fig. 1. The two tanks system.

The Karush-Kuhn-Tucker (KKT) optimality conditions [9]
for this problem are given by:

Hz + G
′
λ + F

′
ν = 0 (3a)

λ(Gz − W − Sx) = 0 (3b)

λ ≥ 0 (3c)

Gz − W − Sx ≤ 0 (3d)

Fz − Y − Tx = 0 (3e)

Solving (3a) for z and substituting in the other equations, we
obtain a new set of constraints for the Lagrange dual problem
associated with the problem (2) which depends on (λ, ν, x).
Then the value of α∗ should be chosen as the maximum ν in
the feasible set of (λ, ν, x). This can be calculated by solving
the following optimization problem

max
λ,ν,x

ν

s.t. λ′(GH−1G′λ + GH−1F ′ν + W + Sx) = 0
λ ≥ 0
−(GH−1G′λ + GH−1F ′ν + W + Sx) ≤ 0
FH−1G′λ + FH−1F ′ν + Y + Tx = 0

Then α∗ is taken as the optimal value of this optimization

problem.

V. EXAMPLE

The objective of this example is double. The first aim

is to illustrate that the proposed controller can deal with

non-square systems and to show the role of the offset cost

function in the prioritization of the outputs in the case of

set point with offset. The second aim is to show the role of

the offset cost function in recovering the property of local

optimality.
We considered a two cascaded tanks system. A scheme of

the system is presented in figure 1. The nonlinear model of
the system is:

dh1

dt
= −

a1

A
·
√

2gh1 +
a2

A
·
√

2gh2 +
γ

A
·q

dh2

dt
= −

a2

A
·
√

2gh2 +
1 − γ

A
·q

where h1 and h2 are the levels of water in each tank and q is

the inlet flow. The cross-section of the tanks is A = 0.06m2,

the cross-sections of the outlets are a1 = 6.7371e−4m2 and

a2 = 4.0423e−4m2, and γ = 0.4.
Linearizing the model in an operating point given by h0

1 =
0.68 m, h0

2 = 0.65 m and q0 = 2 m3/h, and defining the
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variables xi = hi − ho
i and u = q − qo where i = 1, 2 we

have that:

dx

dt
=

[ −1
τ1

1
τ2

0 −1
τ2

]

x +

[
γ

A
1−γ

A

]

u

y =

[
1 0
0 1

]

x

where τi = A
ai

√
2h0

i

g
≥ 0, i = 1, 2, are the time constants

of each tank.

The system is constrained to 0.30 ≤ x1 ≤ 1.36, 0.30 ≤
x2 ≤ 1.30 and 0 ≤ u ≤ qmax, where qmax = 4.

The aim of the first test is to show the property of offset

minimization of the controller. The claim is that, in case of

a not consistent target operation point, the system evolves to

the state such that the water volume in the tanks is the most

similar to the one relative to the desired point. Therefore,

the difference of the volumes of water in the tanks has been

chosen as offset cost function, that is VO = A((x1s +x2s)−
(x1t +x2t)). The optimal point is the one that minimizes this

difference. In the test, two references have been considered.

The first reference, Ref1 = (1.2, 1.17), is an admissible set

point. The second one, Ref2 = (1, 0.6), is a not consistent

operation point. The initial state is x0 = (0.32, 1.26). An

MPC with N = 3 has been considered. The weighting

matrices have been chosen as Q = I2 and R = 100 × I1.

The maximal invariant set for tracking Ωt,K , the region of

attraction X3, the set of equilibrium levels Xs = Projx(Zs)
and the evolution of the levels for a given reference are

shown in figure 2. As it can be seen, since Ref1 ∈ Xs,

the system reaches the first reference without any offset. At

the sample time 600 the reference changes, becoming a not

consistent point. Note how the controller leads the system

to the closest equilibrium point, in the sense that the offset

cost function is minimized, providing an optimal closed-loop

performance. In order to show the role of the offset cost

function in the prioritization of the outputs, at the sample

time 900 the x2 state has been prioritized on-line by means

of a suitable weight in the offset cost function. As it can be

seen in figure 3, the system moves to the closest equilibrium

point that minimizes the distance in the direction determined

by this prioritization (in this case the x2 state).

TABLE I

V r∗
N − V O∗

N FOR DIFFERENT

VALUES OF α

α V r∗
N − V O∗

N

14 0.0035
14.5 2.0802e− 004
14.6 2.9923e− 005
14.65 9.8764e− 007
14.66 9.7060e− 009

14.6611 1.4211e− 014
15 1.4211e− 014
16 1.4211e− 014

To illustrate the property of the local optimality, the

difference between the optimal cost of the MPC for tracking

proposed in this paper, V O∗

N , with the optimal cost of the

MPC for regulation, V r∗
N , has been considered. To this

aim, the MPC for tracking optimal cost has been calculated

considering as the offset cost function a 1-norm cost, that is

VO = α‖x̄s − xt‖1 where α is a parameter. In figure 4 the

value of V r∗
N − V O∗

N for a given state versus α is plotted.

As it can be seen, V r∗
N − V O∗

N drops to zero dramatically

for a certain value of α. This proves the benefit of the new

formulation of the MPC for tracking. Note how the value

of V r∗
N − V O∗

N drops to practically zero when α = 15. As

we said in section IV, this happens because the value of α

becomes greater than the value of the Lagrange multiplier

of the equality constraint of the regulation problem V r∗
N . To

point out this fact, consider that, for this example, the value

of the Lagrange multiplier of the equality constraint of the

regulation problem V r∗
N , is α∗ = 14.6611. In table I the value

of V r∗
N − V O∗

N in case of different values of the parameter

α is presented. Note how the value seriously decrease when

α becomes equals to α∗. So, using the procedure described

in section IV, we can determine the value of α∗ such that

V O∗

N (x, zt) = V r∗
N (x, zt).

Fig. 2. Evolution of the levels.
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Fig. 3. Time evolution of the plant.

VI. CONCLUSIONS

In this paper an enhanced formulation of the MPC for

tracking is presented. This formulation generalizes the orig-
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Fig. 4. Difference between the regulation cost and the tracking cost versus
α.

inal one by considering a general convex function as offset

cost. This offset cost function allows to consider as target

operating points states and inputs not consistent with the

prediction model. This case is particularly interesting for

non-square plants or for instance, when the target calculated

by means of a non-linear model.

Under some assumptions, it is proved that the proposed

controller steers the system to the target if this is admissible.

If not, the controller converges to an admissible steady

state optimum according to the offset cost function. Besides,

the closed-loop evolution is also optimal in the sense that

provides the best possible performance index.

The properties of the controller are illustrated by an example

where the proposed controller is applied to an under-actuated

plant.

APPENDIX

Lemma 2: Let the assumptions of theorem 1 hold.

Consider a desired steady state zt = (xt, ut) and assume

that for a given state x, the optimal solution of PO
N (x, zt)

is such that ‖x − x̄∗

s(x, zt)‖Q = 0 (i.e. x = x̄∗

s(x, zt)), then

V O∗

N (x̄∗

s , zt) = VO(z̄∗s − zt).

Proof: The proof is obtained by contradiction. Consider that

z̄∗s is not the minimizer of the offset function. Then there

exists a z̃s 6= z̄∗s , such that VO(z̃s − zt) < VO(z̄∗s − zt).
Consider the following statments:

1) There exists an α ∈ [0, 1) such that VO(z̃s − zt) =
αVO(z̄∗s − zt).

2) There exists a λ̂ ∈ [0, 1) such that for every λ ∈ [λ̂, 1),
ẑs = λz̄∗s + (1 − λ)z̃s is admissible, then:

• z̄∗s − ẑs = (1 − λ)(z̄∗s − z̃s).
• ẑs − z̃s = λ(z̄∗s − z̃s).
• ẑs − zt = λ(z̄∗s − zt) + (1 − λ)(z̃s − zt).

Defining as u the sequence of control actions derived from
the control law u = K(x − x̄s) + ūs [4], it is inferred that
(u, x̄∗

s, θ̄) is a feasible solution for PO
N (x̄∗

s, zt). Then, from

assumption 2,

V
O∗
N (x̄∗

s, zt) ≤ V
O

N (x̄∗
s , zt;u, ẑs)

=
N−1∑

i=0

‖x(i)−x̂s‖
2
(Q+KT RK)

︷ ︸︸ ︷

‖x(i) − x̂s‖
2
Q + ‖K(x(i) − x̂s)‖

2
R

+‖x(N) − x̂s‖
2
P + VO(ẑs − zt)

= ‖x̄∗
s − x̂s‖

2
P + VO(ẑs − zt)

Since Zs is compact, there exists a β1 > 0 such that
‖x̄∗

s − x̃s‖
2
P ≤ β1‖x̄

∗

s − x̃s‖q. Then, considering the previous
statements:

‖x̄∗
s − x̂s‖

2
P = (1 − λ)2‖x̄∗

s − x̃s‖
2
P

≤ β1(1 − λ)2‖x̄∗
s − x̃s‖1

= β1(1 − λ)2‖x̄∗
s − xt + xt − x̃s‖1

≤ β1(1 − λ)2 [‖z̄∗
s − zt‖1 + ‖z̃s − zt‖1]

≤
β1

α1
(1 + α)(1 − λ)2VO(z̄∗

s − zt)

Hence, taking β =
β1

α1

(1 + α):

‖x̄∗
s−x̂s‖

2
P +VO(ẑs−zt)≤β(1−λ)2VO(z̄∗

s −zt)

+VO(λ(z̄∗
s −zt)+(1−λ)(z̃s−zt))

≤
[
β(1−λ)2+α+(1−α)λ

]
VO(z̄∗

s −zt)

Then it can be proved that exists a λ̃ ∈ [λ̂, 1) such that for

all λ ∈ [λ̃, 1), β(1−λ)2 +α +(1−α)λ− 1 < 0. So, taking
into account that:

β(1 − λ)2 + α + (1 − α)λ − 1 = (1 − λ) [β(1 − λ) − (1 − α)]

we take λ such that

(1 − λ) [β(1 − λ) − (1 − α)] < 0

Therefore, defining λ̃ = max

(
β − (1 − α)

β
, λ̂

)

, then for

all λ ∈ [λ̃, 1), we have that V O∗

N (x̄∗

s, zt) < VO(z̄∗s − zt),
which contradict the fact that z̄∗s is not the minimizer of the

offset cost function.
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