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Abstract— This paper considers a network composed of
robotic agents and static nodes performing spatial estimation of
a dynamic physical process. The physical process is modeled as
a spatiotemporal random field with finite spatial correlation
range. We propose a distributed coordination algorithm to
optimize data acquisition across time. The robotic agents take
measurements of the process and relay them to the static nodes.
The static nodes collectively compute directions of maximum
descent of the estimation uncertainty, and relay them back to
the robotic agents. The technical approach combines tools from
geostatistics, parallel computing, and systems and control. We
illustrate the soundness of the algorithm in simulation.

I. INTRODUCTION

Problem statement: This paper considers a network of

static nodes and robotic sensors taking sequential mea-

surements of a dynamic physical process. We model the

underlying process as a spatiotemporal random field. Our

objective is to determine trajectories for the robots which

optimize data acquisition in order to best estimate the field.

This problem has applications in environmental monitoring,

oceanographic surveying, and atmospheric sampling.

Literature review: Kriging [1], [2] is a standard geo-

statistical technique for estimating spatiotemporal random

fields. Given a set of point measurements, kriging produces

a predictor of the field throughout the environment, along

with a measure of the associated uncertainty. Under certain

conditions on the covariance, data taken far from the predic-

tion site have very little impact on the kriging predictor [3].

When the spatiotemporal random field does not have a finite

covariance range, an approximation may be generated via

covariance tapering [4]. The optimal design literature [5],

[6] deals with the problem of determining sets of locations

where data should be taken in order to optimize the resulting

estimation. The work [7] examines the effect that adding and

deleting measurement locations has on the kriging variance,

and how this relates to optimal design.

The field of cooperative control for mobile sensor net-

works has received much recent attention. [8] introduces per-

formance metrics for oceanographic surveys by autonomous

underwater vehicles. [9] considers a network of robotic

sensors with centralized control estimating a static field from

measurements with both sensing and localization error. [10]

considers choosing the optimal sampling trajectories from

a parameterized set of paths. In [11], [12] the focus is

on estimating deterministic fields when the measurements

taken by individual robots are uncorrelated. [13] discusses

the tracking of level curves in a noisy scalar field.
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Statement of contributions: We consider a robotic network

comprised of static nodes and mobile sensor agents. This

combination allows us to distribute the burden associated

with sensing, communication, and computing. The environ-

ment is partitioned into regions, and each static node is

responsible of maintaining an approximation of the spatial

field on its region. The nodes are deployed so that their

communication topology is connected, and any robotic agent

can communicate to at least one node at any given time. The

robots are responsible for taking measurements of the field

and relaying them back to the nearest nodes.

The main contribution of this paper is the design of a

distributed coordination algorithm to optimally sample dy-

namic physical processes modeled as spatiotemporal random

fields. As a criterion for optimality, we consider the spa-

tiotemporal average of the kriging variance. This function has

the natural interpretation of an aggregate objective function

that measures the uncertainty about the knowledge of the

random field. Under the assumption of a finite correlation

range in space, we provide an upper bound on the kriging

variance, which in turn induces an upper bound on our

objective function amenable to distributed optimization. The

static nodes compute the gradient of the approximate average

kriging variance and relay simple control vectors back to the

robots. This guarantees that the next measurements are taken

at positions which decrease the approximate overall uncer-

tainty of the estimation. We do not pay attention to how the

estimation is actually implemented, but focus on minimizing

the uncertainty of the estimate so that data acquisition is

optimized. Proofs are omitted and will appear elsewhere.

Organization: Section II introduces basic notation and

tools from constrained optimization and kriging estimation.

Section III introduces the robotic network model and details

the overall network objective. The following two sections

present important ingredients in the ulterior algorithm design.

Section IV specifies the regions of allowed motion for the

robotic agents at each step, while Section V describes an

upper bound of the spatiotemporal average of the kriging

variance. Section VI presents the distributed coordination

algorithm that the robotic network executes to optimize data

acquisition, along with some illustrative simulations. Sec-

tion VII contains our conclusions and ideas for future work.

II. PRELIMINARY NOTIONS

Let R, R>0, and R≥0 denote the set of reals, positive

reals and nonnegative reals, respectively. For p ∈ R
d and

r ∈ R>0, let B(p, r) be the closed ball of radius r centered

at p. Given two vectors u = (u1, . . . , ua)T , a ∈ Z>0,

and v = (v1, . . . , vb)
T , b ∈ Z>0, we denote by (u, v) its

concatenation (u, v) = (u1, . . . , ua, v1, . . . , vb)
T . We denote
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by ∂S the boundary of a set S. The ǫ-contraction of a set S,

with ǫ > 0, is the set Sǫ = {q ∈ S | d(q, ∂S) ≥ ǫ}. A convex

polytope is the convex hull of a finite point set. For a bounded

set S ⊂ R
d, we let CR(S) denote the circumradius of S, that

is, the radius of the smallest-radius d-sphere enclosing S. We

denote by F(S) the collection of finite subsets of S.

We consider a compact and connected set D ⊂ R
d, d ∈ N.

Since we deal with a process which varies over time, let

De = D × R denote the space of points over D and time.

The Voronoi partition V(s) = (V1(s), . . . , Vn(s)) of D
generated by the points s = (s1, . . . , sn) is defined by

Vi(s) = {q ∈ D | ‖q − si‖ ≤ ‖q − sj‖, ∀j 6= i} .

Each Vi(s) is called a Voronoi cell. Two points si and sj are

Voronoi neighbors if their Voronoi cells share a boundary.

A. Projected gradient descent

Next, we describe the constrained optimization technique

known as projected gradient descent [14] to iteratively find

the minima of an objective function F : R
m → R≥0. Let Ω

denote a nonempty, closed, and convex subset of R
m, m ∈ N.

Assume that ∇F is globally Lipschitz on Ω. Let projΩ :
R

m → Ω denote the orthogonal projection onto the set Ω,

projΩ(x) = argmin
y∈Ω

‖x − y‖.

Consider a sequence {xk} ∈ Ω, k ∈ N, which satisfies

xk+1 = projΩ (xk − ak∇F (xk)) , x1 ∈ Ω, (1)

where the step size, ak, is chosen according to the LINE

SEARCH ALGORITHM described in Table I, evaluated at x =
xk.

Name: LINE SEARCH ALGORITHM

Goal: Determine step size for algorithm (1)
Input: x ∈ Ω
Assumes: τ, θ ∈ (0, 1), max step αmax ∈ R>0

Output: α ∈ R≥0

1: α = αmax

2: repeat
3: xnew = projΩ (x − α∇F (x))
4: ν = θ

α
‖x − xnew‖

2 + F (xnew) − F (x)
5: if ν > 0 then
6: α = ατ
7: until ν ≤ 0

TABLE I

LINE SEARCH ALGORITHM.

With θ > 0, the LINE SEARCH ALGORITHM must terminate

in finite time. Increasing θ decreases the number of iterations.

The Armijo condition (step 7) ensures that the decrease in

F is commensurate with the magnitude of its gradient. A

sequence {xk}∞k=1 satisfying these requirements converges

in the limit as k → ∞ to stationary points of F [14].

B. Estimation via Kriging interpolation

This section reviews the geostatistical kriging procedure

for estimating spatial processes, see e.g., [1], [2]. We assume

that the random process Z is of the form

Z(h) = µ(h) + δ(h), h ∈ De, (2)

with mean µ, and δ a zero-mean second-order stationary

random process with a known covariance function C :
De ×De → R≥0 that has a finite spatial range r ∈ R>0,

C ((s1, t1), (s2, t2)) = 0, if ‖s2 − s1‖ > r.

We assume the data, y = y(h) = (Y (h1), . . . , Y (hl))
T , are

corrupted with errors,

Y (hi) = Z(hi) + ǫi, ǫi
iid
∼ N

(

0, σ2
ǫ

)

, σǫ ∈ R. (3)

The constant variance in measurement error models identical

sensors. The covariance between Y (hi) and Y (hj) is written

Cov[Y (hi), Y (hj)] =

{

C(hi, hj) + σ2
ǫ , if i = j,

C(hi, hj), otherwise.

Let c : De × Dl
e → R

l denote the vector of covariances

between Z(h), h ∈ De and y, and let Σ : Dl
e → R

l×l

denote the covariance matrix of y.

Kriging aims to minimize the error variance,

σ2(Z(h);h) = Var [Z(h) − pred(Z(h);h)] , (4)

of the predictor, pred(Z(h);h), of Z at a location h ∈ De

from data measured at locations h. As we are primarily

concerned with estimation uncertainty, we omit explicit

representation of the predictors themselves (see, e.g. [2] for

details). Assuming µ is known, the simple kriging predictor,

ẑSK(h;h), minimizes (4) among unbiased predictors of the

form pred(Z(h);h) =
∑l

i=1 αiY (hi)+k. The error variance

of ẑSK(h;h) is,

σ2
SK(Z(h);h) = σ2

Z(h) − cT
Σ

−1c. (5)

Here σ2
Z(h) = C(h, h) denotes the variance of Z(h), while

cΣ−1c represents the variance of ẑSK(h;h).
Relaxing the assumption that µ is known, consider a linear

expansion µ(h) = f(h)T β, where f = (f1, . . . , fp)
T :

De → R
p is known and β = (β1, . . . , βp)

T ∈ R
p

is unknown. The universal kriging predictor, ẑUK(h;h),
minimizes (4) among all unbiased predictors of the form

pred(Z(h);h) =
∑l

i=1 αiY (hi), with error variance,

σ2
UK(Z(h);h) = σ2

Z(h) − cT
Σ

−1c+
(

f − F T
Σ

−1c
)T(

F T
Σ

−1F
)−1(

f − F T
Σ

−1c
)

, (6)

where F denotes the matrix whose ith row is f(hi)
T .

Unless stated otherwise, the results make no distinction

between simple and universal kriging. To simplify notation,

we drop the subscript and use ẑ to denote both estimators,

with associated variance σ2. Since σ2 is invariant under

permutations, we evaluate it at a set, instead of at a tuple.

We also denote by ŷ the estimate of the noisy measurement

Y , identical to ẑ except in the extra constant term σ2
ǫ .

III. PROBLEM STATEMENT

A. Robotic sensor network model

Consider a group {S1, . . . , Sm} of m ∈ N static nodes

with limited communication radius, R ∈ R>0, deployed in

a convex polytope D ⊂ R
d at positions Q = (q1, . . . , qm) ∈

Dm. Assume that they are positioned so that each one can

communicate with its Voronoi neighbors.
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In addition to the static nodes, consider a group

{R1, . . . , Rn} of n robotic sensor agents. The position of

robot i ∈ {1, . . . , n} at time t ∈ R is denoted by pi(t) ∈ D.

We assume that robots take measurements of the spatial field

at discrete instants of time in Z≥0. Between measurement

instants, each robot moves according to the discrete dynamics

pi(k + 1) = pi(k) + ui(k),

where ‖ui‖ ≤ umax for some umax ∈ R>0. The commu-

nication radius of the robotic agents is also R. Each node

needs to communicate with any robot which may be within

covariance range of the points in its Voronoi region at the

following timestep. To that end, we assume that

R ≥ max
i∈{1,...,m}

{CR(Vi(Q))} + r + umax. (7)

Assume that each robot can sense the positions of any

other robots within a distance of 2umax. At discrete timesteps,

each robot communicates the measurement and location

to static nodes within communication range, along with

the locations of any other sensed robots. The nodes are

responsible for calculating control-specific information and

relaying it back to those robots within communication range.

Our implementation does not require direct communication

between robots. We refer to this network model as N .

B. The average kriging variance as objective function

Our objective is to design a strategy to optimize the esti-

mation of Z. We encode this objective into the optimization

of an aggregate function that we describe next. Assume the

experiment has run for kmax ∈ Z≥0 timesteps and a sequence

of measurements taken at time intervals {1, . . . , kmax}, at

space-time locations h ∈ (Dn
e )kmax are available. Consider a

kriging estimation ẑ(h;h) made on D over T = [1, kmax].
The average error variance of ẑ(h;h) is

A =

∫

T

∫

D

σ2(Z(s, t);h) ds dt.

One would like to choose the measurement locations that

minimize A. Since measurements are taken sequentially,

and each set is restricted to a region nearby the previous

measurements, one cannot simply optimize over (Dn
e )kmax .

Additionally, kmax may not be known.

Consider, instead, a greedy approach in which we use past

measurements to choose the positions for the next ones. Let

h(≤k) ∈ (Dn
e )k be the vector of measurement location and

time pairs for timesteps up to k. Let (P, k + 1) denote the

space-time locations at spatial positions P = (p1, . . . , pn) ∈
Dn and time k + 1. Let A(k) : Dn → R be defined as,

A(k)(P ) =

∫

T

∫

D

σ2
(

Z(s, t); (h(≤k), (P, k + 1))
)

ds dt.

The objective is to choose the set of measurement loca-

tions P to maximally decrease A(k). Unfortunately, the

gradient of A(k) cannot be computed in a distributed way

by the static nodes because of the matrix inversions which

depend on all measurement locations. Instead, our approach

is to construct an upper bound to A(k) whose gradient is

distributed and design an algorithm to optimize it.

IV. VORONOI CONTRACTION FOR COLLISION AVOIDANCE

We begin by specifying the region of allowed movement

for the robotic agents. In addition to the maximum velocity

and the requirement of staying within D, we impose a

minimum distance requirement between robots. Beyond the

benefit of collision avoidance, this restriction ensures that

even under the assumption of zero sensor error, the kriging

error function is well-defined over the space of possible

configurations.

Let ω ∈ R≥0 be a desired buffer width, assumed to be

small compared to the size of D. To ensure that the distance

between two robots is never smaller than ω, we introduce a

contraction of the Voronoi diagram. Consider the locations

P = (p1, . . . , pn) of the n robotic agents at the kth timestep.

Let Ω
(k)
i ⊂ D such that Ω

(k)
i = (Vi(P ))ω/2 ∩B(pi, umax),

where (Vi(P ))ω/2 denotes the ω
2 -contraction of Vi(P ). For

each j 6= i ∈ {1, . . . , n}, we have d(Ω
(k)
i ,Ω

(k)
j ) ≥ ω.

Between timesteps k and k + 1, we restrict Ri to the region

Ω
(k)
i . Figure 1 shows an example in R

2 of this set.

ω

2
Ω1

p1

p2

p3

Fig. 1. Regions {Ω
(k)
i }n

i=1 (dashed) versus Voronoi partition (solid).

Let Ω(k) =
∏n

i=1 Ω
(k)
i ⊂ (Rd)n denote the region of

allowed movement of all robotic agents at timestep k ∈ Z≥0.

Note that Ω(k) is closed, bounded, and convex.

V. APPROXIMATE AVERAGE KRIGING VARIANCE

Here we compute an upper bound on the average kriging

variance. We begin by providing a useful result that isolates

the effect of a subset of measurements on the kriging

variance. We need the following notation for predicting

Y at vectors of locations: given h1 ∈ Dl
e and h2 =

(h21, . . . , h2m)T ∈ Dm
e , with iF(h1)∩ iF(h2) = ∅, let

ŷ(h2;h1) = ŷ21 = [ŷ(h21;h1), . . . , ŷ(h2m;h1)]
T ,

ȳ(h2;h1) = ȳ21 = y(h2) − ŷ(h2;h1).

We are ready to present an upper bound on the error variance.

Lemma V.1 (Upper bound on kriging variance) Let h =
(h1,h2) denote a full set of distinct measurement locations,

with h1 = (h1, . . . , hl) ∈ Dl
e and h2 = (hl+1, . . . , hn) ∈

Dm
e , with l + m = n. Then,

σ2(Z(h);h) = σ2(Z(h);h1) − Cov[z̄(h;h1), ȳ21]·

·Var[ȳ21]
−1Cov[ȳ21, z̄(h;h1)] ≤ σ2(Z(h);h1),

with equality if Cov[Z(h), y(h2)] = 0 = Cov[y(h1), y(h2)].

Note that σ2(Z(h);h1) corresponds to the error variance

of a predictor computed with the information at locations h1.
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Proposition V.2 (Spatial approximation for distributed

implementation) Define CS(≤k+1) : Z≥0×Dn → F(De) by

CS(≤k+1)(j, P ) =
{

(s, t) ∈ iF

(

h(≤k), (P, k + 1)
)

| d(s, Vj(Q)) ≤ r
}

,

i.e., the subset of measurement locations up to time k + 1
which are correlated in space to the Voronoi cell of the static

node j. Let Ã
(k)
j : Dn → R be defined by

Ã
(k)
j (P ) =

∫

T

∫

Vj(Q)

σ2
(

Z(s, t); CS(≤k+1)(j, P )
)

ds dt.

Then A(k) ≤
∑m

j=1 Ã
(k)
j . In addition, equality holds if, for

all j ∈ {1, . . . ,m}, the points in CS(≤k+1)(j, P ) are not

correlated to other measurement locations outside it.

Remark V.3 (Ã
(k)
j may be calculated with local informa-

tion only) The location pi contributes only to Ã(k)(P ) in

those Voronoi regions Vj(Q) for which d(pi, Vj(Q)) ≤ r.

Thus the requirement (7) ensures that Sj can calculate Ã
(k)
j .

As with σ2, we evaluate Ã
(k)
j at a set, rather than a tuple.•

Remark V.4 (Universal kriging with too few measure-

ments) It should be noted here that in the universal kriging

case the function Ã
(k)
j is only well-defined if the number of

measurement locations available to each node is greater than

or equal to the number of basis functions. In this paper we

assume that this holds at all times. •

Our next step is to characterize the smoothness properties

of Ã(k). Let us introduce some notation. For i ∈ {1, . . . , n},

CS
(≤k+1)
−i (j, P ) = CS(≤k+1)(j, P ) \ {(pi, k + 1)}.

Define the maps Ci : {1, . . . ,m} × Dn × D × T → R and

Vi : {1, . . . ,m} × D → R by

Ci(j, P, s, t) = Cov[ȳ((pi, k + 1), CS
(≤k+1)
−i (j, P )),

z̄((s, t), CS
(≤k+1)
−i (j, P ))],

Vi(j, P ) = Var[ȳ((pi, k + 1), CS
(≤k+1)
−i (j, P ))],

where ȳ(h;h) = Y (h)− ŷ(h;h) is a shorthand notation. For

s ∈ D and t ∈ T , let ∇iCi(j, P, s, t) and ∇iVi(j, P ) denote

the partial derivative of Ci and Vi with respect to pi. Next,

we provide an expression for the gradient of Ã(k).

Proposition V.5 Assume that the covariance of Z is C1 with

respect to the spatial position of its arguments. For universal

kriging, further assume that f1, . . . , fp are C1 with respect

to the spatial position of their arguments. Then Ã(k) is C1

on Ω(k) and the ith component of its gradient is

∇iÃ
(k)(P ) =

m
∑

j=1

∇iÃ
(k)
j (P ),

∇iÃ
(k)
j (P ) =

∫

T

∫

Vj(Q)
Ci(j, P, s, t)2 ds dt∇iVi(j, P )

Vi(j, P )2

−
2
∫

T

∫

Vj(Q)
Ci(j, P, s, t)∇iCi(j, P, s, t) ds dt

Vi(j, P )
.

For each i ∈ {1, . . . , n}, ∇iÃj(P ) may be computed

by node j, and thus ∇iÃ
(k)(P ) may be computed in a

distributed way on the network of nodes. The next result

characterizes the global Lipschitzness of ∇Ã(k).

Proposition V.6 Under the assumptions of Proposition V.5,

make the following additional assumptions,

• ∇i Cov[Z(pi, k +1), Z(s2, t2)] is globally Lipschitz on

Ω
(k)
i for each i ∈ {1, . . . , n};

• in the universal kriging case, further assume that the

partial derivatives ∂
∂sfj are globally Lipschitz on Ω

(k)
i .

Then the gradient ∇Ã(k) is globally Lipschitz on Ω(k).

VI. OPTIMIZING INFORMATION RETRIEVAL VIA

GRADIENT DESCENT

In this section, we design a coordination algorithm to

follow the gradient of Ã(k). We consider a system in which

each static node is responsible for calculating control vectors

for the robotic agents within the region of influence. We use

the formulation of the approximate average error presented

in Proposition V.2, and follow a projected gradient descent

building on Section II. The current timestep, k, is held fixed

through the section and, to reduce notation, we leave off

the superindex which indicates timestep where unnecessary.

P = (p1, . . . , pn) denotes the current positions of the robots.

A. Distributed optimization of the approximate variance

Ideally, at the kth timestep, we would like the robots

to move to the minimum of P 7→ Ã(P ). Finding such

a minimum over the whole region is a difficult problem.

Instead, we use a distributed version of the projected gradient

descent algorithm, which is guaranteed to converge to a

stationary point. For convenience, we define the following

notation. Let P ′
j : R × Dn → F(D) map a step size and a

configuration to the set of next locations calculated by Sj ,

P ′
j(α, P ) =

{

projΩi

(

pi + α∇iÃ(P )
)

,

foreach i s.t. d (pi, Vj(Q)) ≤ r + umax + ω
}

.

Let dj : R × Dn → R≥0 denote the total distance traveled

by robots entering Vj(Q), i.e.,

dj (α, P ) =
∑

i∈{1,...,n} such that

proj
Ωi

(pi+α∇iÃ(P ))∈Vj(Q)

‖projΩi

(

pi + α∇iÃ(P )
)

− pi‖
2.

Globally, let P ′ : R × Dn → Dn, P ′(α, P ) = projΩ(P +
α∇Ã(P )). Table II describes a distributed version of the

LINE SEARCH ALGORITHM with a starting position of P ∈ Ω.

The line search starts with a factor αmax which scales the

smallest nonzero partial to umax, ensuring all robots with

nonzero partial derivatives can move the maximum distance,

αmax =
umax

min{‖∇iÃ(P )‖ |∇iÃ(P ) 6= 0}
. (8)

Lemma VI.1 TheDISTRIBUTED LINE SEARCH ALGORITHM is

equivalent to the LINE SEARCH ALGORITHM with F = Ã.
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Name: DISTRIBUTED LINE SEARCH ALGORITHM

Goal: Compute step size for gradient descent of Ã
Input: Configuration, P = (p1, . . . , pn) ∈ Dn

Assumes: (i) Connected network of static nodes
(ii) Sj knows pi, ∇iÃ and Ωi for each robot
within communication range
(iii) Step size τ and tolerance θ ∈ (0, 1) known a
priori by all static nodes

Output: Step size, α ∈ R≥0

Initialization

1: S1, . . . , Sm calculate αmax, cf. (8) via a consensus algorithm

For j ∈ {1, . . . , m}, node Sj executes concurrently

1: α = αmax

2: repeat

3: calculates Ãj

`

P ′
j(α, P )

´

− Ãj(P ) and dj (α, P )2

4: execute consensus algorithm to get the following:

Ã(P ′(α, P )) − Ã(P ) =

m
X

j=1

Ãj

`

P
′
j(α, P )

´

− Ãj(P )

‚

‚P − P
′(α, P )

‚

‚

2
=

m
X

j=1

dj (α, P )2

5: ν = θ
α
‖P − P ′(α, P )‖ + Ã(P ′(α, P )) − Ã(P )

6: if ν > 0 then
7: α = ατ

8: until ν ≤ 0

TABLE II

DISTRIBUTED LINE SEARCH ALGORITHM.

We are ready to present our technique for a greedy

optimization algorithm. At timestep k, the nodes follow a

gradient descent algorithm to define a sequence of configu-

rations, {P †
γ}, γ ∈ N, such that P

†
1 = P (k) and

P
†
γ+1 = projΩ

(

P †
γ − α∇Ã(P †

γ )
)

, α ∈ R≥0,

where α is chosen via the DISTRIBUTED LINE SEARCH AL-

GORITHM. When |Ã(P †
γ+1) − Ã(P †

γ )| = 0, the algorithm

terminates, and the nodes set P (k+1) = P
†
γ+1. By the end

of this calculation, each node knows the identity of robotic

agents that belong to its Voronoi cell at timestep k+1. Node

Sj transmits pi(k + 1) to robot Ri, which then moves to

that location between timesteps. The overall gradient descent

algorithm is summarized in Table III.

Proposition VI.2 The DISTRIBUTED PROJECTED GRADIENT

DESCENT ALGORITHM is distributed over N . Moreover, under

the assumptions of Proposition V.6, any execution is such that

• the robots do not collide,

• at each timestep after the first, measurements are taken

at stationary configurations of P 7→ Ã(k)(P ) over Ω(k).

Remark VI.3 (Robustness to agent failures) The proposed

algorithm is robust to agent failures. If an agent stops sending

position information to the nodes, it ceases to receive new

control vectors and remains in place. Meanwhile, the rest

of the network carries on its operation with the available

resources and will eventually take measurements in the areas

previously covered by the failing agents. •

B. Simulation results

We performed simulations with the following parameters:

m = 5 static nodes, n = 7 robotic agents, and the domain

D = {(0, .1), (2.5, .1), (3.45, 1.6), (3.5, 1.7), (3.45, 1.8),
(2.7, 2.2), (1, 2.4), (0.2, 1.3)}. We used the separable co-

variance function defined by Cov[Z(s1, t1), Z(s2, t2)] =
Ctap(‖s1 − s2‖, 0.4)Ctap(|t1 − t2|, 5.5), where

Ctap(δ, r) =

{

e−
δ

10r

(

1 − 3δ
2r + δ3

2r3

)

if δ ≤ r,

0 otherwise.

This is a tapered exponential function belonging to the class

of covariance functions suggested in [4]. We used ω = σ2
ǫ =

0.02, and umax = 0.3.

We compared the performance of our algorithm against

two naive data collection strategies, using the actual average

error variance A(k) as a metric. In the first, the robots

remained motionless in a configuration such that each robot

is located at the incenter of its own Voronoi cell. Next we

tried a lawnmower approach. We divided the environment

vertically among the robots, and had them march back and

forth along horizontal trajectories, avoiding the boundary of

the region. Finally, we ran the DISTRIBUTED PROJECTED GRA-

DIENT DESCENT ALGORITHM from the same starting position

as the lawnmower approach. Each experiment ran for kmax =
20 steps. Agent R2 stopped transmitting measurements at

time k = 3, while R5 stopped at k = 5. Figure 2 shows the

trajectories traveled by all agents in the lawnmower approach

and by two representatives in the gradient descent algorithm.

In the latter algorithm, the two agents which stopped sending

(a) (b)

Fig. 2. (a) Trajectories of all robots following the a priori lawnmower path,
and (b) two representative trajectories from the distributed projected gradient
descent algorithm. The filled squares represent the (static) positions of the
nodes, and the filled triangles show the starting positions of the robots. The
X’s show robots which ceased communicating. The empty triangles in (b)
show all measurements taken during the experiment.

measurements ceased to move. The other agents avoided

colliding with them, but filled in nearby due to the gradient.

Figure 3 shows a plot of the errors as k increases from 1 to

kmax. It can be seen that the gradient algorithm has smaller

error than either of the a priori approaches.

VII. CONCLUSIONS AND FUTURE WORK

We have considered a network composed of robotic sen-

sors and static nodes performing spatial estimation tasks. We

have focused on the problem of optimizing data acquisition

in order to better estimate a spatiotemporal random field.

We have used the average error variance of the kriging

estimator as a metric for the design of optimal measurement
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Name: DISTRIBUTED PROJECTED GRADIENT DESCENT ALGORITHM

Goal: Find a local minimum of Ã(k) within Ω(k).

Assumes: (i) Connected network of static computing nodes and mobile robotic sensing agents
(ii) Static nodes deployed over D such that R ≥ maxi∈{1,...,m} {CR(Vi(Q))} + r + umax

(iii) Step size τ and tolerance value θ ∈ (0, 1) known a priori by all nodes (iv) Some termination marker known to all
nodes and robots which may be sent to mark the end of a gradient descent loop.

Uses: (i) Each node uses the temporary vectors Pcur, respectively Pnext to hold the configuration at the current, respectively
next step of the gradient projection algorithm. For ease of exposition, we use global notation although Sj only calculates
and uses the parts of these vectors which correspond to agents currently within communication range.

At time k ∈ Z≥0, node Sj executes:

1: sets Rcov(j) = {Ri | d(pi(k), Vj(Q)) ≤ r}
2: collects measurements and locations from all robots in Rcov(j)
3: sets Pnext = P (k)

4: repeat

5: sets Pcur = Pnext(j) and calculates −∇Ã
(k)
j (Pcur)

6: transmits vector ∇iÃ
(k)
j (Pcur) to all robots in Rcov(j)

7: collects sum ∇iÃ
(k)(Pcur) from all robots in Rcov(j)

8: runs DISTRIBUTED LINE SEARCH ALGORITHM at Pcur to get α

9: sets Pnext = Pcur + α∇Ã(k)(Pcur)
10: calculates |Ã(Pnext) − Ã(Pcur)| via consensus

11: until |Ã(Pnext) − Ã(Pcur)| = 0
12: sets P (k+1) = Pnext

13: sends a termination marker to all robots currently in Vj(Q)
14: conveys pi(k + 1) to robots that currently belong to Vj(Q)

At time k ∈ Z≥0, robot Ri executes:

1: sets Scov(i) = {Sj | d(pi(k), Vj(Q)) ≤ r}
2: takes measurement at pi(k)
3: sends measurement and position to all nodes in Scov(i)
4: repeat

5: receives vectors ∇iÃ
(k)
j (P (k)) from all nodes in

Scov(i)
6: calculates sum ∇iÃ

(k)(P (k))
7: sends ∇iÃ

(k)(P (k)) to all nodes in Scov(i)
8: until receives termination marker from any node
9: receives next location pi(k + 1)

10: moves to pi(k + 1).

TABLE III

DISTRIBUTED PROJECTED GRADIENT DESCENT ALGORITHM.

5 10 15 20

92

94

96

98

100

Fig. 3. Average errors up to the kth step of the static (triangle), lawnmower
(diamond), and gradient descent (star) approaches.

trajectories of the robots. In our approach, mobile robots

take measurements of the environment and static nodes are

responsible for collecting the measurements and computing

locally optimal configurations for estimation. The design

of the overall coordination algorithm combines Voronoi

partitions, distributed projected gradient descent, and kriging

interpolation technique. We have compared in simulations

the performance of our approach against a static network

configuration and a lawnmower-based approach.

Future work will focus on: the investigation of theoretical

guarantees on the accuracy of the approximation, Ã(k), and

on the performance and robustness to failure of the proposed

coordination algorithm; the development of statistically-

sound techniques for the case when, in universal kriging, any

particular node only has a small number of measurements

available to it; and the quantification of the communication

requirements of the proposed approach.
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