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Abstract— This paper develops a quasi-decentralized state
estimation and control architecture for plants with limited
state measurements and distributed, interconnected units that
exchange information over a shared communication network.
The objective is to stabilize the plant while minimizing network
resource utilization and communication costs. The networked
control architecture is composed of a family of local control
systems that transmit their data in a discrete (on/off) fashion
over the network. Each control system includes a state ob-
server that generates estimates of the local state variables from
the measured outputs. The estimates are used to implement
the local feedback control law and are also shared over the
network with the control systems of the interconnected units
to account for the interactions between the units. To reduce
the exchange of information over the network as much as
possible without sacrificing stability, dynamic models of the
interconnected units are embedded in the local control system
of each unit to provide it with an estimate of the evolution
of its neighbors when data are not transmitted through the
network. The state of each model is then updated using the
state estimate generated by the observer of the corresponding
unit and transmitted over the network when communication
is re-established. By formulating the networked closed-loop
plant as a switched system, an explicit characterization of
the maximum allowable update period (i.e., minimum cross
communication frequency) between the distributed control sys-
tems is obtained in terms of plant-model mismatch, controller
and observer design parameters. It is shown that the lack of
full state measurements imposes limitations on the maximum
allowable update period even if the models used to recreate the
plant units’ dynamics are accurate. The results are illustrated
using a chemical process example and compared with other
networked control strategies. The comparison shows that the
minimum communication frequency required using quasi-
decentralized control is less than what is required by a
centralized control architecture indicating that the former is
more robust with respect to communication suspension.

I. INTRODUCTION

Traditionally, control of plants with multiple

geographically-distributed interconnected units has been

studied within either the centralized or decentralized control

frameworks. In centralized control, all measurements are

collected and sent to a central unit for processing, and

the resultant control commands are then sent back to the

plant. In decentralized control, on the other hand, the

plant is decomposed into a number of simpler subsystems

(typically based on functional and/or time-scale differences

of the unit operations) with interconnections, and a number
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of local controllers are connected to each subsystem with

no signal transfer taking place between different local

controllers. Significant research work has explored in depth

the benefits and limitations of centralized and decentralized

controllers as well as possible ways of overcoming some

of their limitations (e.g., see [1], [2], [3], [4], [5], [6],

[7], [8], [9], [10], [11] and the references therein). Other

examples of recent works on control of process networks

include the analysis and stabilization of process networks

based on passivity and concepts from thermodynamics

([12], [13]), the development of agent-based systems to

control reactor networks ([14], [15]), and the analysis and

control of integrated process networks using time-scale

decomposition and singular perturbations ([16], [17]).

An approach that provides a compromise between the

complexity of traditional centralized control schemes, on

the one hand, and the performance limitations of decentral-

ized control approaches on the other, is quasi-decentralized

control. The term quasi-decentralized control refers to a

situation in which most signals used for control are col-

lected and processed locally – although some signals (the

total number of which is kept to a minimum) still need

to be transferred between local units and controllers to

adequately account for the interactions between the different

units and minimize the propagation of disturbances and

process upsets from one unit to another. One of the key

problems that need to be addressed in the design of quasi-

decentralized control systems is the coordination between

the control and communication tasks and how to account

for possible limitations of the communication medium in

the formulation and solution of the control problem.

The importance of this problem stems from the increased

reliance in the process industries in recent years on sensor

and control systems that are accessed over communication

networks rather than dedicated links (e.g., [18], [19], [20]),

which is motivated in part by the substantial savings in

installation and maintenance time and costs as well as

the flexibility and enhanced fault-tolerance capabilities of

networked control systems. Also, as the trend towards aug-

menting dedicated control networks with low-cost wireless

sensor and actuator networks in the process industry con-

tinues to take hold in order to achieve high-density sensing

and actuation (e.g., [21], [20]), the need to account for

communication costs in the controller design framework be-

comes apparent. In this context, communication limitations

arise both from the disruptions caused by interference in the
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field and/or environmental impact, as well as the inherent

constraints on the power, computation and communication

capabilities of the wireless devices.

The design of a quasi-decentralized control strategy that

enforces the desired closed-loop objectives with minimal

cross communication between the component subsystems is

an appealing goal since it reduces reliance on the communi-

cation medium and helps save on communication costs. This

is an important consideration particularly when the commu-

nication medium is a (potentially unreliable) wireless sensor

network where conserving network resources is key to

prolonging the service life of the network. Beyond saving on

communication costs, the study of this problem provides an

assessment of the robustness of a given networked control

system, and allows designers to identify the fundamental

limits on the tolerance of a given networked control system

to communication suspension.

While the emerging paradigm of control over networks

(e.g., see [22], [23], [24], [25], [26], [27], [28], [29] for

some results and references in this area) provides a natural

framework to address the issues of control and commu-

nication integration, the majority of research studies on

networked control systems have focused mainly on single-

unit processes using a centralized control architecture. A

centralized control structure implemented over a network,

however, is not always the best choice for control of a large-

scale plant. By comparison, results on networked control of

multi-unit plants with tightly interconnected units have been

limited. In an effort to address this problem, we developed

in [30] a quasi-decentralized networked control architecture

that enforces close-loop stability with minimal cross com-

munication between the constituent subsystems. The main

idea was to embed in the local control system of each unit a

set of dynamic models that provide the local controller with

estimates of the states of the neighboring units, in order to

be used when state information is not transmitted over the

network. Both the control and communication laws in this

case were derived under the assumption that the full state

of each unit is available for measurement.

In many practical applications, direct measurements of

the full state are seldom available. The lack of full state

measurements has important implications that need to be

accounted for both at the local control level, and the plant-

wide communication level. Motivated by these considera-

tions, we develop in this work a quasi-decentralized output

feedback control architecture for multi-unit plants with

limited state measurements and tightly interconnected units

that exchange information over a shared communication

network. We address the problem of designing an integrated

state estimation, control and communication policy that

requires minimal communication between the units without

sacrificing closed-loop stability. To this end, we embed in

the local control system of each unit a set of dynamic

models that provide an approximation of the interactions

between the given unit and its neighbors in the plant when

communication is suspended over the network. To deal with

the lack of full state measurements, an appropriate state

observer is included in the local control system of each unit

to generate estimates of the local state variables from the

measured outputs. The estimates are used to implement the

local state feedback controllers and are also transmitted over

the plant-wide communication network to update the state

of the corresponding model embedded in the interconnected

subsystems when communication is re-established.

The rest of the paper is organized as follows. Following

some preliminaries in Section II, the networked quasi-

decentralized control structure is presented in Section III.

The closed-loop system is then cast as a switched system in

Section IV and its stability properties are analyzed leading

to an explicit characterization of the maximum allowable

update period (i.e., minimum communication frequency)

between each control system and the control systems of its

neighboring units in terms of the accuracy of the models and

the choice of control laws and state observers. The proposed

framework is illustrated in Section V using an example of

chemical reactors with recycle. Finally, concluding remarks

are given in Section VI.

II. PRELIMINARIES

We consider a large-scale distributed plant composed of

n interconnected processing units and represented by the

following state-space description:

ẋ1 =A1x1 + B1u1 +
n∑

j=2

A1jxj , y1 =C1x1

ẋ2 =A2x2 + B2u2 +
n∑

j=1,j 6=2

A2jxj , y2 =C2x2

...
...

ẋn =Anxn + Bnun +
n−1∑

j=1

Anjxj , yn =Cnxn

(1)

where xi := [x
(1)
i x

(2)
i · · · x

(pi)
i ]T ∈ IRpi denotes the

vector of process state variables associated with the i-
th processing unit, pi is the number of state variables in

the i-th unit, yi := [y
(1)
i y

(2)
i · · · y

(qi)
i ]T ∈ IRqi and

ui := [u
(1)
i u

(2)
i · · · u

(ri)
i ]T ∈ IRri denote the vector

of measured outputs and manipulated inputs associated

with the i-th processing unit, respectively. xT denotes the

transpose of a column vector x, Ai, Bi, Aij and Ci are

constant matrices. The interconnection term Aijxj , where

i 6= j, describes how the dynamics of the i-th unit are

influenced by the j-th unit in the plant. Note from the

summation notation in Eq.1 that each processing unit can in

general be connected to all the other units in the plant. Note

also that even though each subsystem is referred to as a unit

for simplicity, each subsystem can comprise a collection of

unit operations depending on how the plant is decomposed.

Our main objective is to devise an integrated control and

communication strategy that stabilizes the individual units

(and the overall plant) at the origin while simultaneously

accounting for (1) the presence of a communication network

(instead of ideal dedicated links) that is shared by the

various subsystems to exchange information, and (2) the
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availability of measurements of only a few state variables

within each unit. In the next section, we describe the design

procedure of a quasi-decentralized control strategy that

meets these objective by relying on a collection of process

models and state observers that compensate for the lack of

the needed information.

III. MODEL-BASED QUASI-DECENTRALIZED

ESTIMATION AND CONTROL OVER NETWORKS

A. Distributed output feedback controller synthesis

To realize the desired quasi-decentralized control struc-

ture, the first step is to synthesize for each unit a controller

that stabilizes the states at the origin in the absence of

communication constraints (i.e., when the control systems

are connected via ideal point-to-point connections). Specif-

ically, we consider control laws of the form:

ui(x) = Kixi +
n∑

j=1,j 6=i

Kijxj , (2)

where Kixi is the local feedback component responsible

for stabilizing the i-th subsystem in the absence of in-

terconnections, and Kijxj is a “feedforward” component

that compensates for the effect of the j-th neighboring

subsystem on the dynamics of the i-th unit. Note that a

choice of Kij = O reduces the control strategy to a fully

decentralized one where only measurements of the process

variables of the i-th unit are collected and processed with

no signal transfer taking place across the network. Note

also that the implementation of the control law of Eq.2

requires the availability of state measurements from both the

local subsystem being controlled and the connected units,

which are seldom available in practice. Considering this,

a state observer is designed for each local controller to

generate estimates of the local state variables from the local

measured outputs, and is combined with the state feedback

law of Eq.2 to yield an output feedback controller of the

form:

ui = Kix̄i +
n∑

j=1,j 6=i

Kij x̄j

˙̄xi = (Ai − LiCi)x̄i +
n∑

j=1,j 6=i

Aij x̄j + Biui + Liyi,

(3)

where x̄i is the observer state estimate for the i-th subsys-

tem and Li is the observer gain (chosen so that Ai −LiCi

is Hurwitz). Notice that the observer generating x̄i from yi

resides in the local control system of the i-th subsystem,

while the observer generating x̄j is located in the j-th unit

(i.e., on the other side of the shared network). Based on

this, and without loss of generality, we will consider in the

remainder of this paper the case when x̄i is available to the

local controller of unit i continuously, while x̄j is available

only when the information is transmitted over the network.

Remark 1: The requirement that the controller and observer

gains be stabilizing in the absence of network constraints

(i.e., when there is continuous transmission of measure-

ments between the units) is a desirable feature in the

sense that it decouples the control and communication

design tasks from one another and offers the designer the

flexibility to choose the desired control law independent of

the characteristics of the communication medium deployed.

However, this requirement is not necessary for stability of

the networked closed-loop system.

B. Design of communication logic: a model-based scheme

To reduce the transfer of information (in this case x̄j) be-

tween the local control systems without sacrificing closed-

loop stability, a dynamic model of each connected unit is

included in the control system of the i-th unit to provide it

with an estimate of the evolution of the states of those units

when data are not sent over the network. This allows the

control systems of the neighboring units to send their data at

discrete time instants and not continuously. “Feedforward”

from one unit to another is then performed by updating

the state of each model using the observer-generated es-

timates of the corresponding unit transmitted at discrete

time instances. In-between consecutive transmission times,

the control action for each unit relies on a collection of

models that are embedded in the local control system and

are running for a certain period of time. A schematic of this

model-based control architecture is shown in Figure 1.

U
n
i
t
 
1
 U
n
i
t
 
3
U
n
i
t
 
2


M
o
d
e
l

o
f
 
u
n
i
t
 
3


M
o
d
e
l

o
f
 
u
n
i
t
 
1


M
o
d
e
l

o
f
 
u
n
i
t
 
2


M
o
d
e
l

o
f
 
u
n
i
t
 
2


0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
 1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
 0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0


2
x
̂

2
x
̂
2
x


1
x
̂
 3
x
̂
1
x

3
x


M
o
d
e
l


s
t
a
t
e


r
e
s
e
t


M
o
d
e
l


s
t
a
t
e


r
e
s
e
t


M
o
d
e
l


s
t
a
t
e


r
e
s
e
t


C
o
m
m
u
n
i
c
a
t
i
o
n
 
n
e
t
w
o
r
k


I
n
f
o
r
m
a
t
i
o
n
 
f
l
o
w
 M
a
t
e
r
i
a
l
/
e
n
e
r
g
y
 
f
l
o
w


C
o
n
t
r
o
l
l
e
r
 
2

)
x
̂
,
x
,
x
̂
(
u
 3
2
1
2


C
o
n
t
r
o
l
l
e
r
 
1

)
x
̂
,
x
(
u
 2
1
1


O
b
s
e
r
v
e
r
 
1


1
y

1
u


O
b
s
e
r
v
e
r
 
2


2
u
2
y


O
b
s
e
r
v
e
r
 
3


3
u
 3
y


C
o
n
t
r
o
l
l
e
r
 
3


)
x
,
x
̂
(
u
 3
2
3


1
x
 2
x
 3
x


Fig. 1. Quasi-decentralized networked state estimation and control
architecture.

Within this architecture, the control law for each unit is

implemented as follows:

ui(t) = Kix̄i(t) +
n∑

j=1,j 6=i

Kij x̂
i
j(t), i = 1, 2, · · · , n

˙̄xi(t) = (Ai − LiCi)x̄i(t) +
n∑

j=1,j 6=i

Aij x̂
i
j(t)

+ Biui(t) + Liyi(t)

˙̂xi
j(t) = Âj x̂

i
j(t) + B̂j û

i
j(t) + Âjix̄i(t)

+
n∑

l=1,l 6=i,l 6=j

Âjlx̂
i
l(t), t ∈ (tk, tk+1)

ûi
j(t) = Kj x̂

i
j(t) + Kjix̄i(t) +

n∑

l=1,l 6=i,l 6=j

Kjlx̂
i
l(t),

for t ∈ (tk, tk+1)

x̂i
j(tk) = x̄j(tk), j = 1, · · · , n, j 6= i, k = 0, 1, 2, · · ·

(4)
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where x̄i is the estimate of xi generated by the local

observer, x̂i
j is the estimate of xj provided by a dynamic

model of j-th unit involving Âj , B̂j , Âjl, which are constant

matrices. The fact that x̄i appears directly in the model of

the j-th unit follows from (1) the structure of the plant

whereby the i-th unit feeds material and energy back into

unit j and (2) the fact that the observer-generated estimates

of xi are assumed to be available continuously to the local

control system of the i-th unit. In the case when data of x̄i

are not available continuously (i.e., if they are exchanged

over the shared network instead), then a model of the i-th
unit will have to be added to estimate the evolution of xi for

the times that the data are not available. Note also that the

models used by the i-th controller to recreate the behavior

of the neighboring units do not necessarily match the actual

dynamics of those processes, i.e., in general Âj 6= Aj ,

B̂j 6= Bj , Âjl 6= Ajl. Furthermore, a choice of Âj = O,

B̂j = O, Âjl = O corresponds to the special case where in

between consecutive transmission times, the corresponding

model acts as a zero-order hold by keeping the last available

estimates from neighboring units until the next ones are

available from the network.

Remark 2: An important feature that distinguishes the con-

trol structure of Fig.1 from centralized networked control

structures (e.g., [24]) is that the communication medium

in Fig.1 is shared by multiple interconnected units and

connects the sensor/observer suite of each unit with the

control systems of the other units. The network therefore

serves as a “feedforward” path over which updates from

the neighboring units are transmitted, i.e., the information

communicated is used only to update the feedforward

component of each controller and not the entire control

law. In a centralized networked control system, on the other

hand, the communication network is inserted between the

sensors/observer on one side and a single controller on the

other, and thus provides a feedback path through which

updates of the entire plant state information are transmitted

and used by the controller. An implication of this is that,

whereas in the centralized structure no information from

the plant will be available to the controller during intervals

of communication suspension (and thus the control action

will be based solely on the model forecasts during those

time periods), some plant information in the form of local

measurements/state estimates will be available to each con-

troller in the quasi-decentralized control structure and the

control action will be based on a combination of the data

received from the local sensors/observer suite as well as the

embedded models’ forecasts. The continuous availability of

(at least) partial measurements from the plant units enhances

the robustness of the plant to communication suspensions

which helps reduce network resource utilization further (see

Section V for a demonstration of this point).

IV. CLOSED-LOOP STABILITY ANALYSIS

A key parameter in the analysis of the control law of Eq.4

is the update period h := tk+1 − tk, which determines the

frequency at which a given unit receives observer estimates

from the other units through the network to update the

corresponding model state. To simplify the analysis, we

consider the case when the update periods are constant

and the same for all the units, i.e., we require that all

units communicate their information concurrently every h
seconds. This assumes that the control systems of all the

units are given access to the network and can successfully

transmit their data simultaneously. Extensions to the case

where the different units transmit their data at different rates

and the case when the update period is time-varying (or

stochastic) are the subject of other research work.

A. A switched system formulation

The successful implementation of the proposed quasi-

decentralized output feedback control architecture re-

quires characterizing the maximum allowable update pe-

riod (equivalently, the minimum transmission frequency)

between the controller of one unit and the state observers of

its neighboring units, which is the time between information

exchanges. To this end, we define the following estimation

errors as:

ei
j =

{
x̄j − x̂i

j , j 6= i,
0, j = i

, i, j = 1, 2, · · · , n (5)

where ei
j represents the difference between the observer

estimate of the j-th unit provided by its local state observer

and the model estimate used in the local control system of

the i-th unit. Note that since the observer estimates of xi, x̄i,

are assumed to be available to the local control system of the

i-th unit at all times, we always have ei
i = 0. Introducing

the augmented vectors ej := [(e1
j )

T (e2
j )

T · · · (en
j )T ]T ,

e := [eT
1 e

T
2 · · · e

T
n ]T , x := [xT

1 xT
2 · · · xT

n ]T ,

x̄ := [x̄T
1 x̄T

2 · · · x̄T
n ]T , it can be shown that the overall

closed-loop plant of Eq.1 and Eq.4 can be formulated as a

hybrid (switched) system of the following form:

ẋ(t) = Λ11x(t) + Λ12x̄(t) + Λ13e(t)
˙̄x(t) = Λ21x(t) + Λ22x̄(t) + Λ23e(t)
ė(t) = Λ31x(t) + Λ32x̄(t) + Λ33e(t), t ∈ (tk, tk+1)
e(tk) = 0, k = 0, 1, 2, · · · ,

(6)

where the process and observer states evolve continuously

in time and the estimation errors are reset to zero at each

transmission instance since the state of each model in each

unit is updated every h seconds. Referring to Eq.6, Λ11,

Λ12, Λ13, Λ21, Λ22, Λ23, Λ31, Λ32, and Λ33 are m × m,

m × m, m × mn, m × m, m × m, m × mn, mn × m,

mn × m, and mn × mn constant matrices, respectively,

where m =
∑n

i=1 pi and pi is the dimension of the i-th state

vector. These matrices are linear combinations of Ai, Bi,

Aij , Âi, B̂i, Âij , Ki, Kij , Li which are the matrices used

to describe the dynamics, the models, the control laws, and

the local state observers of the different units. The explicit

forms of these matrices are omitted for brevity but can be

obtained by substituting Eq.4 into Eq.1 (see the simulation

study in Section V for the explicit forms of these matrices

in the case of a two-unit plant).
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Defining the augmented state ξ(t) :=
[xT (t) x̄

T (t) e
T (t)]T , we can re-write the closed-loop

dynamics of the overall plant as:

ξ̇(t) = Λξ(t), t ∈ [tk, tk+1), ξ(tk) = [xT (tk) x̄
T (tk) 0]T ,

(7)

where k = 1, 2, · · ·, and Λ =




Λ11 Λ12 Λ13

Λ21 Λ22 Λ23

Λ31 Λ32 Λ33


.

B. Characterizing the maximum allowable update period

Following [24], it can be shown that the system

described by Eq.7 with initial condition ξ(t0) =
[xT (t0) x̄

T (t0) 0]T = ξ0 has the following response:

ξ(t) = eΛ(t−tk)
(
Ioe

ΛhIo

)k
ξ0, for t ∈ [tk, tk+1) (8)

with tk+1 − tk = h, where Io =


Im×m Om×m Om×mn

Om×m Im×m Om×mn

Omn×m Omn×m Omn×mn


, Im×m is the m × m

identity matrix and Om×mn is the m × mn zero matrix.

Specifically, for t ∈ [tk, tk+1), the plant response is given

by:

ξ(t) =




x(t)
x̄(t)
e(t)


 = eΛ(t−tk)




x(tk)
x̄(tk)

0


 = eΛ(t−tk)ξ(tk)

(9)

Note that at times tk, k = 1, 2, · · ·, ξ(tk) =
[xT (tk) x̄

T (tk) 0]T , i.e., the error e(t) is reset to zero. This

can be represented by writing ξ(tk) = Ioξ(t
−
k ), where Io as

defined earlier and ξ(t−k ) =
[
x

T (t−k ) x̄
T (t−k ) e

T (t−k )
]T

.

Using Eq.9 to calculate ξ(t−k ) yields ξ(tk) = Ioe
Λhξ(tk−1).

Therefore, given that at time t = t0, ξ(t0) = ξ0 is the

initial condition, we have ξ(t) = eΛ(t−tk)(Ioe
Λh)kξ0 =

eΛ(t−tk)(Ioe
ΛhIo)

kξ0.

Having characterized the overall closed-loop response in

terms of the update period, one can finally show (e.g., see

[24]) that a necessary and sufficient condition for the zero

solution of the system of Eq.7, ξ = [xT
x̄

T
e

T ]T =
[0 0 0]T , to be globally exponentially stable is to have the

eigenvalues of the matrix M(h) = Ioe
ΛhIo strictly inside

the unit circle.

Owing to the dependence of the closed-loop matrix Λ
on the matrices of the compensating models, the minimum

stabilizing communication frequency is parameterized by

the degree of mismatch between the dynamics of the units

and the models used to describe them. This is intuitively

expected given that if the compensating models describe the

behavior of the connected units exactly, then the maximum

allowable period for measurement updates to any unit can be

arbitrarily large since there will be no need to communicate

measurements in this case. Given bounds on the size of the

uncertainty, it is then possible to use the above stability

criteria to determine the range of stabilizing update periods

that can be used. Alternatively, if the update period is fixed

by the characteristics of the communication medium, it is

possible to use the stability criteria to determine the maxi-

mum size of tolerable process-model mismatch (see the sim-

ulation study in Section V for a demonstration of this point).

Similarly, since the maximum update period is dependent

also on the choice of the control laws (both the feedback and

feedforward components) and state observers for the various

units, this dependence can serve as a criterion for comparing

different controllers, as well as state observers in terms of

their robustness with respect to communication suspension

(i.e., which ones require data updates less frequently than

others). In fact, for a fixed update period, one can use

the stability criterion to design the controller and observer

gains that will ensure stability of the networked closed-

loop system. In this sense, the controller gains need not be

designed a priori (i.e., under continuous communication) or

independent of the communication logic (see Remark 1).

These interdependencies are illustrated and analyzed in the

simulation study presented in the next section.

V. SIMULATION STUDY: APPLICATION TO CHEMICAL

REACTORS WITH RECYCLE

In this section, we present a simulation study that demon-

strates the application of the developed quasi-decentralized

output feedback control system design methodology to a

plant composed of interconnected units with recycle. To this

end, we consider a plant composed of two well-mixed, non-

isothermal continuous stirred-tank reactors (CSTRs) with

interconnections, where three parallel irreversible elemen-

tary exothermic reactions of the form A
k1

→ B, A
k2

→ U

and A
k3

→ R take place, where A is the reactant species, B
is the desired product and U , R are undesired byproducts.

The feed to CSTR 1 consists of two streams, one containing

fresh A at flow rate F0, molar concentration CA0 and

temperature T0, and another containing recycled A from the

second reactor at flow rate Fr, molar concentration CA2 and

temperature T2. The feed to CSTR 2 consists of the output

of CSTR 1, and an additional fresh stream feeding pure A
at flow rate F3, molar concentration CA03, and temperature

T03. The output of CSTR 2 is passed through a separator

that removes the products and recycles unreacted A to

CSTR 1. Due to the non-isothermal nature of the reactions,

a jacket is used to remove/provide heat to both reactors.

Under standard modeling assumptions, a plant model of the

following form can be derived:

Ṫ1 =
F0

V1

(T0 − T1) +
Fr

V1

(T2 − T1) +

3∑

i=1

Gi(T1)CA1 +
Q1

ρcpV1

ĊA1 =
F0

V1

(CA0 − CA1) +
Fr

V1

(CA2 − CA1) −

3∑

i=1

Ri(T1)CA1

Ṫ2 =
F1

V2

(T1 − T2) +
F3

V2

(T03 − T2) +

3∑

i=1

Gi(T2)CA2 +
Q2

ρcpV2

ĊA2 =
F1

V2

(CA1 − CA2) +
F3

V2

(CA03 − CA2) −

3∑

i=1

Ri(T2)CA2

(10)
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where Ri(Tj) = ki0 exp
(

−Ei

RTj

)
, Gi(Tj) = (−∆Hi)

ρcp
Ri(Tj),

for j = 1, 2. Tj , CAj , Qj , and Vj denote the temper-

ature of the reactor, the concentration of A, the rate of

heat input to the reactor, and the reactor volume, respec-

tively, with subscript 1 denoting CSTR 1. ∆Hi, ki, Ei,

i = 1, 2, 3, denote the enthalpies, pre–exponential con-

stants and activation energies of the three reactions, re-

spectively, cp and ρ denote the heat capacity and den-

sity of fluid in the reactor. Using typical values for

the process parameters (see [30]), the plant with Q1 =
Q2 = 0, CA0 = Cs

A0, CA03 = Cs
A03 and recycle rate

r = 0.5, has three steady states: two locally asymptot-

ically stable and one unstable at (T s
1 , Cs

A1, T
s
2 , Cs

A2) =
(457.9 K, 1.77 kmol/m3, 415.5 K, 1.75 kmol/m3).

The control objective is to stabilize the plant at the

(open-loop) unstable steady-state. Operation at this point is

typically sought to avoid high temperatures, while simulta-

neously achieving reasonable conversion. The manipulated

variables for the first reactor are chosen to be Q1 and CA0,

while Q2 and CA03 are used as manipulated variables for

the second reactor. Only the temperatures of the two reac-

tors are assumed to be directly measured. Linearizing the

plant equations around the unstable steady state yields the

following system to which the quasi-decentralized output

feedback control architecture is applied:

ẋ1 = A1x1 + B1u1 + A12x2, y1 = C1x1

ẋ2 = A2x2 + B2u2 + A21x1, y2 = C2x2
(11)

where xi, ui and yi are the (dimensionless) state, manip-

ulated input and measured output vectors for the i-th unit,

respectively, Ai, Bi, Aij and Ci are constant matrices.

Following the proposed methodology, a stabilizing output

feedback controller of the form ui = Kix̄i + Kij x̄j , j 6= i,
˙̄xi = (Ai − LiCi)x̄i + Liyi + Aij x̄j + Biui is initially

designed for each reactor, where K1 and K2, were selected

by placing the eigenvalues of both Ā1 and Ā2 at −5 and

−1, respectively, where Āi = Ai + BiKi, i = 1, 2, while

K12 and K21 were chosen to force Ā12 = Ā21 = O, where

Āij = Aij + BiKij , and L1 and L2, were selected by

placing the eigenvalues of both A1 −L1C1 and A2 −L2C2

at −50 and −25, respectively. It was verified that, when the

estimates are communicated continuously between the two

units, the output feedback controllers successfully stabilize

the plant at the desired steady state.

However, since the observer estimate from the neighbor-

ing reactor can be received only through the network, and

in order to reduce utilization of network resources, a model

of the form ˙̂xj = Ãj x̂j + Ãjix̄i, where Ãj = Âj + B̂jKj ,

Ãji = Âji + B̂jKji, and Âj , B̂j , Âji are estimates of Aj ,

Bj and Aji, respectively, is embedded in the local control

system of the i-th unit to provide it with an estimate of x̄j .

Correspondingly, the local state observer in the i-th unit

takes the form x̄i = (Ai −LiCi)x̄i + Liyi + A12x̂j + Biui

and the control law is implemented as ui = Kix̄i + Kij x̂j .

The model state is used by the local controller so long as

no data from the neighboring units are transmitted over the

network, but is updated using the observer estimate provided

by the local state observer of the other reactor whenever it

becomes available from the network. Our objective is to

determine the largest update period that guarantees plant

stability. Following some algebraic manipulations, it can be

shown that Λ consists of the following sub-matrices:

Λ11 =

[
A1 A12

A21 A2

]
, Λ12 =

[
B1K1 B1K12

B2K21 B2K2

]

Λ13 =

[
O O −B1K12 O
O −B2K21 O O

]
, Λ21 =

[
L1C1 O

O L2C2

]

Λ22 =

[
H1 Ā12

Ā21 H2

]
, Λ23 =

[
O O −Ā12 O

O −Ā21 O O

]

Λ31 =

[
O O

L1C1 O
O L2C2

O O

]
, Λ32 =




O O

H1 − Ã1 Ā12 − Ã12

Ā21 − Ã21 H2 − Ã2

O O




Λ33 =




O O O O

O Ã1 −Ā12 O

O −Ā21 Ã2 O
O O O O




where Hi = Āi − LiCi. By examining the above expres-

sions and from the fact that M(h) = Ise
ΛhIs, it can be

seen that the eigenvalues of M depend on the mismatch

between the models and the reactors, the controller and

observer gains, and the update period. In the remainder of

this section, we will investigate the interplays between these

parameters. Since closed-loop stability of the linearized

plant requires all eigenvalues of M to lie within the unit

circle, it is sufficient to consider only the maximum eigen-

value magnitude, denoted λmax, in the following analysis.

A. Dependence of update period on plant-model mismatch

To investigate the effect of model uncertainty, we con-

sider parametric uncertainty in the enthalpy of the first reac-

tion and define δ1 = (∆Hm
1 −∆H1)/∆H1, where ∆Hm

1 is

the nominal value used in the models, as a measure of model

accuracy. Fig.2(a) is a contour plot showing the dependence

of λmax on both δ1 and the update period. In this plot,

the area enclosed by the unit contour lines represents the

stability region of the linearized plant. As expected, the

range of tolerable parametric uncertainty shrinks as the

update period is increased. Notice that unlike the full state

feedback case (shown in Fig.2(b)), the update period under

output feedback cannot be chosen arbitrarily large without

loss of stability even when an exact model is used (i.e., with

δ1 = 0) and that there is a finite maximum value for h that

can be used. This can be explained by the fact that in the

output feedback architecture, the model states are updated

using observer-generated estimates (which contain errors)

rather than exact state information. In this case, the stability

condition is to have h ≤ 0.043 hr; and for h = 0.043 hr the

test matrix M has one eigenvalue with unit magnitude. This

is further confirmed by the closed–loop temperature profile

in Fig.2(d) where the linearized plant is stable for h = 0.04
hr, marginally stable for h = 0.043 hr, and unstable for
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Fig. 2. Dependence of λmax on the update period and model uncertainty
under quasi-decentralized output feedback (a) and state feedback (b)
control architectures, and under a centralized output feedback control
architecture (c). Plot (d) shows the closed-loop profiles of T1 under the
quasi-decentralized output feedback control architecture using a perfect
model for different update periods.

h = 0.044 hr (only a plot of T1 is shown due to space

limitations; T2 exhibits similar tendencies).

For comparison, Fig.2(c) shows the dependence of λmax

on both δ1 and h under a centralized output feedback

controller structure designed for the whole plant and applied

over a communication network (using the same controller

and observer gain matrices results in [24]). It can be seen

that the stability region of the quasi-decentralized networked

control system is larger than its counterpart under central-

ized control. For large values of δ1, the quasi-decentralized

networked control scheme allows the use of a larger range

of update periods without loss of stability. Also, for a fixed

h, the quasi-decentralized networked controller can tolerate

a wider range of model uncertainty. This result indicates

that by distributing the control and estimation tasks across

the various units, further reduction in network resource

utilization – over what is obtained using a centralized

structure – is possible (see Remark 3).
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Fig. 3. (a) Dependence of λmax on the update period under different
models. Plot (b) shows the closed-loop profiles of T1 under a zero-order
hold scheme for different update periods.

Fig.3(a) shows the maximum eigenvalue magnitude ver-

sus the update period for different values of δ1. For compar-

ison, included in this plot also is the case when a zero-order

hold scheme is used. In this case, the local controller of each

reactor holds the last estimate received from its neighbor

until the next time an estimate is transmitted and received

from the communication network. This corresponds to using

models of the form ˙̂xj = Ãj x̂j + Ãjixi with Ãj = O
and Ãji = O. The solid line in Fig.3(a) shows that the

condition for stability in this case is to have h ≤ 0.042 hr.

This is further confirmed by the closed–loop temperature

profiles shown in Fig.3(b). It is clear that a model-based

scheme with relatively accurate models can yield update

periods larger than the zero-order hold scheme. In the case

of large plant–model mismatch, however, the zero-order

hold scheme outperforms its model-based counterpart.

B. Impact of observer design on closed-loop stability

In this part, we investigate the effect of varying the

observer gains on the maximum tolerable process-model

mismatch for a fixed update period. To this end, we fix

the update period at 0.04 hr, and consider varying the local

observer gain L1 first. Different values of L1 can be used

to place the two eigenvalues of the matrix A1 − L1C1 at

different locations. For simplicity, we fix one of the poles

at −50 and vary the other one, which we denote by λ12.

Fig.4 shows the dependence of λmax on δ1 and λ12 (i.e.,

on L1). In the contour plot (a), the stability region for the

system is the region enclosed by the unit contour lines. Note

that as λ12 becomes more negative, the size of tolerable

model uncertainty increases. Plot (b) in this figure shows the

dependence of λmax on λ12 for different values of δ1 and for

the zero-order hold scheme. The predictions of Fig.4(a) are

confirmed by the closed–loop state and manipulated input

profiles in Fig.4(c)-(d) which show that the linearized plant

is stable when we select a point inside the unit contour zone

(δ1 = 0.1, λ1 = −25), and unstable when the point is barely

outside the unit contour zone (δ1 = 0.1, λ1 = −20.8).

Similar analysis can be performed by varying the observer

gain of the second reactor, L2.

VI. CONCLUDING REMARKS

In this work, we presented a methodology for the de-

sign of quasi-decentralized output feedback controllers for

plants with distributed interconnected units and limited

state measurements. The approach is based on a hierar-

chical architecture in which each unit in the plant has

a local control system with its sensors, state observers

and actuators connected to the local controller through a

dedicated communication network, and the local control

systems in turn communicate with one another through

a shared communication network. To achieve closed-loop

stability with minimal cross-communication between the

units, each control system relies on a set of models of its

neighboring units to recreate the states of those units when

direct information of their values are not available. The
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Fig. 4. Plots (a)-(b): Dependence of λmax on model uncertainty and the
observer gain L1 under a fixed update period of h = 0.04 hr. The solid
line in (b) corresponds to the case when a zero-order hold scheme is used.
Plots (c)-(d): Closed-loop state and manipulated input profiles under the
quasi-decentralized output feedback control strategy with δ1 = 0.1 and
different update periods.

models are updated at discrete time instances to compensate

for modeling errors with the observer estimates provided

by local state observers. An explicit characterization of

the maximum allowable update period in terms of model

uncertainty, controller and observer design parameters was

obtained. The analysis was facilitated by the linear structure

of the plants considered which allowed obtaining both

necessary and sufficient conditions for the stability by

applying results from the networked control systems litera-

ture. The developed quasi-decentralized control strategy was

illustrated using a simulation example involving chemical

reactors with recycle. Finally, we note that in addition

to applying the results to the linearized plant, the quasi-

decentralized control structure has also been successfully

implemented on the original nonlinear plant of Eq.10. The

results (not shown here) indicate that, for a given update

period predicted by the linear analysis, stability can be

achieved for sufficiently small initial conditions. The design

of a quasi-decentralized control structure for nonlinear

plants and the characterization of the critical update period

in the nonlinear case are topics under current investigation.
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