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Abstract— It is a well-known result that in a versal

deformation of the Takens-Bogdanov bifurcation is possible to
find dynamical systems that undergo saddle-node, homoclinic

and Hopf bifurcations. In this document a nonlinear control
system in the plane is considered, whose nominal vector field

undergoes the Takens-Bogdanov bifurcation, and then the
idea is to design a scalar control law such that the closed-

loop system undergoes the called controllable Hopf bifurcation.
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I. INTRODUCTION

One of the goals about the control of bifurcations is to

establish a priori the creation or elimination of stationary

states, like critical points, limit cycles, torus and strange

attractors, with their respective stability characteristics. Even

though 20 years ago began the study of control of bifurca-

tions, only has been systematized the control of codimension

one bifurcations: Hopf, saddle-node, transcritic and pitch-

fork. See [1], [2], [5], [9], [10]. Few papers are related with

the control of codimension two bifurcation, see [6], [7].

In this paper we began a systematic study to control

the codimension two bifurcation called Takens-Bogdanov

or double-cero. The Takens-Bogdanov bifurcation happens

when the linear part of the dynamical system has a double-

zero eigenvalue and the rest of the eigenvalues have real part

different of zero. In [8] and [3], Takens and Bogdanov, re-

spectively, both found of independent way, a versal deforma-

tion of this bifurcation, that is, they found a two-parametric

family which contains all the possible perturbations of the

original system. They demonstrated that around the men-

tioned bifurcation point, the system undergoes the saddle-

node and the homoclinic as well as the Hopf bifurcation,

see [4] and [11]. We will say that we have controlled the

Takens-Bogdanov bifurcation when it is possible to design

control laws that allow us to cross all the possible dynamic

scenes that exist around this bifurcation point.

The idea of this work is to design a control law such

that our feedback nonlinear control system represents a

perturbation of the open-loop system that undergoes the

Takens-Bogdanov bifurcation, and such that our feedback

system undergoes a controllable Hopf bifurcation.
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II. HOPF BIFURCATION

Theorem 1: (Hopf Bifurcation Theorem) Suppose that the

system ẋ = f(x, µ), x ∈ R
n, µ ∈ R, has an equilibrium

point (x0, µ0) such that

(H1) Dxf(x0) has a simple pair of pure imaginary eigen-

values and no other eigenvalues with zero real parts.

(H2) Let λ(µ), λ̄(µ) be the eigenvalues of Dxf(x0, µ0)
which are imaginary at µ = µ0, such that

d =
d

dµ
(Re(λ(µ))) |µ=µ0

6= 0. (1)

Then there is a unique three-dimensional center manifold

passing through (x0, µ0) ∈ R
n ×R and a smooth system of

coordinates for which the Taylor expansion of degree three

on the center manifold, in polar coordinates, is given by

ṙ = (dµ + lr2)r,

θ̇ = ω + cµ + br2.

If l 6= 0, then there is a surface of periodic solutions in

the center manifold which has quadratic tangency with the

eigenspace of λ(µ0), λ̄(µ0) agreeing to second order with

the paraboloid µ = − l
d
r2, see Figure 1. If l < 0, then these

periodic solutions are stable, while if l > 0, they are repelling

limit cycles.

The quantities d and l we will be called cross speed and first

Lyapunov coefficient, respectively.

There is a formulae to find in cartesian coordinates for

bidimensional systems, the first Lyapunov coefficient l (see

[4]). Let us consider the system

ẋ = Jx + F (x),

where J =

(
0 −ω

ω 0

)
, F (x) =

(
F1(x)
F2(x)

)
with F (0) =

0 and DF (0) = 0. Then

l =
1

16ω
(R1 + ωR2), (2)

where

R1 = [F1x1x2
(F1x1x1

+ F1x2x2
) − F2x1x2

(F2x1x1
+

F2x2x2
) − F1x1x1

F2x1x1
+ F1x2x2

F2x2x2
]|x=0

,

R2 = [F1x1x1x1
+ F1x1x2x2

+ F2x1x1x2
+ F2x2x2x2

]|x=0
.

Observe that for different signs of d and l we have four

possible stages or directions of the Hopf bifurcation, see

Figure 2.
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Fig. 1. One-parametric family of periodic orbits results of the Hopf

bifurcation, at a non hiperbolic equilibrium x0 and a bifurcation value
µ0 = 0, d > 0 and l < 0.

Fig. 2. Four possible directions of the Hopf bifurcation. The solid line
represents behavior stable while the broken line unstable.

III. CONTROLLABLE HOPF BIFURCATION

Let us consider a nonlinear control system

ẋ = F (x) + G(x)u (3)

where x ∈ R
n, u ∈ R, F and G sufficiently smooth. Suppose

that there exists x0 such that F (x0) = 0 and DF (x0) has

two imaginary eigenvalues, and the rest have negative real

part.

Definition 2: (Controllable Hopf bifurcation). If there ex-

ists a control law

u = u(x, µ, γ), (4)

where µ ∈ R is an artificial parameter of bifurcation, and

γ ∈ R
k, for some integer k, is an artificial vector of control

parameters, such that the closed-loop system (3-4) undergoes

a Hopf bifurcation when µ = 0 at x = x0, and besides

it is possible to establish a priori any of the four possible

directions of the bifurcation, by the manipulation of γ, then

we are going to say that system (3) undergoes a controllable

Hopf bifurcation at x = x0 when µ = 0.

Both parameters cross speed and first Lyapunov coeffi-

cient, we will be called the controllability coefficients of

the controllable Hopf bifurcation, because they control the

four possible directions of the Hopf bifurcation.

Fig. 3. Takens-Bogdanov bifurcation diagram and the corresponding phase

portraits

In other words, system (3) undergoes a controllable Hopf

bifurcation if it is possible to design a control law such that

be possible to establish a priori the sign of the controllability

coefficients d and l.

IV. TAKENS-BOGDANOV BIFURCATION

Let us consider the dynamical system in the plane ż =

f(z), with f(0) = 0 and J = Df(0) =

(
0 1
0 0

)
.

From the normal forms theory, there is a transformation of

coordinates, such that, the original system can be expressed

up order two, in the form

ż = f0(z) =

(
z2

a0z
2
1 + b0z1z2

)
, (5)

which is called the truncated normal form of the original

system. A versal deformation of this truncated normal form

roughly speak, is a dynamical systems which contains to sys-

tem (5) and a whole “perturbations family” to this truncated

normal form. Takens and Bogdanov showed that the family

ż = F (z, µ) =

(
z2

µ1 + µ2z2 + a0z
2
1 + b0z1z2

)
, (6)

with µ = (µ1, µ2) represent a versal deformation of the

truncated system (5), see [4], [11]. Can be proved that

for µ1 = 0 and µ2 6= 0 the family represent a system

which undergoes the saddle-node bifurcation; for µ1 = −µ2
2

the system undergoes the Hopf bifurcation, and for µ1 =
−49

25
µ2

2 + · · · undergoes the homoclinic bifurcation.

We can see the diagram of Takens-Bogdanov bifurcation

in the Figure 3

V. STATEMENT OF THE PROBLEM

Let us consider the nonlinear control system

ẋ = Jx + f(x) + g(x)u (7)

with

x ∈ R
2, such that x =

(
x1

x2

)
, u ∈ R, J =

(
0 1
0 0

)
,
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f(x) = f2(x) + O(|x|3), where

f2(x) =

(
f11x

2
1 + f12x1x2 + f13x

2
2

f21x
2
1 + f22x1x2 + f23x

2
2

)
,

g(x) = b + Mx + O(|x|2), where b =

(
b1

b2

)
,

and M = (mij)2×2.

Our goal in this document is to design a control law

u = u(x, µ, δ) where µ = (µ1, µ2) representing the artificial

vector of bifurcation parameters, while δ = (δ1, δ2, δ3)
representing the artificial vector of control parameters, such

that, the closed-loop system undergoes a controllable Hopf

bifurcation. That is, the idea is to design a control law u

sucht that, the family of systems move on the curve of Hopf

bifurcation points µ1 = −µ2
2 of the Figure 3, and be possible

to control them.

VI. CONTROL DESIGN

In this part we will design a control law u(x, µ, δ) such

that the nonlinear control system (7), become into a new

system equivalent to the versal deformation of the Takens-

Bogdanov bifurcation (6). So by manipulating of artificial

vector of bifurcation parameters µ, we can control the emer-

gence or elimination of closed orbits, and by manipulating

of artificial vector of control parameters δ, we can control

the stability of such periodic orbits.

A. First Coordinate Transformation

Let us consider the change of coordinates

x = P (y + H(y)) (8)

into the system (7), where y = (y1, y2)
T ,

P =

(
b2 b1

0 b2

)
, (9)

H(y) = yTHy, (10)

where H =

(
H1

H2

)
, with Hi =

(
hi1

1

2
hi2

1

2
hi2 hi3

)
for i =

1, 2.

Observe that

ẏ = [P (I + 2yTH)]−1ẋ

= (I + 2yTH)−1P−1[JP (y + yTHy +

f(P (y + yTHy) + g(P (y + yTHy)u]

but

(I + 2yTH)−1 = I − 2yTH + · · · ,

f(P (y + yTHy)) = f(Py) + O(|y|3)
and

g(P (y + yTHy)) = b + MPy + O(|y|2)
then

ẏ = (I − 2yTH + · · · )P−1[JP (y + yTHy +

f(P (y + yTHy)) + g(P (y + yTHy))u].

Now we consider

u = µ1 + v (11)

then

ẏ = µ1P
−1b + Jy + f2(y) + O(µ1|y|2) + g(y)v, (12)

where

J = P−1JP + µ1[P
−1MP − 2bT (P−1)TH], (13)

f2(y) = P−1JPyTHy + P−1f2(Py) −
2yTHP−1JPy, (14)

g(y) = P−1b + [P−1MP − 2bT (P−1)TH]y

+O(|y|2), (15)

It is not difficult to see that P−1b = (0, 1)T = e2 and

P−1JP = J .

Lemma 3: If b2 6= 0, then there exists H given by (10),

such that P−1MP − 2bT (P−1)TH ≡ 0.

Proof: If we define the coefficients

h12 = −−m11b2 + b1m21

b2

h13 = −1

2

−b1m11b2 + b2
1m21 − m12b

2
2 + b2b1m22

b2
2

h22 = m21

h23 =
1

2

b1m21 + m22b2

b2

then P−1MP − 2bT (P−1)TH ≡ 0. �

From lemma 3, we have that

J = J, (16)

g(y) = e2 + O(|y|2), (17)

and

ẏ = µ1e2+Jy+f 2(y)+O(µ1|y|2)+(e2+O(|y|2))v (18)

B. Second Coordinate Transformation

From (18), we can see that the next step of the control

design is to transform the part f (y) + (e2 + O(|y|2))v in a

vector of the form

ν =

(
0

κ1z2 + κ2z
2
1 + κ3z1z2

)
,

with κ1, κ2, κ3 constants. Now then, from the normal form

theory we consider

y = z + h(z), (19)

v = µLz + zT Kz, (20)

where z = (z1, z2)
T , µ = (µ1, µ2), and

h(z) =

(
0

c3z
2
2

)
, (21)

L =

(
0 2c3

0 δ1

)
, (22)

K =

(
q1

1

2
q2

1

2
q2 q3

)
. (23)
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Thus,

ż = (I + Dh(z))−1[µ1e2 + J(z + h(z)) + f (z) +

(e2 + O(|z|2))(µLz + zT Kz)]

= µ1e2 + J̃z + f̃2(z) + O(µ|z|2),

where

J̃z = Jz − µ1Dh(z)e2 + µLze2, (24)

f̃2(z) = Jh(z) + f2(z) + zT Kze2. (25)

From (24) it is not difficult to see that J̃z =

(
z2

µ2δ1z2

)
,

and f̃2(z) = zT Fz, where

F =

(
F1

F2

)
, with Fi =

(
f̃i1

1

2
f̃i2

1

2
f̃i2 f̃i3

)
, i = 1, 2,

and

f̃11 = h21 + b2f11 − b1f21,

f̃12 = m21 − 2h11 + f12b2 + 2f11b1 − b1f22 −
2f21b1

b2

,

f̃13 = c3 − m11 +
1

2
m22 + f12b1 + f13b2 − f23b1

+
3

2

b1m21

b2

+
(f11 − f22)b

2
1

b2

− f21b
3
1

b2
2

,

f̃21 = q1 + b2f21,

f̃22 = q2 + f22b2 + 2f21b1 − 2h21,

f̃23 = q3 − m21 + f22b1 + f23b2 +
f21b

2
1

b2

,

we need only to transform the vector f̃2(z) in the form given

by the next

Lemma 4: If b2 6= 0, then there are h, L and K as given

by (21), (22) and (23) respectively, such that

f̃2(z) =

(
0

δ2z
2
1 + δ3z1z2

)
, (26)

where δ2 and δ3 are constants.

Proof: If we define

h11 = −1

2

f22b2b1 + 2f21b
2
1 − f12b

2
2 − 2f11b2b1 − b2m21

b2

h21 = f21b1 − f11b2

c3 =
2b2

2m11 − 2f12b
2
2b1 − 3b2b1m21 − 2b2f11b

2
1

2b2
2

+
2f21b

3
1 + 2f22b2b

2
1 − 2f13b

3
2 − b2

2m22 + 2b1f23b
2
2

2b2
2

q1 = −f21b2 + δ2

q2 = −2f11b2 − f22b2 + δ3

q3 =
m21b

2
2 − f23b

3
2 − b1f22b

2
2 − f21b2b

2
1

b2
2

then we obtain f̃2(z) =

(
0

δ2z
2
1 + δ3z1z2

)
. �

From lemma 4, finally we succeeded that the nonlinear

control system (7) becomes into the system
(

ż1

ż2

)
=

(
z2

µ1 + µ2δ1z2 + δ2z
2
1 + δ3z1z2

)

+O(µ|z|2) (27)

Our goal is to prove that under certain conditions, this

system undergoes the controllable Hopf bifurcation.

VII. STUDY OF THE LOCAL DYNAMICS

The fixed points of (27) are z0 =
(
±
√

−µ1

δ2

, 0
)

, and the

Jacobian matrix of this system is

J (z) =

(
0 1

2δ2z1 + δ3z2 µ2δ1 + δ3z1

)
(28)

with eigenvalues given by

λ1,2(z) =
1

2
[(µ2δ1 + δ3z1) ±

√
(µ2δ1 + δ3z1)2 + 4(2δ2z1 + δ3z2)

]
(29)

Let us denote the two branches of fixed points by

z+

0 =

(√
−µ1

δ2

, 0

)
and z−0 =

(
−
√
−µ1

δ2

, 0

)
,

and we will made the local dynamic around the negative

branch z−0 , the analysis for the positive branch z+
0 is totally

similar. The matrix (28) evaluated in z−0 takes the form

J (z−0 ) =

(
0 1

−2δ2

√
−µ1

δ2

µ2δ1 − δ3

√
−µ1

δ2

)
,

and we know that matrix J (z−0 ) has a pair of pure imaginary

eigenvalues λ−

1,2 if the tr
[
J (z−

0
)
]

= 0 and det
[
J (z−

0
)
]

> 0.

Since tr
[
J (z−0 )

]
= µ2δ1 − δ3

√
−µ1

δ2

and det
[
J (z−0 )

]
=

2δ2

√
−µ1

δ2

, then if

µ2 =
δ3

√
−µ1

δ2

δ1

, (30)

we obtain λ−

1,2 = ±
√

−2δ2

√
−µ1

δ2

, thus, we might expect

that the curve (30) with δ2 > 0 and µ1 < 0 is a bifur-

cation curve on which z−0 undergoes a controllable Hopf

bifurcation. To verify the above, we need to calculate the

controllability coefficients.

A. The controllability coefficients

We next examine the change of stability of the fixed points

z−0 on (30), with µ1 < 0 and δ2 > 0. Associated eigenvalues

with the linearization about this curve of fixed points are

λ−

1,2 = ±i

√

2δ2

√
−µ1

δ2
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If we see µ2 as a parameter, then using (29) we obtain the

cross speed

d =
d

dµ2

ℜeλ−

1,2

∣∣∣∣
µ2=

δ3

√
−

µ1

δ2

δ1

=
1

2
δ1. (31)

Therefore, a controllable Hopf bifurcation occurs on µ2 =
δ3

√
−

µ1

δ2

δ1

.

Next, we check the stability of the bifurcating periodic or-

bits, for it we need to calculate the first Lyapunov coefficient

l, which is given by derivatives of the nonlinear functions on

the normal form of the system (27).

First we moved the fixed point to the origin. Let

z1 = z1 +

√
−µ1

δ2

z2 = z2

be and from (27) we have

(
ż1

ż2

)
=

(
0 1

−2δ2

√
−

µ1

δ2
0

)(
z1

z2

)
+

(
0

δ2z
2

1 + δ3z1z2

)
,

(32)

then we put the linear part of (32) in normal form via the

linear transformation

(
z1

z2

)
=




0 1√

2δ2

√
−µ1

δ2

0




(

ϕ1

ϕ2

)

under which (32) becomes
(

ϕ̇1

ϕ̇2

)
=

(
0 −Φ
Φ 0

)(
ϕ1

ϕ2

)
+

(
L1(ϕ1, ϕ2)
L2(ϕ1, ϕ2)

)

(33)

where

Φ =

√

2δ2

√
−µ1

δ2

,

L1(ϕ1, ϕ2) =
δ2ϕ

2
2

Φ
+ δ3ϕ1ϕ2 and L2(ϕ1, ϕ2) = 0,

and implement (2), we obtain

l =
δ3

16
√
−µ1

δ2

, (34)

and we can conclude that the sign of l directly depending

from the sign of δ3.

We can look the dynamics of the negative branch in the

Figure 4.

VIII. MAIN RESULT

Theorem 5: Given the nonlinear control system

ẋ = Jx + f(x) + g(x)u, (35)

where x ∈ R
2 and the control u ∈ R. If

J =

(
0 1
0 0

)
, g(x) = b + Mx + · · · ,

Fig. 4. µ1 < 0, δ1 > 0, δ2 > 0 y δ3 > 0.

with

b =

(
b1

b2

)
, and b2 6= 0,

then the feedback control law

u(x, µ, δ) = µ1 + µL
(
P−1x − h(P−1x) − H(P−1x)

)

+xT
(
P−1

)T
KP−1x + O(|x|3), (36)

where µ = (µ1, µ2) is the artificial vector of bifurcation

parameters and δ = (δ1, δ2, δ3) is the artificial vector of con-

trol parameters, P , H, h, L and K, are giving by (9), (10),

(21), (22) and (23) respectively, is such that the closed-loop

system (35)-(36), undergoes a controllable Hopf bifurcation

in µ2 =
δ3

√
−

µ1

δ2

δ1

, with the controllability coefficientes d and

l given by (31) and (34) respectively.

IX. AN EXAMPLE

We will illustrate the previous result with the following

example,

ẋ1 = x2 + x2
1 − x2

2 + (x1 + x1x2)u
ẋ2 = x1x2 + (1 − x1 + x2 + x2

2)u,
(37)

In this case,

P =

(
1 0
0 1

)
, H(x) =

(
−1

2
x2

1 + x1x2

−x2
1 − x1x2 + 1

2
x2

2

)
,

h(x) =

(
0

3

2
x2

2

)
, L =

(
0 3
0 δ1

)
,

and

K =

(
δ2

1

2
(δ3 − 3)

1

2
(δ3 − 3) −1

)
,

then, for this system, the control law is given by

u(x, µ, δ) = µ1 + (3µ1 + µ2δ1)(x2 + x2
1 + x1x2 − 2x2

2)

+δ2x
2
1 + (δ3 − 3)x1x2 − x2

2 + O(|x|3).

If we consider

µ1 = −0.0001, µ2 = −0.019, δ1 = δ2 = 1, and δ3 = −2,
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Fig. 5. Supercritical Hopf bifurcation for: µ1 = −0.0001, µ2 = −0.019,

δ1 = 1, δ2 = 1 y δ3 = −2.

then

d =
1

2
and l = −25

2
,

and system (37) undergoes a supercritical Hopf bifurcation,

where the closed orbit is stable. See Figure 5.

If we define

µ1 = −0.0001, µ2 = −0.019, δ1 = δ2 = 1, and δ3 = 2,

then

d =
1

2
and l =

25

2
,

and system (37) undergoes a subcritical Hopf bifurcation,

where the closed orbit is unstable. See Figure 6.

X. CONCLUSIONS

For a nonlinear control system in the plane, whose nominal

vector field has in the origin, a double zero eigenvalue, we

have designed a scalar control law such that the closed-loop

system undergoes a controllable Hopf bifurcation. This work

is the begining of a more general analysis about the control

of codimension two bifurcations.

Fig. 6. Subcritical Hopf bifurcation for: µ1 = −0.0001, µ2 = 0.019,

δ1 = 1, δ2 = 1 y δ3 = 2.
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