
PWA H∞ controller synthesis for uncertain PWA slab systems

Stefan LeBel and Luis Rodrigues

Department of Mechanical and Industrial Engineering, Concordia University,

1515 St. Catherine Street West, EVS2.111, Montréal, Québec, Canada, H3G 2W1
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Abstract— This paper presents a new piecewise-affine
(PWA)H∞ controller synthesis method for uncertain PWA
slab systems. The synthesis problem is formulated as a set
of Linear Matrix Inequalities (LMIs), which can then be
solved efficiently using available software. The proposed
synthesis methodology is applied to a circuit example.

I. INTRODUCTION

PWA systems represent a powerful modeling frame-

work for complex dynamical systems involving non-

linear phenomena. In fact, a broad range of nonlinear

systems are either already PWA or can be accurately

approximated by PWA systems. These include, but are

not limited to, dead-zones, saturations, relays, and hys-

teresis. With the emergence of promising new methods

for stability analysis [10], [5], [6], [14], state feedback

controller synthesis [5], [11], [15], [16] and output feed-

back controller synthesis [12], [13], [8] for continuous-

time PWA systems, this class of hybrid systems has

become increasingly attractive for control purposes. In

terms of convex formulations of state feedback controller

synthesis, Hassibi [5] has shown that the PWL H∞

controller synthesis problem for a class of PWA systems

can be cast as an LMI. Later, Rodrigues and Boukas [17]

have shown that PWL H∞ controller synthesis for PWA

slab systems with input and output constraints can also

be cast as an LMI. However, these methods do not take

into account model uncertainties.

Although stability analysis and controller synthesis

for continuous-time piecewise-affine systems have re-

ceived a great deal of attention, it is only recently that the

robustness of these systems has been studied. Johansson

[6] developed a method for performance analysis of

piecewise-linear (PWL) systems while an a posteriori

analysis method was developed by Rodrigues [16] for

PWA systems acted upon by norm-bounded noise. Feng

[3], [4] is probably the first to examine the synthesis

of stabilizing and H∞ controllers for uncertain PWA

systems. However, this problem is in general not convex

and can only be transformed into an LMI by assuming a
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special structure for the controller gain matrix. Recently,

reference [18] suggested a convex optimization approach

for PWA controller synthesis using PWA slab differential

inclusions. To the best of our knowledge, this reference

is the only convex approach to PWA controller synthesis

in the literature.

Given that PWA systems form a diverse and complex

class of systems, formal synthesis methods must be

targeted to systems with additional structure in order to

cast the synthesis as a convex problem. In this sense, the

work in this paper departs considerably from previous

work on H∞ controller synthesis for uncertain PWA

systems and offers an interesting complementary ap-

proach. In fact, rather than imposing additional structure

on the controller or using differential inclusions, in this

paper we will focus instead on adding structure to the

systems themselves by considering slab partitions of

the state space. Although not the most general class of

PWA systems, PWA slab systems represent an important

subclass because many practical system models are

either already in PWA slab form or can be approximated

by this form with high degree of accuracy. Moreover,

even for some systems that do not fall into this category,

recent methods have been developed using backstepping

techniques to transform the synthesis problem into the

class of PWA slab systems [7], [19].

In summary, the work presented in this paper pro-

vides a systematic convex formulation of the PWA H∞

controller synthesis problem for uncertain PWA slab sys-

tems as a set of LMIs. Efficient interior-point algorithms,

implemented in available software packages, can then

be used to solve the LMI constraints. The outline of the

paper is as follows. First, the class of uncertain PWA

systems is described and the control design problem is

formulated. Then, the new PWA H∞ controller synthesis

method is developed. Finally, the proposed methodology

will be applied to a circuit example and conclusions will

be drawn.
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II. PROBLEM DEFINITION

A. Class of Uncertain PWA Systems

Consider a PWA system with dynamics described by

ẋ(t) = (Ai + ∆Ai)x(t) + (ai + ∆ai)
+(Bi + ∆Bi)u(t) + (Bwi

+ ∆Bwi
)w(t),

(1)

for x(t) ∈ Ri, where u(t) ∈ R
nu is the input vector and

w(t) ∈ R
nw is the disturbance vector. Matrices Ai ∈

R
n×n, ai ∈ R

n, Bi ∈ R
n×nu , Bwi

∈ R
n×nw represent

the nominal PWA system, while matrices ∆Ai ∈ R
n×n,

∆ai ∈ R
n, ∆Bi ∈ R

n×nu , ∆Bwi
∈ R

n×nw are

the uncertainty terms. The polytopic regions, R i, i ∈
I = {1, . . . , M}, partition a subset of the state space

X ⊂ R
n such that ∪M

i=1Ri = X , Ri ∩ Rj = ∅, i �= j,

where Ri denotes the closure of Ri. We assume in

this paper that the objective is to find a controller that

stabilizes the closed-loop system to a single equilibrium

point if no disturbances act in the system, and that

provides a bound on the L2 gain in the presence of

disturbances. Therefore, we denote the region in which

the desired closed-loop equilibrium point xcl lies as Ri⋆ .

It is assumed that ai⋆ = 0, ∆ai⋆ = 0.

Following [5], [6], [9], each cell is constructed as the

intersection of a finite number (pi) of half spaces

Ri = {x ∈ R
n | Eix + ei ≻ 0}, (2)

where Ei ∈ R
pi×n, ei ∈ R

pi , and ≻ represents an

element-wise inequality. Each polytopic cell has a finite

number of facets and vertices. Any two cells sharing a

common facet will be called level-1 neighboring cells.

Let Ni = {level-1 neighboring cells of Ri}. It is

assumed that vectors Hij ∈ R
n and scalars hij exist

such that the facet boundary between cells Ri and

Rj is contained in the hyperplane described by {x ∈
R

n|HT
ijx + hij = 0}, for i = 1, . . . , M , j ∈ Ni. A

parametric description of the boundaries can then be

obtained as [5]

Ri ∩Rj ⊆ {Fijs + fij | s ∈ R
n−1}, (3)

where Fij ∈ R
n×(n−1) is a full rank matrix whose

columns span the null space of H T
ij , and fij ∈ R

n is

given by

fij = −Hij(H
T
ijHij)

−1hij .

A slab is a special case of a polyhedron, and is defined

as follows.

Definition 1: A slab is defined as

S = {x ∈ R
n | h1 < HT x < h2}, (4)

where H ∈ R
n and h1, h2 ∈ R. �

If Ri from (2) is a slab S defined as in (4), we have

Ei =

[

HT

−HT

]

, ei =

[

−h1

h2

]

. (5)

Moreover, each region Ri from (2), can be outer approx-

imated by a degenerate ellipsoid Ei, such that Ei ⊆ Ri,

Ei = {x ∈ R
n | ‖Lix + li‖ < 1}, (6)

where
{

Li = 2HT /(h2 − h1)
li = −(h2 + h1)/(h2 − h1)

. (7)

Definition 2: A PWA slab system is a PWA system

for which the regions are slabs. �

This paper focuses on PWA slab systems. Note that

for these systems, the ellipsoidal covering (6) is exact,

i.e., Ei ⊆ Ri and Ri ⊆ Ei. The use of slab regions is the

key element enabling the proof of the main theorem of

this paper, stating controller synthesis as a set of LMIs.

B. Design Objective

The objective is to design a PWA state feedback con-

trol law that stabilizes the uncertain PWA system (1) to

the origin without disturbances and that verifies an H∞

performance criterion in the presence of disturbances. In

that regard, it is assumed that there is a measured output

according to

y(t) = (Ci + ∆Ci)x(t) (8)

for x(t) ∈ Ri, where y(t) ∈ R
p is the output vector,

Ci ∈ R
p×n and ∆Ci ∈ R

p×n. The PWA state feedback

control law is

u(t) = Kix(t) + ki, (9)

for x(t) ∈ Ri. Substituting (9) into (1) and using (8)

yields the closed-loop system















ẋ(t) = [(Ai + ∆Ai) + (Bi + ∆Bi)Ki] x(t)
+ [(ai + ∆ai) + (Bi + ∆Bi)ki]
+(Bwi

+ ∆Bwi
)w(t)

y(t) = (Ci + ∆Ci)x(t)

(10)

which can be rewritten as
{

ẋ(t) = Ācl
i x(t) + ācl

i + B̄wi
w(t)

y(t) = C̄ix(t)
(11)

where Ācl
i = (Ai +∆Ai)+ (Bi +∆Bi)Ki, ācl

i = (ai +
∆ai) + (Bi + ∆Bi)ki, B̄wi

= Bwi
+ ∆Bwi

, and C̄i =
Ci + ∆Ci.
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Finally, the following a priori assumptions adapted

from previous work in the robust PWL control literature

[3] are made for the uncertainty terms:

∆AT
i ∆Ai ≤ UT

Ai
UAi

,
∆ai∆aT

i ≤ Uai
UT

ai
,

∆BT
i ∆Bi ≤ UT

Bi
UBi

,
∆Bi∆BT

i ≤ UBi
UT

Bi
,

∆Bwi
∆BT

wi
≤ UBwi

UT
Bwi

,

∆CT
i ∆Ci ≤ UT

Ci
UCi

.

(12)

The controller synthesis method will be described in

the next section.

III. CONTROLLER SYNTHESIS

This section presents the main result of the paper. We

begin by stating one lemma and one definition to be used

in the ensuing development. The PWA H∞ controller

synthesis method is then presented.

Lemma 1: [1] Let X and Y be real constant matrices

of compatible dimensions. Then the following equation

XT Y + Y T X ≤ ǫXT X + ǫ−1Y T Y

holds for any ǫ > 0. �

Definition 3: The L2 gain of the closed-loop system

(11) is defined as

sup
‖w‖2 �=0

‖y‖2

‖w‖2
,

where the L2 norm of an unknown time-varying signal

w(t) is defined by

‖w(t)‖2
2 =

∫

∞

0

[w(t)T w(t)]dt,

and the supremum is taken over all nonzero trajectories

of the system, starting from the state x(0) = 0. If the

L2 gain of a system is less than some constant γ > 0,

the system is said to have disturbance attenuation by a

factor of at least γ. �

A. PWA Controller Synthesis

This section will present a PWA controller synthesis

method as a theorem. The proof of the theorem will use

the following result.

Lemma 2: If M ≥ 0 then, for any matrix B with

appropriate dimensions,

BMBT ≤ trace(M)BBT

Proof: It suffices to show that trace(M)I − M ≥ 0.

This is true because the eigenvalues λi (βI − M) are

equal to β−λi(M) for any β. Therefore, since the trace

is the sum of all eigenvalues and since M ≥ 0, the

eigenvalues of [trace(M)I − M ] are all greater than or

equal to zero, which finishes the proof. �

Theorem 1: Consider the uncertain PWA slab system

(1) with the PWA state feedback (9). Let the index of

the region holding the desired equilibrium point for the

closed-loop system be i⋆. If Q = QT > 0, α > 0,

η > 0, µi < 0, i = 1, . . . , M , ǫj > 0, j = 1, . . . , 17,

inequality (17) and ki⋆ = 0 are verified for i = i⋆, and

inequality (18) and 1 − l2i < 0 are verified for i �= i⋆,

where

Ωi = AiQ + BiYi + QAT
i + Y T

i BT
i

+αQ + (ǫ−1
1 + ǫ−1

2 )I(n)

+η[(1 + ǫ−1
6 )Bwi

BT
wi

+ (1 + ǫ6)UBwi
UT

Bwi

]
(13)

and

Ω̄i = AiQ + BiYi + QAT
i + Y T

i BT
i

+αQ + (ǫ−1
1 + ǫ−1

2 )I(n)

+µi[(1 + ǫ−1
3 )aia

T
i + (1 + ǫ3)Uai

UT
ai

]
+µi[aik

T
i BT

i + Bikia
T
i ]

+µi[ǫ7k
2
maxUai

UT
ai

+ ǫ−1
7 BiB

T
i ]

+µi[ǫ8k
2
maxaia

T
i + ǫ−1

8 UBi
UT

Bi
]

+µi[ǫ9k
2
maxUai

UT
ai

+ ǫ−1
9 UBi

UT
Bi

]

+µik
2
max[(1 + ǫ−1

10 )BiB
T
i + (1 + ǫ10)UBi

UT
Bi

]

+µil
2
i (1 − l2i )

−1[(1 + ǫ−1
11 )aia

T
i + (1 + ǫ11)Uai

UT
ai

]
+µil

2
i (1 − l2i )

−1[aik
T
i BT

i + Bikia
T
i ]

+µil
2
i (1 − l2i )

−1[ǫ12k
2
maxUai

UT
ai

+ ǫ−1
12 BiB

T
i ]

+µil
2
i (1 − l2i )

−1[ǫ13k
2
maxaia

T
i + ǫ−1

13 UBi
UT

Bi
]

+µil
2
i (1 − l2i )

−1[ǫ14k
2
maxUai

UT
ai

+ ǫ−1
14 UBi

UT
Bi

]
+µil

2
i (1 − l2i )

−1k2
max∗

[(1 + ǫ−1
15 )BiB

T
i + (1 + ǫ15)UBi

UT
Bi

]
+li(1 − l2i )

−1[aiLiQ + QLT
i aT

i ]
+ǫ4Uai

UT
ai

+ ǫ16BiB
T
i + ǫ17UBi

UT
Bi

+η[(1 + ǫ−1
6 )Bwi

BT
wi

+ (1 + ǫ6)UBwi
UT

Bwi

]
(14)

and

Γi = µ−1
i (1−l2i )

−1+(ǫ−1
4 +k2

maxǫ−1
16 +k2

maxǫ−1
17 )l2i (1−l2i )

−2

(15)

and if, furthermore,
[

k2
max ki

kT
i 1

]

> 0, i = 1, . . . , M, (16)

then the L2 gain of the closed-loop system (11) is

less than γ = η−0.5 and the system is exponentially

stable with a decay rate of at least α in the absence of

disturbances. �

Proof: The proof is given for the case where i �= i⋆.

The proof for the case where i = i⋆ is similar with the

important difference that ai⋆ = 0, ∆ai⋆ = 0, ki⋆ = 0
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Ωi Y T
i UT

Bi
QUT

Ai
QCT

i QUT
Ci

UBi
Yi −ǫ−1

2 I(n) 0 0 0
UAi

Q 0 −ǫ−1
1 I(n) 0 0

CiQ 0 0 −(1 + ǫ−1
5 )−1I(p) 0

UCi
Q 0 0 0 −(1 + ǫ5)

−1I(p)













< 0, (17)

















Ω̄i Y T
i UT

Bi
QUT

Ai
QCT

i QUT
Ci

QLT
i

UBi
Yi −ǫ−1

2 I(n) 0 0 0 0
UAi

Q 0 −ǫ−1
1 I(n) 0 0 0

CiQ 0 0 −(1 + ǫ−1
5 )−1I(p) 0 0

UCi
Q 0 0 0 −(1 + ǫ5)

−1I(p) 0
LiQ 0 0 0 0 −Γ−1

i

















< 0, (18)

and the S−procedure cannot be used for i = i⋆ because

the equilibrium point is in the closure of Ri⋆ . Using a

quadratic candidate Lyapunov function

V (x) = xT Px, (19)

sufficient conditions for the L2 gain of system (11) being

less than γ > 0 and for exponential stability with a decay

rate of at least α in the absence of disturbances are

P = PT > 0 (20)

and

V̇ (x) = ẋT Px + xT P ẋ < −αxT Px + γ2wT w − yT y.
(21)

These conditions can be rewritten as γ > 0, α > 0,

P = PT > 0 and




x
w
1





T 



Ξi PB̄wi
P (ācl

i )
B̄T

wi
P −γ2I 0

(ācl
i )T P 0 0









x
w
1



 < 0, x ∈ Ri,

(22)

where Ξi = P (Ācl
i ) + (Ācl

i )T P + αP + C̄T
i C̄i. This

condition can be relaxed using the S − procedure [2]

with multipliers λi < 0 and the ellipsoid description

(6), yielding the sufficient conditions γ > 0, α > 0,

P = PT > 0 and




Ξi + λiL
T
i Li PB̄wi

(P ācl
i + λiL

T
i li)

B̄T
wi

P −γ2I 0
(P ācl

i + λiL
T
i li)

T 0 −λi(1 − lTi li)



 < 0.

(23)

Using Schur complement twice, inequality (23) is equiv-

alent to 1 − lTi li < 0 and

P (Ācl
i ) + (Ācl

i )T P + αP + λiL
T
i Li

+λ−1
i (P ācl

i + λiL
T
i li)(1 − lTi li)

−1(P ācl
i + λiL

T
i li)

T

+C̄T
i C̄i + γ−2PB̄wi

B̄T
wi

P < 0.
(24)

Expanding the first two terms of (24) yields

PAi + PBiKi + AT
i P + KT

i BT
i P + αP + λiL

T
i Li

+P∆Ai + ∆AT
i P + P∆BiKi + KT

i ∆BT
i P

+λ−1
i (P ācl

i + λiL
T
i li)(1 − lTi li)

−1(P ācl
i + λiL

T
i li)

T

+C̄T
i C̄i + γ−2PB̄wi

B̄T
wi

P < 0.
(25)

Applying Lemma 1 (the order of the factors is arbitrary),







P∆Ai + ∆AT
i P ≤ ǫ1∆AT

i ∆Ai + ǫ−1
1 PP

P∆BiKi + KT
i ∆BT

i P ≤
ǫ2K

T
i ∆BT

i ∆BiKi + ǫ−1
2 PP

with constants ǫj > 0, j = 1, 2. The left-hand side

(L.H.S) of inequality (25) can then be bounded as

L.H.S. ≤ PAi + PBiKi + AT
i P + KT

i BT
i P

+αP + λiL
T
i Li + (ǫ−1

1 + ǫ−1
2 )PP

+ǫ1∆AT
i ∆Ai + ǫ2K

T
i ∆BT

i ∆BiKi

+λ−1
i (P ācl

i + λiL
T
i li)(1 − lTi li)

−1(P ācl
i + λiL

T
i li)

T

+C̄T
i C̄i + γ−2PB̄wi

B̄T
wi

P.
(26)

Defining µi = λ−1
i , η = γ−2 and Q = P−1, then pre-

multiplying by QT and post-multiplying by Q, where

Q = QT , the sufficient conditions become µi < 0, η >
0, α > 0, 1 − lTi li < 0, Q > 0, and

AiQ + BiKiQ + QAT
i + QKT

i BT
i

+αQ + µ−1
i QLT

i LiQ + (ǫ−1
1 + ǫ−1

2 )I(n)

+ǫ1Q∆AT
i ∆AiQ + ǫ2QKT

i ∆BT
i ∆BiKiQ

+µi(ā
cl
i + µ−1

i QLT
i li)(1 − lTi li)

−1(ācl
i + µ−1

i QLT
i li)

T

+QC̄T
i C̄iQ + ηB̄wi

B̄T
wi

< 0.
(27)

Following a similar procedure as the one used by Ro-

drigues and Boyd [15], it can be concluded that (27) is
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equivalent to

AiQ + BiKiQ + QAT
i + QKT

i BT
i

+αQ + µi(ā
cl
i )(ācl

i )T + (ǫ−1
1 + ǫ−1

2 )I(n)

+ǫ1Q∆AT
i ∆AiQ + ǫ2QKT

i ∆BT
i ∆BiKiQ

+µ−1
i (1 − l2i )

−1(µiliā
cl
i + QLT

i )(µiliā
cl
i + QLT

i )T

+ηB̄wi
B̄T

wi
+ QC̄T

i C̄iQ < 0,
(28)

using the fact that li = lTi is a scalar for slab systems.

Expanding terms, using Lemma 1, Lemma 2, assump-

tions (12), and kT
i ki < k2

max, which can be written as

(16), changing variables to Yi = KiQ, the constraints

(20) and (21) are guaranteed to be satisfied if

[

k2
max ki

kT
i 1

]

> 0, 1 − l2i < 0, µi < 0, η > 0,

α > 0, ǫj > 0, j = 1, . . . , 17, Q = QT > 0,
AiQ + BiYi + QAT

i + Y T
i BT

i

+αQ + (ǫ−1
1 + ǫ−1

2 )I(n)

+ǫ1QUT
Ai

UAi
Q + ǫ2Y

T
i UT

Bi
UBi

Yi

+µi[(1 + ǫ−1
3 )aia

T
i + (1 + ǫ3)Uai

UT
ai

]
+µi[aik

T
i BT

i + Bikia
T
i ]

+µi[ǫ7k
2
maxUai

UT
ai

+ ǫ−1
7 BiB

T
i ]

+µi[ǫ8k
2
maxaia

T
i + ǫ−1

8 UBi
UT

Bi
]

+µi[ǫ9k
2
maxUai

UT
ai

+ ǫ−1
9 UBi

UT
Bi

]

+µik
2
max[(1 + ǫ−1

10 )BiB
T
i + (1 + ǫ10)UBi

UT
Bi

]
+µil

2
i (1 − l2i )

−1∗
[(1 + ǫ−1

11 )aia
T
i + (1 + ǫ11)Uai

UT
ai

]
+µil

2
i (1 − l2i )

−1[aik
T
i BT

i + Bikia
T
i ]

+µil
2
i (1 − l2i )

−1[ǫ12k
2
maxUai

UT
ai

+ ǫ−1
12 BiB

T
i ]

+µil
2
i (1 − l2i )

−1[ǫ13k
2
maxaia

T
i + ǫ−1

13 UBi
UT

Bi
]

+µil
2
i (1 − l2i )

−1[ǫ14k
2
maxUai

UT
ai

+ ǫ−1
14 UBi

UT
Bi

]
+µil

2
i (1 − l2i )

−1k2
max∗

[(1 + ǫ−1
15 )BiB

T
i + (1 + ǫ15)UBi

UT
Bi

]
+li(1 − l2i )

−1[aiLiQ + QLT
i aT

i ]
+ǫ4Uai

UT
ai

+ ǫ−1
4 l2i (1 − l2i )

−2QLT
i LiQ

+ǫ16BiB
T
i + ǫ−1

16 l2i (1 − l2i )
−2k2

maxQLT
i LiQ

+ǫ17UBi
UT

Bi
+ ǫ−1

17 l2i (1 − l2i )
−2k2

maxQLT
i LiQ

+µ−1
i (1 − l2i )

−1QLT
i LiQ

+η[(1 + ǫ−1
6 )Bwi

BT
wi

+ (1 + ǫ6)UBwi
UT

Bwi

]

+Q[(1 + ǫ−1
5 )CT

i Ci + (1 + ǫ5)U
T
Ci

UCi
]Q ≤ 0.

(29)

This last expression can be written in matrix form by

successive uses of the Schur complement, yielding the

LMI (18), which finishes the proof. �

Based on this result, the PWA H∞ controller synthe-

sis problem can be formulated as follows:

Problem 1: Given α > 0, kmax > 0, ǫj > 0, j =

1, . . . , 17, and µi < 0,,

max η
s.t. η > 0, (16),

Q = QT > 0, − Y lim
i ≺ Yi ≺ Y lim

i ,
(17), (13) for i = i⋆,
(18), (14), (15) and 1 − l2i < 0 for i �= i⋆,
i = 1, . . . , M,

where ≻ and ≺ mean component-wise inequalities and

Ylim are given vector bounds. �

The new controller synthesis methodology will now

be applied to a circuit example.

IV. EXAMPLE

Consider the circuit with dynamics [5]
{

ẋ1 = f(x1) + 0.5x2

ẋ2 = −0.2x1 − 0.3x2 + 0.2u
(30)

where x1 is the capacitor voltage and x2 is the inductor

current. For x1 ∈ (0, 1), the PWA voltage-current

characteristic is given by

f(x1) =















−4.4164x1 , 0.00 < x1 < 0.11
+1.1747x1 − 0.615 , 0.11 < x1 < 0.46
+0.0039x1 − 0.0729 , 0.46 < x1 < 0.86
−3.0271x1 + 2.5271 , 0.86 < x1 < 1.00

(31)

By Definition 2, this is a slab system. Thus, the PWA

controller synthesis method developed in the previous

section can be applied. The bounding ellipsoids are

L1 =
[

25.00 0
]

, l1 = 6.50,
L2 =

[

5.26 0
]

, l2 = 0.16,
L3 =

[

5.88 0
]

, l3 = −1.94,
L4 =

[

22.22 0
]

, l4 = −14.56.

(32)

It is assumed that the system uncertainties verify the

upper bounds (12) where

UAi
=

[

0.3 0
0 0

]

, Uai
=

[

0.03
0

]

, UBi
=

[

0
10−6

]

,

UBwi
=

[

0
10−6

]

, UCi
=

[

10−6 0
0 10−6

]

.

(33)

The desired closed-loop equilibrium point is
[

x1cl

x2cl

]

=

[

0.300
0.557

]

. (34)

Thus, the closed-loop equilibrium lies in region 2, i.e.,

i⋆ = 2. For simplicity, a change of coordinates is

performed such that the desired closed-loop equilibrium

point is transformed to the origin. For the synthesis of

the PWA controller, Problem 1 is solved with α = 0.01,
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Fig. 1. Plot of states vs. time with disturbances (solid line: capacitor
voltage, dashed line: inductor current)

kmax = 9, Y lim
1 = 50, Y lim

2 = 0.22, Y lim
3 = 120,

Y lim
4 = 50, µi = −200,

ǫ1 = 1000, ǫ2 = 1000, ǫ3 = 1000,
ǫ4 = 0.1, ǫ5 = 10, ǫ6 = 1,
ǫ7 = 1000, ǫ8 = 1000, ǫ9 = 1000,
ǫ10 = 10000, ǫ11 = 1, ǫ12 = 10,
ǫ13 = 10, ǫ14 = 10, ǫ15 = 10000,
ǫ16 = 1, ǫ17 = 0.1.

The resulting controller gains are given by

K1 =
[

+171.44 +2.06
]

, k1 = −0.1933,
K2 =

[

−232.27 −16.15
]

, k2 = 0,
K3 =

[

−289.51 −19.84
]

, k3 = −0.1923,
K4 =

[

−234.24 −29.53
]

, k4 = +0.0644,

(35)

with η = 1.6303. The disturbance rejection is thus

guaranteed to be at least γ = η−0.5 = 0.6134. To

simulate the performance of this controller, the system is

subjected to a time-varying disturbance given by w(t) =
5e−0.6tsin(2πt) V , which has finite L2-norm. Figure 1

shows the response of the system. It can be seen that the

disturbance is attenuated and the system converges to the

desired equilibrium point as the disturbance converges

to zero.

V. CONCLUSIONS

This paper presented a new method for synthesizing

a PWA H∞ controller for uncertain PWA slab systems.

The problem was formulated as a set of LMIs that can

be efficiently solved using available software. The pro-

posed controller synthesis methodology was successfully

applied to a circuit example.
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