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Abstract— In this paper, we provide a data-driven approach
for a simultaneous updating of a mathematical model of a plant
and a controller with respect to a desired response of the closed
loop. Our basic strategy is to adapt the fictitious controller, which
has been proposed by the authors, described by the nominal
model and the initial controller with the tunable parameter
to the one-shot experimental data directly. As a result, such a
controller yields both a plant model and a desired controller
simultaneously. In order to give the validity of the proposed
method, we also show an experimental result.

I. INTRODUCTION

It is no doubtful that a mathematical model of a plant

plays a central role in the synthesis of a control system.

At the same time, as stated in [17], the modeling and the

synthesis of a controller should not be separated for the

achievement of the desired closed loop performance and

they should be performed interactively. That is to say, we

should consider the interplay between the used model and the

controller in the closed loop. In this point, one of the rational

approaches to this issue is to model the uncertainty with

respect to robust control theory. There are nice references on

this issue, e.g., cf. [3], [14] and so on. Of course, in this case,

various methods for closed loop system identifications (cf.

e.g., [4], [12], and so on) are also useful. Another approach

is to perform a modeling and a synthesis of a controller

simultaneously as studied in [1]. Our standpoint to this issue

is categorized as the latter.

Instead of using a mathematical model, a synthesis of a

controller with the direct use of the data is also a rational

and effective way. Because, the trajectories with which the

dynamics evolves, i.e., the data, have fruitful information of

a dynamical system. From such a standpoint, there are some

studies on the controller synthesis of the direct use of the

data, [2], [5], [6], [11], [15], [19] and so on. These studies

are also so-called data-driven approaches. It is also natural

to consider that the closed loop also has a lot of information

on the relationship between the controller designed by using

the model and the actual plant. Thus, it is expected that the

direct use of the closed loop data enables us to obtain the

controller that refines the performance of the closed loop

and the mathematical model that reflects the dynamics of

the plant under the closed loop.
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From these backgrounds and the expectations, we provide

a data-driven approach for a simultaneous updating of a

mathematical model of a plant and a controller with respect

to a desired response of the closed loop. Our basic strategy

is to adapt the fictitious controller, which has been proposed

by the authors (cf.[8], in these reference we used the ficti-

tious controller for the purpose of only the identification),

described by the nominal model and the initial controller

with the tunable parameter to the one-shot experimental data

directly with respect to the fictitious reference (cf. [15]). As

a result, such a controller yields both a plant model and

a desired controller simultaneously. The adaptation of the

fictitious controllers is basically performed by a nonlinear

optimization with respect to the tunable parameter. In order

to give the validity of the proposed method, we also show

an experimental result.

II. PRELIMINARIES

Let R
n denote the sets of real vectors of size n. Let R

Z

denote the set of time series. Let In and 0n denote the unit

and the zero square matrix of size n, respectively. For w ∈
(R)Z and a, b ∈ Z such that a ≤ b, w[a,b] denotes the finite

time part of w in the time interval [a, b]. We regard w[a,b]

as an element of R
[b−a+1]. Let q denote the shift operator

defined by qwt := wt+1 for a time series w ∈ (R)Z. In the

case of w[a,b], we regard (qw[a,b])b = 0.

Consider a single-input single-output, linear, time-

invariant system in discrete time described by the transfer

function G(q). We denote the i-th Markov parameter of G(q)
with G[i]. Let u[0,N ] and y[0,N ] denote the input and output

data, respectively, obtained in the interval [0, N ]. The output

yt of an operator G(q) with respect to the input u[0,t] is

written by the form of yt =
∑t

k=0 G[k]ut−k. The output data

obtained in the finite time interval y[0,N ] ∈ R
N+1 is regarded

as the range of the following Toeplitz matrix operator with

respect to u[0,N ]:











y0
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...

yN











=











G[0] 0 · · · 0
G[1] G[0] · · · 0

...
. . .

. . .

G[N ] · · · G[1] G[0]
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, (1)

or equivalently,
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. (2)
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We denote the Toeplitz operator of Markov parameters G[i]

for i = 0 · · ·N as

T G
[0,N ]:=











G[0] 0 · · · 0
G[1] G[0] · · · 0

...
. . .

. . .

G[N ] · · · G[1] G[0]











∈R
(N+1)×(N+1). (3)

Similarly, we denote the Toeplitz matrix consisting of trun-

cated time series w[0,N ] as

T w
[0,N ]:=











w0 0 · · · 0
w1 w0 · · · 0
...

. . .
. . .

wN · · · w1 w0











∈R
(N+1)×(N+1). (4)

We also prepare the following vector expression of Markov

parameters G[i] for i = 0 · · ·N

[G(q)][0,N ]:=
(

G[0] G[1] · · · G[N ]

)T
∈ R

N+1. (5)

By using these notations, it is easy to see that

(G(q)u)[0,N ] = T G
[0,N ]u[0,N ]. (6)

Moreover, Eq.(1) and Eq.(2) are described by

y[0,N ] = T G
[0,N ]u[0,N ] = T u

[0,N ][G(q)][0,N ]. (7)

In Eq.(1), the invertibility of G(q) is equivalent to the

nonsingularity of the Toeplitz matrix because of g0 6= 0. For

proper rational transfer functions G(q) and H(q), it follows

from the well-known commutative property of the product

of Toeplitz matrices that

T HG
[0,N ] = T H

[0,N ]T
G
[0,N ] = T G

[0,N ]T
H
[0,N ] (8)

holds. Moreover, it is trivial that T H
[0,N ] + T G

[0,N ] = T H+G
[0,N ]

also holds. In the case of the invertible G(q), i.e., G(q)−1 is

also proper, we see that

T G−1

[0,N ] = (T G
[0,N ])

−1 (9)

also holds. In the case where G is strictly proper, we can

not write u[0,N ] = T 1/Gy[0,N ]. However, by using another

proper rational function such that H/G is proper, we obtain

the following lemma.

Lemma 1: For two proper rational functions H(q) and

G(q), assume that H/G is also proper. Let y be the output

of G with respect to u. Then, T H
[0,N ]u[0,N ] = T

H/G
[0,N ] y[0,N ].

holds. 2

The proof is straight forward from the direct computation by

using the properties of Toeplitz operators.

Finally, throughout this paper, we often omit the notation

of ’q’ from ’G(q)’ if it clearly follows from the context that

this is a rational function with respect to q.

C0(q)
r y0

−
G(ρ∗, q)

u0

Fig. 1. A closed loop system

III. PROBLEM FORMULATION

Consider a conventional one-degree of freedom control

system illustrated in Fig.1. We assume that a system is a

linear, time-invariant, discrete time system described by

G(ρ, q) =

∑nN

i=0 ρN
i qi

∑nD

i=0 ρD
i qi

(10)

with unknown parameter ρ := [ρNT
ρDT

]T ∈ R
n

where ρN := [ρN
0 ρN

1 · · · ρN
nN

]T ∈ R
nN and ρD :=

[ρD
0 ρD

1 · · · ρD
nD

]T ∈ R
nD , n = nD + nN with nN < nD

(this means G is strictly proper). That is, the coefficients of

the denominator and the numerator are unknown parameters.

Let ρ∗ be the unknown actual parameter of the plant. We

denote G(ρ∗, q)

G∗(q) := G(ρ∗, q) (11)

as the actual transfer function. Moreover, we have the

nominal transfer function of this model

Gn(q) := G(ρ̄, q) (12)

with the known parameter ρ̄ ∈ R
n. We assume that Gn 6=

G∗. Define

T (C,G) :=
GC

1 + GC
, S(C, G) := 1 − T (C, G). (13)

For example, The transfer function from the reference to the

output in the closed loop in Fig.1 is described by T (C0, G
∗)

The initial controller C0 is designed by using Gn so as to

achieve the desired output yd described by

yd := Tdr := T (C0, Gn)r (14)

with respect to the reference signal r. We also define Sd :=
1 − Td. Without loss of generality, we assume that Td is

strictly proper and the rational degree of Td is greater than

or equal to that of G∗ in this paper. The former standard

assumption also implies that Sd is invertible. The latter

assumption is also commonly imposed in the design of a

control system that achieves the desired response. C0 is also

designed so as to stabilize the closed loop including Gn.

Moreover, C0 is assumed to be invertible.

Under these settings, we implement the controller C0

and perform an experiment in the closed loop. We then

obtain only the input and the output experimental data in

this feedback system, u0
[0,N ] = (C0S(C0, G

∗)r)[0,N ] and

y0
[0,N ] = (T (C0, G

∗)r)[0,N ], respectively. From the assump-

tion Gn 6= G∗, we also see that yd[0,N ] 6= y0[0,N ].

Then, the purpose of this paper is to solve the following

problem.

Problem 1: In addition to the above setting and assump-

tion, assume also that C0 stabilizes G∗ and obtain the data
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u[0,N ] and y[0,N ] of the actual closed loop T (C0, G
∗). Then,

find the controller and the parameter ρ such that the first N
Markov parameters of a model G(ρ) are close to those of

G∗ so as to minimize

Jmodel(ρ) :=
∥

∥[G(ρ)][0,N ] − [G∗][0,N ]

∥

∥

2
(15)

and

Jcontroller(C) :=
∥

∥(yd − T (G∗, C)r)[0,N ]

∥

∥

2
(16)

simultaneously, based on the direct use of the actual data

u[0,N ] and y[0,N ] together with Gn and C0. 2

Besides the initial nominal model Gn and the initial con-

troller, this problem requires only the actual data u[0,N ] and

y[0,N ] without re-modeling of a plant. Thus, we can regard

such an approach to this problem as a data-driven approach

to simultaneous updating of a model and a controller.

IV. MAIN RESULT

A. Simultaneous updating of a model and a controller

Firstly, we define “fictitious controller ” C̃(ρ, q) described

by

C̃(ρ, q) =
Gn(q)

G(ρ, q)
C0(q) (17)

by using the plant model G(ρ) taking the form of Eq.(10)

with an unknown variable parameter ρ, the nominal model

Gn and the initial controller C0. Since G(ρ) and Gn have

the same structures, the assumption on the invertibility of C0

guarantees that of C̃(ρ).

Then, by using the experimental data u0
[0,N ] and y0

[0,N ],

we compute the fictitious reference (cf. [15])

r̃(ρ)[0,N ] = T
(C̃(ρ)−1)
[0,N ] u0

[0,N ] + y0
[0,N ] (18)

which was introduced within the unfalsified control frame-

work. By noting that y0
[0,N ] = (G∗u0)[0,N ] and using

Eq.(18), we see that y0
[0,N ] = (G∗C̃(ρ)(r̃(ρ) − y))[0,N ]

which is equivalent to y0
[0,N ] = (T (C̃(ρ), G∗)r̃(ρ))[0,N ]. This

means that y0 is not only the output of the actual closed loop

with the controller C0 but also the output of the “fictitious

closed loop” T (C̃(ρ), G∗) with the fictitious controller C̃(ρ)
with respect to the fictitious reference r̃(ρ).

We then provide the following theorem.

Theorem 1: Together with the above assumptions, we

assume that u0
0 6= 0, y0

0 6= 0 and y0
d 6= 0. Then the following

statements are equivalent for a certain parameter ρ̃ ∈ R
n

such that ρ̃D
nD 6= 0 and ρ̃N

nN 6= 0.

(a). limρ→ρ̃ Jmodel(ρ) = 0
(b). limρ→ρ̃ Jcontroller(C̃(ρ̃)) = 0

(c). limρ→ρ̃

∑N
t=0

[(

y0 − Tdr̃(ρ)
)

t

]2
= 0

Proof: :Here we give the sketch of the proof.

(a)⇔(c): Firstly, we show that the Jmodel(ρ̃) = 0 is equiv-

alent to
∑N

t=0[
(

y0 − Tdr̃(ρ̃)
)

t
]2 = 0. Together with the

definition of the fictitious controller described by Eq.(17),

we see

(y0
[0,N ] − Td(q)r̃(ρ̃))[0,N ]

= T Sd

[0,N ]

(

y0
[0,N ] − T u0

[0,N ][G(ρ̃)][0,N ]

)

. (19)

In the above computation, we have used the properties

on Toeplitz matrices described by Eq.(8) and Eq.(9). Note

also that the above computation on Toeplitz operators has

never violated the invertibility, e.g, we have never used and

introduced the (T G
[0,N ])

−1 for strictly proper G, and so on.

Moreover, y0 is the actual output of G∗ with respect to the

actual input u0, so

y0
[0,N ]=T G∗

[0,N ]T
u0

[0,N ] =T u0

[0,N ][G
∗][0,N ] (20)

holds. Due to u0
0 6= 0, T u0

[0,N ] is nonsingular. Thus, by

using Eq.(19) and Eq.(20) together with the nonsingularity

of T Sd

[0,N ], we see that y0
[0,N ] − Td(q)r̃(ρ̃)[0,N ] = 0 ⇔

[G(ρ̃)][0,N ] = [G(ρ∗)][0,N ]. Hence, this also implies that
∑N

t=0[(y
0 − Td(q)r̃(ρ̃))t]

2 = 0 ⇔ Jmodel(ρ̃) = 0. By

using the standard convergence technique, we also see that

the condition (a) is equivalent to c.

(b)⇒(a): Note that S(G∗, C̃(ρ̃)) is invertible due to the

assumption that G is strictly proper. Perform the following

computation

(yd − T (G∗, C̃(ρ̃))r)[0,N ] =
(

T Td

[0,N ] − T
T (G∗,C̃(ρ̃))
[0,N ]

)

r[0,N ]

=T
S(G∗,C̃(ρ̃))
[0,N ]

(

(T
S(G∗,C̃(ρ̃))
[0,N ] )−1T Td

[0,N ]−T
G∗C̃(ρ̃)
[0,N ]

)

r[0,N ].(21)

Due to the nonsingularity of T
S(G∗,C̃(ρ̃))
[0,N ] in Eq.(21), we

focus on
(

(T
S(G∗,C̃(ρ̃))
[0,N ] )−1T Td

[0,N ] − T
G∗C̃(ρ̃)
[0,N ]

)

r[0,N ]

=

(

IN+1 − T
G∗

G(ρ̃)

[0,N ]

)

yd[0,N ]. (22)

In the above computation, note that the rational degree

of G(ρ̃) and that of G∗ are the same due to ρ̃D
nD

6=
0 and ρ̃N

nN
6= 0, which implies the invertibility of

G∗/G(ρ̃). From the above computation, we see that yd[0,N ]−

(T (C̃(ρ̃), G∗)r)[0,N ] = 0 is equivalent to
(

IN+1 − T
G∗

G(ρ̃)

[0,N ]

)

yd[0,N ] = 0. (23)

From the property of the Toeplitz operator, we also see that

Eq.(23) leads to the matrix form described by
(

IN+1 − T
G∗

G(ρ̃)

[0,N ]

)

T yd

[0,N ] = 0N+1. (24)

Premultiplying Eq.(24) by T
G(ρ̃)
[0,N ] yields

(

T
G(ρ̃)
[0,N ] − T G∗

[0,N ]

)

T yd

[0,N ] = 0N+1. (25)

Note also that the above computations have also never used

the inverse of the Toeplitz operator of a strictly proper

rational function. Together with the nonsingularity of T yd

[0,N ],

Eq.(25) implies that the first N Markov parameters of G∗

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 TuC03.6

1360



and G(ρ̃) are the same. Thus, Jcontroller(C̃(ρ̃)) = 0 ⇒
Jmodel(ρ̃) = 0. As for the argument of the limit, the standard

convergence technique also enables us to see (b) ⇒ (a).

(c)⇒(b): By using Lemma 1 and so on, we see

(y0
[0,N ]−Td(q)r̃(ρ̃))[0,N ]=

(

IN+1−T
Td

1+C̃(ρ̃)G∗

C̃(ρ̃)G∗

)

y0
[0,N ] (26)

In the above computation, we have used that Td(1 +
C̃(ρ̃)G∗)/C̃(ρ̃)G∗ is proper due to the invertibility of C̃(ρ̃)
and the assumption on the rational degrees of Td and G∗.

Premultiplying Eq.(26) by T
T (C̃(ρ̃),G∗)
[0,N ] yields

T
T (C̃(ρ̃),G∗)
[0,N ] (y0

[0,N ] − Td(q)r̃(ρ̃))[0,N ]

= T y0

[0,N ]

(

[T (C̃(ρ̃), G∗)][0,N ] − [Td][0,N ].
)

(27)

Thus, we see that (y0
[0,N ] − Td(q)r̃(ρ̃))[0,N ] ⇒

[T (C̃(ρ̃), G∗)][0,N ] − [Td][0,N ] = 0, which also implies that
∑N

t=0[(y
0
[0,N ] − Td(q)r̃(ρ̃))t]

2 = 0 ⇒ Jcontroller(ρ̃) = 0.

As for the argument of the limit, the standard convergence

technique also enables us to see (c) ⇒ (b).

In this theorem, the condition (a) and the condition (b) are

related to our purpose while the condition (c) is related to

the actual computation by using the data with the fictitious

controller directly. If the complete minimization of the cost

function

J(ρ) :=
N

∑

t=0

[(y0 − Td(q)(C̃(ρ, q)−1u0 + y0))t]
2 (28)

is achieved, then the first N Markov parameters of the actual

plant G∗ are obtained as those of G(ρ̃) and simultaneously

the implementation of the fictitious controller C̃(ρ̃) as the

actual controller instead of C0 yields the desired output yd

in the closed loop. In this sense, Theorem 1 connects the

updating of a controller for the achievement of the desired

specification and the updating of a model for obtaining the

actual plant that unfalsifies the experimental data, simulta-

neously.

B. The gap between the minimization of J and the minimiza-

tions of both Jcontroller and Jmodel

In Theorem 1, the minimization of the cost function J(ρ)
in Eq.(28) is assumed to be arrived at zero. However, there

are many case in which it is impossible to achieve such

a complete minimization. In this subsection, we discuss

the gap between the minimization of J(ρ), and both the

minimizations of Jmodel(ρ) and Jcontroller(ρ)
We first focus on the relationship between J(ρ) and

Jmodel(ρ). Let Jmin 6= 0 be the minimized value of J(ρ)
and ρ̂ := arg minρ J(ρ). From Eq.(19) and Eq.(20), we see

Jmin =
∥

∥

∥
T Sd

[0,N ]T
u0

[0,N ]

(

[G(ρ∗)][0,N ] − [G(ρ̂)][0,N ]

)

∥

∥

∥

2

2
(29)

holds. By defining the maximal singular value of the matrix

T Sd

[0,N ]T
u0

[0,N ] as λSdu0

max , a simple calculation with Eq.(29)

yields

Jmin

λSdu0

max

≤
∥

∥

(

[G∗][0,N ] − [G(ρ̂)][0,N ]

)∥

∥

2

2
. (30)

Similarly, define the minimal singular value of the matrix

T Sd

[0,N ]T
u0

[0,N ]) as λSdu0

min . Then, together with Eq.(30), we see

Jmin

λSdu0

max

≤
∥

∥

(

[G∗][0,N ] − [G(ρ̂)][0,N ]

)∥

∥

2

2
≤

Jmin

λSdu0

min

. (31)

Eq.(31) gives the gap between N Markov parameters of the

updated model G(ρ̂) of a plant by using the minimization of

J(ρ) and those of the actual (unknown) G∗. In this sense,

Eq.(31) determines the accuracy of the obtained optimal

parameter ρ̂ with respect to the accuracy of a model.

Next, we consider the relationship between J(ρ) and

Jcontroller. Similarly to the above computations, we see

Jmin =
N

∑

t=0

[(y0 − Td(q)r̃(ρ̂))t]
2

=
∥

∥

∥T
y0

[0,N ][1 − Td/T (G∗, C̃(ρ̂))][0,N ]

∥

∥

∥

2

2
(32)

holds. Denote the maximal and the minimal singular values

of T y0

[0,N ] with γy0

max and γy0

min, respectively. (we here assume

that T y0

[0,N ] is nonsingular in addition to the previous assump-

tions). Then, similarly to Eq.(31), we obtain

Jmin

γy0

max

≤
∥

∥

∥
[1 − Td/T (G∗, C̃(ρ̂))][0,N ]

∥

∥

∥

2

2
≤

Jmin

γy0

min

(33)

Eq.(33) also gives the gap between the desired transfer

function Td and the transfer function consisting of G∗ with

the updated controller C̃(ρ̂). We also see that the gap with

respect to the performance on the response of the closed loop

is determined by Td (i,e, Gn and Cn) and the initial output

data.

C. Algorithm

Here, we summarize the proposed method as follows.

0 We have already been with a nominal model of a

plant Gn(q) and a controller C0(q) (this controller was

designed by using Gn) so as to be assumed that this

yields the desired response of the closed loop yd = Tdr
where Td = C0Gn

1+C0Gn
.

1 Perform one-shot closed loop experiment, and obtain

the finite time data u0
[0,N ] and y[0,N ], respectively.

2 Set the fictitious controller C̃(ρ) described by Eq.(17)

and the fictitious reference r̃(ρ) described by (18).

3 Minimize the cost function J(ρ) in described by Eq.(28)

by using a nonlinear optimization and obtain the param-

eter ρ̂ := arg minρ J(ρ).
4-1 The updating of a model:A model of a plant is ob-

tained as G(ρ̂) in the sense that [G(ρ̂)][N ] is close to

[G(ρ∗)][N ].

4-2 The updating of a controller: Implement the fictitious

controller C̃(ρ̂) and perform the closed loop experiment

again. The output of T (C̃(ρ̂), G∗) is closer to Td than

that of the initial closed loop T (C0, G
∗).

Remark 1: The nice reference [16] discussed how conven-

tional closed loop system identification and controller tuning

method are unified. On the other hand, the issue of this paper
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is not an unification of the controller parameter tuning and

closed loop system identification but one of the applications

of the controller tuning to the simultaneous updating of a

controller and a model of a plant. Thus, the issue treated in

this paper differs from that in [16]. However, it is expected

that there might be deep relationship the proposed method

and the observations in [16]. This is one of the future

interesting studies. 2

Remark 2: The real measured data u0 and y0 include

the noise. If it is difficult to neglect the effect of noise,

we repeat the experiment with respect to the same con-

troller C0(q) twice under the assumption that the noises

in the different experiments are uncorrelated each other.

This technique and the assumption are also taken by IFT

or VRFT (cf.[6] and [2]). We denote the first experimental

data with {y
0(1)
n := y0(1) + n

(1)
y , u

0(1)
n = u0(1) + n

(1)
u } and

the second experimental data with {y
0(2)
n := y0(2) + n

(2)
y ,

u
0(2)
n = u0(2) + n

(2)
u }, respectively. Here, n

(i)
y and n

(i)
u

denotes the noise in the i-th experiment on the input and the

output, respectively. y0(i) and u0(i) denotes the pure signal

we require in this method. The experiment is performed

in the closed loop, the correlation between e.g., n
(1)
y and

u
0(1)
n can not be neglected. However, the two experiments

are performed in the different time, it is possible to assume

that n
(i)
y and n

(i)
u in the first experiment have no correlation

with n
(j)
y , n

(j)
u , y

0(j)
n and u

0(j)
n , where i, j = (1, 2) or (2, 1).

Thus, by modifying Eq.(28) as

J̃n(ρ) =
(

yn
0(1)
[0,N ] − Tnom(q)r̃(ρ)1[0,N ]

)T

×
(

yn
0(2)
[0,N ] − Td(q)r̃(ρ)2[0,N ]

)

(34)

(where, r̃i(ρ)[0,N ] := C̃(ρ)−1un
0i′
[0,N ] + yn

0i′
[0,N ], i = 1, 2),

we can approximate the cost function so as to eliminate the

effect of the noise. 2

V. EXPERIMENTAL RESULT

In this section, we give an experimental result to show

the validity of our approach. The system we address here is

described by Fig.2. The cart is attached to the belt which

PC

The cart

The pulley

u

The servo motor

y

The belt
Fig. 2. The cart system

is moving by the rolling of the servo motor. The location y
(output) from the initial position of the cart is measured by

the potentiometer attached in the pulley and is send to the

personal computer (PC). And the servo motor is driven by

the voltage u (input) from PC. The sampling time of this
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Fig. 3. The desired response yd
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Fig. 4. The initial output y0 (The dotted line:yd, The real line:y0 )

control system is 0.001[sec]. The structure of the transfer

function of this system is described by

G(ρ, q) =
ρ1q + ρ2

q2 + ρ3q1 + ρ4
, ρ = [ρ1 ρ2 ρ3 ρ4] ∈ R

4

in discrete time. The nominal plant Gn(q) we used for the

initial design is described by using the nominal parameter

ρ̄ := [2.031 × 10−4 2.031 × 10−4 − 1.9320 0.9324]. The

initial controller for the desired response is designed by

C0(q) = 0.3.005q−2.995
q−1 based on the nominal model Gn(q).

In Fig.3, the desired output, i.e., the output of Td(q) =
GnC0

1+GnC0
, is shown. Under these settings, we perform the first

initial experiment by using C0. The output y0 of this initial

experiment is shown in Fig.4. Naturally, as shown in Fig.4,

the output data of the actual closed loop is different from

the desired output. The most crucial reasons are as follows.

One is the fact that the nominal model has uncertainties. The

other is the fact that the controller is designed based on such

a nominal model.

We then apply our proposed method in order to a more

accurate model and a more desired controller, simultane-

ously, with using only the initial experimental data. Define

the fictitious controller C̃(ρ) described by Eq.(17) with

the nominal model Gn(q), the initial controller C0(q), and

the model with unknown parameter G(ρ). Next, define the

fictitious reference described by Eq.(18) with the fictitious

controller and the experimental input u0
[0,N ] and output data
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Fig. 5. The modeling result (The real line:y0, The dotted line:the simulation
with the obtained (updated) model G(ρ̂))
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Fig. 6. The control result (The dotted line:yd, The real line : the

experimental result with the updated controller C̃(ρ̂)

y0
[0,N ]. By minimizing the cost function J(ρ) described by

Eq.(28) via a nonlinear optimization (here we apply the

Gauss Newton method), as a result, we obtain the parameter

ρ̂ that minimizes J1(ρ) where ρ̂ = [3.2504× 10−4 3.2504×
10−4 − 1.8327 0.8326]. In order to show the validity of

this obtained parameter ρ̂, the simulation with G(ρ̂) and the

actual output y0 are illustrated in Fig.5. From this figure,

we see that G(ρ̂) has been updated so as to reflect the

dynamics more closely than Gn (y0 and the simulation with

the obtained (updated) model G(ρ̂) are almost the same).

Simultaneously, in order to see whether the controller C̃(ρ̂)
yields the desired closed loop property with respect to the

output response, we implement it to the actual closed loop,

and we perform the experiment. The result is shown in

Fig.6. From this figure, we see C̃(ρ̂) achieves the desired

specification (yd and the experimental result with the updated

controller C̃(ρ̂) are almost the same). From these results,

we see that ρ̂ which is the result of the minimization of

J(ρ) yields both a more accurate model of a plant and a

more a useful controller simultaneously with only the initial

experimental data. 1

1Here, J(ρ̂) is 5.93401× 10−8 which is very small, so it is possible to
regard that the minimization of J(ρ) is almost completely achieved.

VI. CONCLUDING REMARKS

In this paper, we have provided a new approach for a si-

multaneous updating of a mathematical model of a plant and

a controller with respect to a desired response. The proposed

method requires only adaptation of the fictitious controller

described by the nominal model and the initial controller

with tunable parameter, to the one-shot experimental data

directly with respect to the fictitious reference. As a result,

such a controller with the desired parameter yields both a

plant model and a desired controller simultaneously. In order

to give the validity of our approach, we have also shown an

experimental result.
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