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Abstract— We study the extension of the class of linear time-
invariant open-loop systems that may be transformed into SPR
systems introducing a reduced-order observer. It is shown that
for open-loop stable systems a cascaded observer achieves the
result. For open-loop unstable systems observer-based feedback
is required to succeed. In general, any stabilizable and observ-
able system may be transformed into an SPR system defining
a new output based on the observer state. This overcomes the
old conditions of minimum phase and relative degree one for
the case of keeping the original output. The result is illustrated
with some examples.
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I. INTRODUCTION

The Kalman-Yakubovich-Popov (KYP) Lemma gives al-

gebraic equations for a square transfer matrix Z(s) to be

Strictly Positive Real (SPR). These algebraic equations are

equivalent to analytic conditions in the frequency domain

which are not easy to test. The solution of these algebraic

equations provides a practical way to verify that a given

transfer function is SPR.

The original references [17], [31] and [25] express the

algebraic equations in terms of a state space representation

of Z(s). The standard assumption on the state space repre-

sentation is that it should be minimal, i.e., it is controllable

and observable. For a time, however, it was recognized

that this condition may be weakened to stabilizability and

observability. Indeed, Meyer explicitly pointed out this re-

laxation of the minimality assumption but did not provide

a proof [21], [2]. Implicitly, Rantzer [26], in a novel proof

based on convexity properties and linear algebra, did not

require minimality of the state space representation of Z(s).
It was not until recently [8] that the minimality relaxation

was explicitly proved in an algebraic fashion so that a state

space representation can have noncontrollable modes and still

satisfy the SPR conditions provided that the uncontrollable

modes are stable. Other interesting properties of SPR systems

and comparisons are presented in [29], [18].

This paper presents a technique to render SPR any stabi-

lizable and observable linear time invariant system based on

a reduced-order state observer and a feedback control law

using the state estimate.

Molander and Willems [22] solved robust state-feedback

problem using under the assumption that the original system

has relative degree one and it is minimum phase. In the

context of nonlinear systems, Byrnes et al. [7] presented a

solution to the problem using smooth state feedback provided

that the system has relative degree one and is (weakly)

minimum phase. Furthermore, Kokotovic et al. [19], [20]

addressed the problem of the stabilization of a linear system

in cascade with a globally asymptotically stable nonlinear

system. The proposed solutions also require the system to

be relative degree one and weakly minimum phase. Another

interesting solution has been presented by Sun et al. [28]

based on output feedback. They established conditions to

render the system Extended SPR (ESPR), requiring relative

degree zero which means D+DT > 0. A closely related result

was provided by Haddad and Bernstein [13] who arrived at

a different pair of Riccati equations based on an auxiliary

optimization problem.

Passification using constant output feedback was solved

in [15], [4] with extensions to non-square systems [12].

Some approaches have been proposed to overcome the re-

quirement of having a relative-degree-one open-loop system.

Barkana introduced a ’parallel feedforward’ configuration in

the context of adaptive control [3]. Another related idea is

passification by means of ’shunting’ introduced by Fradkov

[11]. Both approaches used dynamic extensions to obtain

SPR loop transfer functions. The absolute stability problem

with design of a nonminimal realization of the linear part was

solved using a circle criterion design to obtain robustness

properties [16].

This paper addresses the problem of design of a reduced-

order observer and controller so that the modified system

becomes SPR. Whereas the proposed method is described

for the stable case, it is not detailed for the unstable case

though it follows the same outline as for the full-order

observer [16], [10]. In the case of stable open-loop systems

the method reduces to the introduction of a reduced-order

observer and the definition of a new output as a function of

the estimated state only. In addition, for the unstable case,

we have to introduce observer-state feedback to stabilize the

system [16], [10]. The proposed approach does not require

the original system to be neither minimum phase nor to

have relative degree one. The SPR property is obtained with

respect to the new output.

The paper is organized as follows: Section 2 presents some
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preliminaries and Section 3 deals with the open loop stable

case. The open loop unstable case is addressed in Section

4. Some illustrative examples are given in Section 5 with

concluding remarks in Section 6.

II. PRELIMINARIES

Let us consider a linear time-invariant m-inputs p-outputs

transfer matrix Z(s) with a minimal realization given by

ẋ = Ax+Bu, x ∈ R
n

y = C x,
(1)

where x ∈ R
n, u ∈ R

m, y ∈ R
p, m ≤ n, p ≤ n, and A,B,C are

matrices of appropriate dimensions. Denote by C,C− and

C
◦
−, the complex plane, the closed left half complex plane

and the open left half complex plane respectively. Denote by

σ (T ) the set of eigenvalues of the square matrix T and let

R+ represent the set of the positive real numbers.

Definition 1 ([1], [23]): The transfer matrix Z(s) is said

to be positive real (PR) if: i) All the elements of Z(s) are

analytical in Re[s] > 0; and ii) Z(s) + ZT (−s) ≥ 0 for all

Re[s] > 0; Z(s) is said to be strictly positive real (SPR) if

Z(s− ε) is PR for some ε > 0.

For the scalar case, m = 1, the classical interpretation of

Z(s) being PR (SPR) is that its Nyquist plot lies entirely

in the right half complex plane (open right half complex

plane). In the sequel, we will need the following version

of the Kalman-Yakubovich-Popov (KYP) Lemma for strictly

proper systems:

Lemma 2 (Kalman-Yakubovich-Popov [17], [31], [25]):

Let Z(s) = C (sI −A)−1 B be a m×m transfer matrix such

that Z(s)+ZT (−s) has normal rank m, where A is Hurwitz,

(A,B) is stabilizable, and (C,A) is observable. Then, Z(s)
is strictly positive real (SPR) if and only if there exist a

positive definite symmetric matrices P, and Q, such that

PA+AT P = −Q

PB = CT (2)

III. SPR SYSTEMS FROM REDUCED-ORDER OBSERVERS

Previously, the stability and robustness results of Molander

and Willems [22] and Kokotović and Sussman [19] were

extended to a case with observer-based feedback control with

resulting nonminimal loop-transfer functions [16]. A design

procedure to full-state observers and Lyapunov functions was

provided [16]. Modifications of the Kalman-Yakubovich-

Popov Lemma for stabilizable systems using full-order ob-

servers were given in [8], [10]. Now, we turn attention to

reduced-order observers as instruments in SPR design:

A. Main Result

Let us consider a linear time-invariant system described

in standard state-space equations as

Σ0 :

{

ẋ0 = A0x0 +B0u, x ∈ R
n,u ∈ R

m

y = C0x0, y ∈ R
p (3)

In order to avoid degenerate cases and to guarantee some

matrix inverses required in the sequel—e.g., Eq. (17)—we

will assume that:

v u
y

x
+ Σ0 Observer L

z

−K

Fig. 1. Series and feedback compensators to transform open-loop unstable
systems into SPR systems. The feedback matrix K = 0 in the stable case.

Assumption I: The A matrix is stable—i.e., σ(A0)⊂C
◦
−, the

spectrum of the matrix A0 lies in the open left half complex

plane [27] [18].

Assumption II: Assume that

rank(C0) = p

which means that the outputs are linearly independent.

A reduced-order observer (or a dynamic extension) for the

system Σ0 is given by

Σx :

{

ẋx = Axxx +Buu+Byy, x ∈ R
r

z = Cxxx +Cyy, σ (Ax) ⊂ C
◦
−

(4)

where the output z is a linear combination of observer states

xx and measured output y, the system matrices Ax, Bu, By,

Cx, Cy, to be determined.

The system (3) and the reduced-order observer (4) may be

written compactly as

Σ :

{ [

ẋ0

ẋx

]

=

[

A0 0

By C0 Ax

][

x0

xx

]

+

[

B0

Bu

]

u

(5)

or

Σ :















[

ẋ0

ẋx

]

= A

[

x0

xx

]

+Bu, x =

[

x0

xx

]

∈ R
n+r

z = C

[

x0

xx

]

(6)

where

A ,

[

A0 0

ByC0 Ax

]

(7a)

and

B ,

[

B0

Bu

]

, C ,
[

CyC0 Cx

]

(8)

Among the output available from the observer-extended

system, one would choose a linear combination to be used

for purposes of observer-feedback control. To this purpose,

consider L = C with

ΣL :

[

A B

L 0

]

=





A0 0 B0

ByC0 Ax Bu

CyC0 Cx 0



 (9)

Since A0 and Ax are stable by assumption, we investigate the

conditions for matrix solution P = PT > 0 of the Kalman-

Yakubovich-Popov equations

PA+AT P = −Q, PB = LT (10)
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Introduce the matrix decomposition

P =

[

P11 P12

PT
12 P22

]

, Q =

[

Q11 Q12

QT
12 Q22

]

> 0 (11)

The Kalman-Yakubovich-Popov equations (10) give

P11A0 +AT
0 P11 +P12ByC0 +CT

0 BT
y PT

12 = −Q11 (12)

P12Ax +AT
0 P12 +CT

0 BT
y P22 = −Q12 (13)

P22Ax +AT
x P22 = −Q22 (14)

P11B0 +P12Bu = CT
0 CT

y (15)

PT
12B0 +P22Bu = CT

x (16)

For a given matrix Q > 0 of Eq. (11), the matrix Q22 > 0

and a stable Ax of Eq. (4), the Lyapunov equation (14) has

a solution P22 > 0. Now, choose
[

By

R−1

]

= R0[Ip −C0(C
T
0 C0)

−1CT
0 ], R ≥ 0 (17)

where R0 an arbitrary matrix of appropriate dimensions and

where Ip is the p× p identity matrix.

From [6], [30], it is known that the Sylvester equation AX +
XB = C has a unique solution if and only if A and −B have

no common eigenvalues. Thus, from the Sylvester equation

(13), a unique solution P12 ∈ R
n×r can be found if A0 and

Ax have no common eigenvalues.

Next, solve the Riccati equation

0 = A0X +XAT
0 +Q11 −XCT

0 R−1C0X = 0, X > 0 (18)

0 = (A0 −XCT
0 R−1C0)X +X(A0 −XCT

0 R−1C0)
T

+ Q11 +XCT
0 R−1C0X (19)

for X > 0. From Eqs. (17) and (12) follow that

[

P12 CT
0

]

[

By

R−1

]

C0 = 0 ⇒ P12ByC0 = −CT
0 R−1C0

which means that P12ByC0 = −CT
0 R−1C0 is a negative

semidefinite form. Hence

P11A0 +AT
0 P11 −2CT

0 R−1C0 = −Q11 (20)

or

P11(A0 −P−1
11 P12ByC0)+(A0 −P−1

11 P12ByC0)
T P11 = −Q11

from which is seen that

P11 = X−1 provided that Q11 > 2CT
0 R−1C0 (21)

Summarizing, we have P11 > 0, P12, P22 > 0, By

[

Bu

CT
y

]

= −
[

P12 −CT
0

]−1
P11B0 (22)

Cx = BT
0 P12 +BT

u P22 (23)

In order to assure that the matrix solution P is positive

definite, it might be necessary to modify the matrix Q by

choosing Q11 sufficiently large. Also, conditions for solution

of Eq. (22) require that the state-space dimension r = n− p.

Thus, the Kalman-Yakubovich-Popov equations

PA+AT P = −Q, PB = LT (24)
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Fig. 2. Nyquist diagram of observer-supported SPR loop transfer function
of Eq. (35).

have a solution and guarantee that the system of Eq. (9) is

SPR

Z(s) = L(sI −A)−1B SPR (25)

For the case of unstable systems, the system requires stabi-

lizing feedback u = −Lx suggested by Eq. (24) so that

Z(s) = L(sI −A+BL)−1B SPR (26)

is SPR—or feedback-positive real (FPR) as suggested i [22],

[19], [16].

B. Example—Output Feedback of Double-Integrator Dynam-

ics

Consider a double integrator

Σ0 :

[

A0 B0

C0 D0

]

=





0 0 b

1 0 0

0 1 0





where b is a constant. Whereas this system cannot be

stabilized by static output feedback, it can be stabilized with

the dynamic output feedback

ẋ3 = r0u+ s0y (27)

z = x3 + s1y, u = −z (28)

For example, r0 = 3, s0 = 1/b and s1 = 3/b will accomplish

pole assignment to s = −1 for all three closed-loop eigen-

values of

Ac = A−BL =





0 −3 −1

1 0 0

0 −8 −3



 , σ(Ac)=





−1

−1

−1



 (29)

The observer-extended system—i.e., the open-loop system

combined with the reduced-order observer in Eq. (27)—may

be summarized as a state-space system where C, D define
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the output available from the observer-supported system. In

this case, we have

Σ :

[

A B

C D

]

=













0 0 0 b

1 0 0 0

0 1 0 3

0 1 0 0

0 0 1 0













(30)

For the feedback variable z = x3 + s1y = Lx to be used for

output feedback, we have

ΣL :

[

A B

L 0

]

=









0 0 0 b

1 0 0 0

0 1 0 3

0 3 1/b 0









(31)

or specialized for b = 1

ΣL :

[

A B

L 0

]

=









0 0 0 1

1 0 0 0

0 1 0 3

0 3 1 0









(32)

The Kalman-Yakubovich-Popov equations (10) are satisfied

by the matrix

P =





15.5000 −0.500 −5.167

−0.5000 8.6666 1.1667

−5.167 1.1667 2.0556



 , σ(P)=





0.194

8.689

17.34



 (33)

with

PAc +AT
c P = P(A−BL)+(A−BL)T P

=





−1.0000 3.4999 1.1666

3.4999 −15.6666 −3.9444

1.1666 −3.9444 −2.0000





PB =





0.0000

3.0000

1.0000



 = LT

for which

σ(PAc +AcP) =





−17.5432

−1.0000

−0.1234





The feedback-transformed system

Σc :

[

A−BL B

L 0

]

=









0 −3 −1 1

1 0 0 0

0 −8 −3 3

0 3 1 0









(34)

provides the SPR loop transfer function (Fig. 2)

Z(s) = L(sI −A+BL)−1B =
3s2 +3s+1

s3 +3s2 +3s+1
(35)

thus demonstrating that a reduced-order observer or dynamic

extension is suitable to accomplish a feedback-transformed

SPR system.

Remark 1: As described in [10], there exists a stabilizing

feedback based on the observed state for the unstable cases.
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Fig. 3. Observer-supported SPR loop transfer function of Example 1 with
impulse responses from u to y, x3, and z, respectively.

IV. DISCUSSION

The main contribution of this paper is a method to

construct strictly positive real systems using reduced-order

observers. The results are related to our previous results

and methods based on full-order observers [16], [10].

As discussed in previous papers, there are two different

approaches for stable and unstable systems relating the

Kalman-Yacubovich-Popov equations to the Riccati equation

P(A−BL)+(A−BL)T P+PBBT P+Q = 0 (36)

L = BT P (37)

L(sI −A+BL)−1B is SPR (38)

and the related problem of using P as a weighting matrix

in a Lyapunov function for stability analysis. Whereas a

solution always can be found under the conditions stated,

the submatrices of the matrix Q are not entirely independent,

where the matrix Q11 > 0 should be chosen sufficiently

large as compared to Q22 > 0 for existence of a solution

of the KYP equation (24). The Riccati equation of Eq. (36)

makes this condition precise. Equation (36) also serves to

link reduced-order observer design for the stable and unstable

cases, respectively.

V. CONCLUSIONS

The main contribution of this paper is a method to

construct strictly positive real systems using reduced-order

observers. This paper has presented modification of a linear

time-invariant system a reduced-order observer so that the

modified system is SPR. The proposed method applies to

stable open-loop systems as well as unstable systems and

does not require the system to be minimum phase nor to

have relative degree one. The original system may have

a non-square transfer matrix, i.e., the number of inputs

can be different from the number of outputs. We have

proved that the Kalman-Yakubovich-Popov Lemma holds for

a series-connected system with a reduced-order observer for
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Fig. 4. Observer-supported SPR switching output feedback control based
on loop transfer function of Example 1, Eq. (35), with switching SPR output
feedback control responses vs. time in z, y, x3, respectively.

stable open-loop systems. In the unstable case, observer state

feedback is required in order to stabilize the system. Some

examples with failing relative degree one have been given

to illustrate the procedure. Future work in this area includes

study of the robustness of the proposed method with respect

to parametric uncertainties. As compared to previous results

[10], [16], the results now extend the previous results for

full-order observer to reduced-order observers.
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