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Abstract— The practical implementation of Min-Max MPC
(MMMPC) controllers is limited by the computational burden
required to compute the control law. This problem can be
circumvented by using approximate solutions or upper bounds
of the worst possible case of the performance index. In a
previous work, the authors presented a computationally efficient
MMMPC control strategy in which a close approximation of the
solution of the min-max problem is computed using a quadratic
programming problem. In this paper, this approach is validated
through its application to a pilot plant in which the temperature
of a reactor is controlled. The behavior of the system and the
controller are illustrated by means of experimental results.

I. INTRODUCTION

In min-max model predictive controllers (MMMPC), the

control signal is computed for the worst case of a cost func-

tion that considers the effect of process model uncertainties

and disturbances in the controller performance ([4]). The

main drawback of this approach is the computational burden

that takes to compute the control signal. This usually involves

the solution of a NP-hard min-max problem ([8], [13]). As a

result, the number of applications of these control strategies

is very small, even when there is evidence that they work

better than standard predictive controllers in processes with

uncertain dynamics ([3]).

Multi-parametric programming has been applied to show

that the MMMPC control law is piecewise affine when a

quadratic ([11]) or 1-norm based criterion ([2], [6]) is used

as the cost function. Thus, explicit forms of the control law

can be built. Such explicit forms can be evaluated very fast

provided that the complexity of the state space partition is

moderate, which is the case for many applications. However,

if the process model or the controller tuning parameters

change, the computation of the controller has to be redone.

A common solution to the computational burden issue is

to use an upper bound of the worst case cost instead of

computing it explicitly. This upper bound can be computed

by using linear matrix inequalities (LMI) techniques such as

in [7], [9]. However, the LMI problems have a computational

burden that cannot be neglected in certain applications. In [1]

a different approach based on a computationally cheap upper-

bound of the worst case cost is presented. In that work, the

min-max problem is replaced by a quadratic programming

(QP) problem that provides a close approximation to the

solution of the original min-max problem. The computational
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burden is much lower than that of the min-max problem and

it is comparable to that of a standard constrained MPC based

on a quadratic cost. Thus, it can be easily implemented in

almost any platform capable to run a constrained MPC. Also,

stability of the proposed approach is guaranteed.

In this work, the approach presented in [1] has been

validated by means of its application to a pilot plant. The

pilot plant is used to simulate an exothermic chemical

reaction with nonlinear dynamics. This process has been used

in previous works, thus the experimental results presented

can be compared with other strategies such as nonlinear and

linear predictive control ([5]). In the experiments, restrictions

in the control action and the output have been considered.

The results obtained prove the validity of the control strategy.

The low computational burden of the control strategy applied

to the pilot plant allows realistic values for the control

and prediction horizons (i.e., the parameters on which the

computational burden depends).

The paper is organized as follows: section II presents

the MMMPC strategy. Section III presents the proposed

implementation strategy. In section IV a detailed description

of the used pilot plant is given. The strategy is illustrated by

means of experimental results of the pilot plant in section V.

Finally, section VI presents some conclusions.

II. MIN-MAX MPC WITH BOUNDED ADDITIVE

UNCERTAINTIES

Consider the following state space model with bounded

additive uncertainties ([3]):

x(t + 1) = Ax(t)+ Bu(t)+ Dθ (t) (1)

with x(t) ∈ R
dimx the state vector, u(t) ∈ R

dimu the input

vector and θ (t) ∈ {θ ∈ R
dimθ : ‖θ‖∞ ≤ ε} the uncertainty,

that is supposed to be bounded. The system is subject to p

state and input time invariant constraints Fuu(t)+Fxx(t) ≤ g

where Fu ∈ R
p×dimu and Fx ∈ R

p×dimx. It is assumed a semi-

feedback approach in which the control input is given by

u(t) = −Kx(t)+ v(t), (2)

where the feedback matrix K is chosen to achieve some

desired property such as nominal stability or LQR optimality

without constraints. The MMMPC controller will compute

the optimal sequence of correction control inputs v(t). The

state equation of system (1) can be rewritten as

x(t + 1) = ACLx(t)+ Bv(t)+ Dθ (t), ACL = (A−BK). (3)

The proposed strategy also works without semi-feedback

approach (i.e., u(t) = v(t)). All the computational advantages

of the strategy remain the same. Furthermore if the process
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is open-loop stable (as in the case of the pilot plant used in

this work) the stabilizing conditions, which will be discussed

later, can be used without problems.

The cost function is a quadratic performance index:

V (x,v,θθθ ) =
N−1

∑
j=0

x(t + j|t)T Qx(t + j|t)+ (4)

N−1

∑
j=0

u(t + j|t)T Ru(t + j|t)+ x(t + N|t)T Px(t + N|t)

where x(t|t) = x, x(t + j|t) is the prediction of the state

for t + j made at t and u(t + j|t) = −Kx(t + j|t) + v(t +
j|t). Note that these values depend on the future val-

ues of the uncertainty. The sequence of future values of

θ (t) over a prediction horizon N is denoted by θθθ =
[

θ (t)T , · · · ,θ (t + N −1)T
]T

, and ΘΘΘ = {θθθ ∈R
N·dimθ : ‖θθθ‖∞ ≤

ε} is the set of possible uncertainty trajectories. On the

other hand, v =
[

v(t|t)T , · · · ,v(t + N −1|t)T
]T

is the control

correction sequence. Matrices Q,P ∈ R
dimx×dimx and R ∈

R
dimu×dimu are symmetric positive definite matrices used as

weighting parameters.

Min-Max MPC ([4]) minimizes the cost function for the

worst possible case of the predicted future evolution of the

process state or output signal. This is accomplished through

the solution of a min-max problem:

v∗(x) = argmin
v

max
θθθ∈Θ

V (x,v,θθθ )

s.t. Fuu(t + j|t)+ Fxx(t + j|t) ≤ g,
j = 0, . . . ,N, ∀θθθ ∈ Θ,

x(t + N|t) ∈ Ω, ∀θθθ ∈ Θ,

(5)

A terminal region constraint x(t + N|t) ∈ Ω, where Ω is a

polyhedron, is included to assure stability of the control law

([10]).

The predictions x(t + j|t) and u(t + j|t) depend linearly on

x, v and θθθ . This means that it is possible to find a vector

d ∈ R
p and matrices Gx, Gv and Gθ , such that all the robust

linear constraints of problem (5) can be rewritten as:

Gi
xx + Gi

vv + Gi
θ θθθ ≤ di, i = 1 . . . , p, ∀θθθ ∈ Θ,

where Gi
x, Gi

v, Gi
θ denote the i-th rows of Gx, Gv and Gθ

respectively and di is the i-th component of d ∈ R
p. Denote

now ‖Gi
θ‖1 the sum of the absolute values of row Gi

θ .

Taking into account that maxθθθ∈Θ Gi
θ θθθ = max‖θθθ‖∞≤ε Gi

θ θθθ =
ε‖Gi

θ‖1, the robust fulfillment of the constraints is satisfied

if and only if Gi
xx + Gi

vv + ε‖Gi
θ‖1 ≤ di, i = 1, . . . , p.

Therefore, to guarantee robust constraint satisfaction, the set

of linear constraints Gxx+Gvv≤ dε must be satisfied, where

the i-th component of dε is equal to di − ε‖Gi
θ‖1. Note that

this is a necessary and sufficient condition.

Taking into account (3), (2) and (4), the cost function can

be evaluated as a quadratic function:

V (x,v,θθθ ) = vT Mvvv + θθθT Mθθ θθθ + 2θθθT Mθvv

+2xT MT
v f v + 2xT MT

θ f θθθ + xT M f f x (6)

where the matrices can be obtained from the system and the

control parameters ([3]). Due to the convexity properties of

V (x,v,θθθ ), problem (5) is equivalent to ([3])

v∗(x) = arg min
v

max
θθθ∈vert(ΘΘΘ)

V (x,v,θθθ )

s.t. Gxx + Gvv ≤ dε

(7)

where vert(ΘΘΘ) is the set of vertices of ΘΘΘ.

The terminal region Ω is assumed to satisfy the following

conditions:

• C1: If x ∈ Ω then ACLx + Dθ ∈ Ω, for every θ ∈ {θ ∈
R

dimθ : ‖θ‖∞ ≤ ε}.

• C2: If x ∈ Ω then u(x) = −Kx ∈ U , where U , {u :

Fuu + Fxx ≤ g}.

Moreover, matrix P that characterizes the terminal cost is

assumed to satisfy

• C3: P−AT
CLPACL > Q+ KT RK.

The stability of ACL guarantees the existence of a positive

definite matrix P satisfying C3.

The maximum cost for a given x and v is denoted as

V ∗(x,v) = max
θθθ∈vert(ΘΘΘ)

V (x,v,θθθ ) = V (x,v,0) (8)

+ max
θθθ∈vert(Θ)

θθθT Hθθθ + 2θθθT q(x,v)

where H = Mθθ , q(x,v) = Mθvv + Mθ f x and V (x,v,0) =
vT Mvvv+2xT MT

v f v+xT M f f x is the part of the cost that does

not depend on the uncertainty. With this definition, problem

(7) can be rewritten as

v∗(x) = argmin
v

V ∗(x,v)

s.t. Gxx + Gvv ≤ dε ,
(9)

and the system is controlled by KMPC(x(t)) = −Kx(t) +

v∗(t|t), where v∗(x(t)) =
[

v∗(t|t)T , · · · ,v∗(t + N −1|t)T
]T

.

III. A QP APPROACH TO MIN-MAX MPC

It can be shown that the min-max problem (9) can be

replaced by a tractable QP problem which provides a close

approximation of the solution of the original problem ([1]).

This can be accomplished with the following steps:

1) Obtain an initial guess of the solution of (9), denoted

ṽ∗. As seen later, this can be achieved by solving a QP

problem.

2) Using ṽ∗, obtain a quadratic function of v that bounds

the worst case cost.

3) Compute the control law. This involves the solution of

a QP problem.

A. Computing ṽ∗

Given H defined as in equation (8), denote Ti =
∑N·dimθ

j=1 |Hi j|, where Hi j denotes the (i, j)-th component of

matrix H. Then, define the diagonal matrix T as

T = diag(T1, · · · ,Tn) (10)

where T ≥ H ([1]). With

Ṽ (x,v,θθθ ) = V (x,v,0)+ θθθT Tθθθ + 2qT (x,v)θθθ (11)

the maximum of Ṽ (x,v,θθθ) can be computed as

Ṽ ∗(x,v) = V (x,v,0)+‖H‖s ε2 + 2ε ‖q(x,v)‖1 (12)
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where ‖H‖s denotes the sum of the absolute values of H.

This problem can be casted as a QP problem by making use

of slack variables to deal with the 1-norm term. An initial

guess of the solution of (9) can be obtained as

ṽ∗(x) = argmin
ṽ

Ṽ ∗(x, ṽ)

s.t. Gxx + Gvṽ ≤ dε ,
(13)

B. Obtaining an upper bound of the worst case cost

The upper-bound of the maximum will be obtained in the

following two steps:

1) Computing the parameter vector α(v): Note that:

V ∗(x,v) = max
θθθ∈vert(ΘΘΘ)

[

θθθ
1

]T [

H q(x,v)
qT (x,v) V (x,v,0)

][

θθθ
1

]

= max
‖z‖∞≤1

zT M(v)z (14)

with

z =

[

θθθT

ε
1

]T

, M(v) =

[

ε2H εq(x,v)
εqT (x,v) V (x,v,0)

]

∈ R
n×n,

where n = N ·dimθ + 1.

The following procedure provides an upper bound of

the worst case cost for a given v. It computes α(v) =
[α1(v), . . . ,αn−1(v)]T and a diagonal matrix Γ(v) ≥ M(v)
such that its trace is an upper bound of the worst case cost

for v (see property 1 of [1]).

Procedure 1: Comp. of α(v) = [α1(v), . . . ,αn−1(v)]T and

Γ(v).

1) Let S(0) = M(v) ∈ R
n×n.

2) For k = 1 to n−1

3) Let M
(k−1)
sub = [S

(k−1)
i j ] for i, j = k · · ·n.

4) Obtain the partition M
(k−1)
sub =

[

a bT

b Mr

]

, where

a ∈ R, b ∈ R
n−k and Mr ∈ R

(n−k)×(n−k) .

5) Make αk(v) =
√

‖b‖1.

6) If αk(v) = 0 then S(k) = S(k−1), else S(k) = S(k−1) +
[

0T
k−1,1 αk(v) −bT

αk(v)

]T [

0T
k−1,1 αk(v) −bT

αk(v)

]

.

7) end for

8) Make Γ(v) = S(n−1).

Note that in the previous procedure, 0m,n denotes a (m×n)
matrix of zeros. Property 1 of [1] shows that the trace of

Γ(v) constitutes an improved upper bound of V ∗(x,v). That

is, V ∗(x,v) ≤ trace(Γ(v)) ≤ Ṽ ∗(x,v).
2) Obtaining the bound as a quadratic function on v:

The following procedure can be used to obtain a bound of

the maximum that can be computed as a quadratic function

of v:

Procedure 2: Obtaining the matrix Γ̂(v).

1) Obtain ṽ∗ from the QP problem defined in (13).

2) Compute α(ṽ∗) by procedure 1.

3) Let Ŝ(0)(v) = M(v) ∈ R
n×n.

4) For k = 1 to n−1

5) Let M̂sub(v) = [Ŝ
(k−1)
i j (v)] for i, j = k · · ·n.

6) Obtain the partition M̂sub(v) =

[

a(v) bT (v)
b(v) Mr(v)

]

,

where a(v) ∈ R.

Fig. 1. Pilot plant used to apply the MMMPC.

7) If αk(ṽ
∗) = 0 then Ŝ(k)(v) = Ŝ(k−1)(v), else

Ŝ(k)(v) = Ŝ(k−1)(v)+
[

0T
k−1,1 αk(ṽ

∗) −b(v)T

αk(ṽ∗)

]T [

0T
k−1,1 αk(ṽ

∗) −b(v)T

αk(ṽ∗)

]

.

8) end for

9) Make Γ̂(v) = Ŝ(n−1)(v).
Denote that V̂ ∗(x,v) = trace (Γ̂(v)). Theorem 1 of [1]

shows that V̂ ∗(x,v) is a quadratic function on v and also

an upper bound of the original worst case cost V ∗(x,v).

C. Computing the control law

The value of the control signal is obtained by solving the

following QP optimization problem

v̂∗(x) = argmin
v̂

V̂ ∗(x, v̂)

s.t. Gxx + Gvv̂ ≤ dε ,
(15)

and the system is controlled by K̂MPC(x(t)) = −Kx(t) +
v̂∗(t|t), where v̂∗(t|t) is the first element of v̂∗(x).

The computational burden of the proposed strategy is

much lower than that of the exact MMMPC ([1]).

IV. PROCESS DESCRIPTION

A real process represented by a pilot plant has been chosen

for the application of the proposed algorithm. The process

has been studied previously by several authors ([5], [14]).

A. Laboratory process

The pilot plant (see Fig. 1) is used to simulate exothermic

chemical reactions based on temperature changes as done

in [12]. A block diagram of the pilot plant with its main

elements is given in Fig. 2.
A cooling jacket is used to reduce the reactor temperature.

The heat dissipation can be regulated by the valve v8 which

manipulates the flow rate Fj through the cooling jacket.

The cooling fluid, water, enters the cooling jacket with a

constant temperature. The reactive is supplied to the reactor

by the feed Ff ,in to keep the chemical reaction active. Before

entering the reactor, the feed passes through a heat exchanger

in order to adopt the temperature of the reactor content.

The outflow Ff ,out is used to keep the volume of the reactor

content constant.
To emulate exothermic reactions, the reactor possesses an

electrical resistance in order to supply caloric energy. The

energy to be supplied by the 14.4kW electrical resistance is

calculated with a mathematical model of the reaction.
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Fig. 2. Block diagram of the pilot plant with its main elements.

B. Mathematical model

Although it is not necessary to have a mathematical model

for the design of the min-max predictive controller, this

section shows the process model to emphasize its nonlinear

character. The mathematical model also justifies the way to

emulate the heat generated by the chemical reaction with the

aid of the resistance.

The emulated chemical reaction, representing a refinement

process, was used previously in [5]. With Ff = Ff ,in = Ff ,out

and a constant volume, the model of the chemical reaction

can be defined as:

dT

dt
= −

Fj

V
(Tj,in −Tj,out)+

(−∆H)V

MCp

k0 e−E/(RT)C2
A (16)

dCA

dt
=

Ff

V
(CA,in−CA)−k0 e−E/(RT)C2

A (17)

denoting Fj, Tj,in and Tj,out the flow rate through the jacket

and the temperature of the water entering and leaving the

cooling jacket, respectively. CA and CA,in represent the reac-

tive concentration in the reactor and in the feed, respectively.

The feed passes through the heat exchanger and enters the

reactor nearly with the temperature of the reactor content.

Thus it is assumed that no heat is neither removed or supplied

due to the feed. The heat exchange in the cooling jacket is

given by the following empirical model:

Fj · (Tj,out−Tj,in) =
T−α

β
(1−e−γFj ) (18)

with α = 292.19K, β = 14.94s/l and γ = 13.18s/l.

The chemical reaction is nonlinear in the dynamics of the

temperature and the concentration due to the quadratic terms

of the concentration in the model equations (16) and (17).

For further details on the model parameters see [5].

V. EXPERIMENTAL RESULTS

The strategy described in section III has been applied

to the refinement process. In this section the experimental

results will be exposed and discussed. CARIMA type predic-

tion models with bounded additive uncertainties were used in

the experiments. This type of model extends the concept of

noise in traditional CARIMA models so that an uncertainty

is considered:

A(z−1)y(t) = z−dB(z−1)u(t −1)+C(z−1)
θ (t)

∆
(19)
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Fig. 3. Experiment for the model identification. From top to bottom: Tank
temperature (T ), valve opening (v8) y reagent concentration (CA).

with ∆ = 1− z−1, θ (t) ∈ {θ ∈ R
dimy : ‖θ‖∞ ≤ ε}, and dimy

the dimension of y(t). The use of this type of prediction

models results in a control law without error in steady state.

The main difference between using the algorithm of section

III for a state space model and a CARIMA model with

bounded additive uncertainties is the method used to find

the matrices of the cost function (6) (see [3]). Besides that,

the algorithm can be applied as described in section III.

A. Description of the control system

The sensors and actuators in the plant are connected

to a PMC-10 control unit. The PMC-10 is connected by

ARCnet to a personal computer that runs the control and

monitoring system Simatic-IT. The control algorithm has

been implemented directly in Matlab and the communication

with Simatic-IT is done using the OPC protocol (OLE for

Process Control). Both Simatic-IT and the controller run

on the same personal computer, based on a Pentium II

processor at 300 Mhz. This computer does not have enough

computational power to solve exactly the min-max problem

of a typical MMMPC, but can compute the control action

using the proposed strategy.

B. Identification of the prediction model

A PRMSS (Pseudo-Random Multilevel Step Sequence) has

been applied to the recirculation valve with the objective

of collecting data for the parameter identification of the

prediction model. The periods of the PRMSS have been

chosen sufficiently long to observe the reaction of the pilot

plant to changes in the input (see Fig. 3). It can be seen that

the temperature of the tank reaches steady state in each step

in something more than two hours, although the variations in

steady state are of several degrees. The reagent concentration

also suffers variations in steady state. It can be observed that

the input–output gain is negative and clearly variable (greater

gain for low openings of v8). A first order transfer function

model with delay is proposed as prediction model. This low

order model cannot correctly describe the dynamics of the

plant, but it is a good approach to check the robustness of

the controller in presence of uncertainties and disturbances.

Using the data of Fig. 3 the system delay was approxi-

mated with td = 31.25s. With the least squares method the
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following model has been identified:

G(s) =
−0.975

950s+ 1
e−31.25s (20)

This model was discretized with a sampling time of Ts = 60s.

The delay was rounded to 1 sampling time in order to avoid

approximations of the time delay, e.g. Padé approximation.

Thereby, the following CARIMA model was obtained:

y(t + 1) = 0.939y(t)−0.0597u(t−1)+
θ (t)

∆
(21)

with the noise polynomial C(z−1) = 1.

C. Experimental results of the controller

The proposed control strategy was applied to the pilot

plant described in section IV-A using (21) as a prediction

model. For the prediction and control horizons values of N =
15 and Nu = 12 have been used1. Therefore the prediction

horizons includes approximately one time constant of the

process, a common value for this parameter in predictive

control. The weighting factor for the control effort has been

chosen equal to R j = 2. Based upon the one step ahead

prediction error (see Fig. 4) the parameter ε has been chosen

to ε = 0.25. As a result, in 97% of the samples the one

step ahead prediction error is bounded by the chosen value.

Finally, in order to restrict the system input and output in

1The model delay implies that the prediction horizon starts in t + 2 and
ends in t +16.
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Fig. 6. Experiment with input disturbance rejection. From top to bottom:
Tank temperature (T ), valve opening(v8 ), controller output (u) and reagent
concentration (CA).

the experiments, the following constraints have been used:

30 ≤ ŷ(t + j|t) ≤ 70, j = 2, . . . ,16, ∀ θθθ ∈ vert(ΘΘΘ)

5 ≤ u(t + j|t) ≤ 100, j = 0, . . . ,11

−20 ≤ ∆u(t + j|t) ≤ 20, j = 0, . . . ,11

Note that in the output restrictions the effect of the uncer-

tainty has to be considered.

In order to analyze the system behaviour, several ex-

periments with reference changes and disturbance rejection

have been made using the proposed control strategy. Fig.

5 shows the results of the tracking experiment with ref-

erences different enough to result in control actions in a

large interval. After the first reference change no overshoot

appears in spite of a quite fast controller reaction. After

the second reference change a small overshoot (of about

−0.5 oC), justified by the nonlinear process behaviour, can be

observed. In steady state the controller shows small changes

in the control action necessary to stabilize the output on the

reference in presence of variations in the generated heat and

the cold water temperature.

The results of a disturbance in the system input, the

opening of the valve v8, are presented in Fig. 6. As can be

seen, after approximately 70 minutes a constant disturbance

in the input of ∆v8 = 15% was applied. The controller reacts

rapidly and rejects the perturbation in about 20 minutes.

After the disappearance of the perturbation in t = 101min

the controlled system shows the same behaviour and reaches

steady state in approximately 20 minutes. Neither the tem-

perature nor the control action show oscillations after the

perturbation.

Figure 7 shows the experimental results applying an addi-

tive disturbance in the feeding Ff . In t = 70min a change in
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the feeding flow of ∆Ff = 0.0125l/s, which corresponds to

an error of 25%, has been applied. With an increasing error,

the controller reduces the opening of the valve and reaches

a compensation of the divergence after 15 minutes. In this

experiment an overshoot of −0.50 oC can be observed. The

oscillation in the temperature and the control action is quite

small and seems acceptable due to the strong disturbance.

The reference tracking experiment was repeated with a

linear constrained predictive controller (GPC) to allow the

comparison between the proposed strategy and a standard

MPC method. The GPC is based on the linear model (21)

and was used with the same parameters as the MMMPC. It

can be observed in the results (see Fig. 8) that the process

controlled by the GPC exhibits significant oscillations in

the temperature and the control action after the reference

changes. The comparison of the results shows that the

MMMPC stabilizes the temperature more efficiently and with

less oscillations in the opening of the valve.

Finally, it is important to mention that the calculation of

the control signal took place without problems within the

chosen sampling time (60 seconds). During the experiments

the average computation time was 5.64 seconds, with a maxi-

mum of 9.90 seconds and a minimum of 1.86 seconds. These

computation times are much smaller than those required to

compute the exact solution (e.g., using the same computer,

the average time for N = Nu = 12 was 324.63 seconds).

VI. CONCLUSIONS

In this paper an MMMPC based on an tractable QP prob-

lem was applied to a pilot plant. The results showed a good

system behaviour and the stabilisation of the plant tempe-

rature around the operation point. After reference changes the

controller quickly compensates deviations. Furthermore, the

MMMPC showed its capacity to compensate errors caused

by the disturbances.

The application to a process shown in this work joins

the small number of MMMPC applications reported in

specialised literature. The low computational requirements of

the proposed control strategy allowed the use of appropriate

sampling times and realistic prediction and control horizons.

Thereby it is shown that the use of the proposed strategy

allows the application of this kind of controllers to a larger

number of processes.
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4(3):34–45, 2007.

[6] E.C. Kerrigan and J.M. Maciejowski. Feedback min-max Model
predictive Control Using a Single Linear Program: Robust Stability
and the Explicit Solution. International Journal of Robust Nonlinear
Control, 14:395–413, 2004.

[7] M.V. Kothare, V. Balakrishnan, and M. Morari. Robust constrained
model predictive control using linear model inequalities. Automatica,
32(10):1361–1379, 1996.

[8] J.H. Lee and Zhenghong Yu. Worst-case formulations of model
predictive control for systems with bounded parameters. Automatica,
33(5):763–781, 1997.

[9] Y. Lu and Y. Arkun. Quasi-Min-Max MPC Algorithms for LPV
systems. Automatica, 36(4):527–540, 2000.

[10] D.Q. Mayne, J.B. Rawlings, C.V. Rao, and P.O.M. Scokaert. Con-
strained model predictive control: Stability and optimality. Automatica,
36(6):789–814, 2000.

[11] D.R. Ramirez and E.F. Camacho. Piecewise Affinity of Min-Max
MPC with bounded additive uncertainties and a quadratic criterion.
Automatica, 42(2):295–302, 2006.

[12] L.O. Santos, P.A.F.N.A. Afonso, J.A.A.M. Castro, N.M.C. Oliveira,
and L.T. Biegler. On-line implementation of nonlinear MPC: an
experimental case study. Control Engineering Practice, 9(8):847–857,
2001.

[13] P.O.M. Scokaert and D.Q. Mayne. Min-max feedback model pre-
dictive control for constrained linear systems. IEEE Transactions on
Automatic Control, 43(8):1136–1142, 1998.

[14] F. Szeifert, T. Chovan, and L. Nagy. Process dynamics and temperature
control of fed-batch reactors. Computers & Chemical Engineering,
19(1):447–452, 1995.

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 WeC09.1

3420


