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Abstract— This paper considers the concept of input and state
observability, that is, conditions under which both the unknown
input and initial state of a known model can be determined from
output measurements. We extend previous results on input and
state observability for discrete-time systems by considering a
more general framework. Particularly, we introduce a delay in
the input estimation, that is, we consider estimation of delayed
input instead of the current input. Furthermore, we derive
results for cases in which partial inputs may be available.
Finally, we present several illustrative examples, including a
system in which partial inputs are available.

I. INTRODUCTION

Systems with unknown inputs have received consid-

erable attention [4–26, 28–31]. The unknown inputs may

represent unknown external drivers, input uncertainty, or

instrument faults. An active research area is state recon-

struction with known model equations and unknown inputs.

Approaches include full-order observers [6, 8, 11, 18, 19, 31],

reduced-order observers [9, 10, 22, 24], geometric techniques

[4], and trial-and-error methods [29]. A widely used ap-

proach is to model the unknown inputs as outputs of a known

dynamic system and incorporate the input dynamics with the

plant dynamics [1, 16]. However, this approach increases the

dimension of the observer and is limited to specific types of

inputs.

In [26, 28] input reconstruction is achieved by inverting the

known transfer function. More recently, methods for input

reconstruction using optimal filters are developed in [6, 11,

13, 17, 30]. Finally, [12, 28] considers input reconstruction

with an inherent delay.

A related problem is the concept of input and state

observability, which is the ability to reconstruct the inputs

and states using only output measurements. Necessary and

sufficient conditions for input and state observability for

continuous-time systems in terms of the invariant zeros of

the system are presented in [6, 10, 15, 17, 22]. Input and state

observability for discrete-time systems is considered in [17,

27], while [11] uses a constructive algorithm to determine

the observability of the unknown input and state.

In this paper, we examine conditions under which both the

input and state can be estimated from the output measure-

ments, under a more general framework than in [27]. Specif-

ically, we consider using all avaliable output measurements

to estimate the state and all inputs except the inputs in the

last L time steps. This approach differs from the approach

of [12] where a bank of future outputs is used to estimate

the current input.

The authors are with the Department of Mechanical and
Aerospace Engineering, Syracuse University, Syracuse, NY 13244,
{cbielsac,hjpalant}@syr.edu

We discuss necessary and sufficient conditions for a

discrete-time system to be L-delay input and state observable

and derive tests for the same. This approach includes the

results of [27] as a special case. Furthermore, since no

assumptions on the input are made, the unknown input can

be either an unmodeled exogenous signal or a consequence

of an unknown endogenous nonlinear function of the states.

Next, we derive conditions under which the state and the

inputs can be estimated from output measurements, when

the inputs for a brief period of time-steps are known. This

class of systems are referred to as M -delay input and state

estimable systems, and constitute a broader class of systems

than L-delay input and state observable systems. These

results are especially useful for applications in which partial

input information is available, such as fault detection or

systems with a brief sensor failure.

Finally, we present several illustrative examples. For a

linear example with a known model and an unknown exoge-

nous input, we estimate the unknown input based on noisy

output measurements. Furthermore, we present examples to

illustrate the fact that the class of systems that are L-delay

input and state observable is much broader than the class

of system considered in [12, 27]. Finally, we consider an

example in which partial input information is available. We

first use the results derived in the current paper to estimate

the unknown inputs, and then we subsequently estimate the

states using a Kalman filter.

II. L-DELAY INPUT AND STATE OBSERVABILITY

Consider the system

xk+1 = Axk + Hek, (II.1)

yk = Cxk + Gek, (II.2)

where xk ∈ R
n, ek ∈ R

p, yk ∈ R
l, A ∈ R

n×n, H ∈
R

n×p, C ∈ R
l×n, and G ∈ R

l×p. Without loss of generality,

we assume l ≤ n, rank(C) = l > 0, and rank

[

H
G

]

= p >

0. No assumptions on the unmeasured signal ek are made.

Hence, ek can be either an exogenous input or a consequence

of nonlinear, time-varying function of the states.

Throughout this paper, r denotes a nonnegative integer.

Furthermore, for convenience, every vector or matrix with

zero rows or zero columns is an empty matrix, and 0s×t is

the zero matrix with s rows and t columns. Let span P denote

the space spanned by the columns of matrix P , and let (P )s

denote the first s rows of matrix P . Define Yr ∈ R
(r+1)l and
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Er ∈ R
(r+1)p as

Yr
△
=











y0

y1

...

yr











, Er
△
=











e0

e1

...

er











. (II.3)

Definition II.1. Let r ≥ 1. Then the input and state

unobservable subspace Ur of (II.1), (II.2) is the subspace

Ur
△
=

{[

x0

Er

]

∈ R
n+(r+1)p : Yr = 0

}

. (II.4)

We define Γr ∈ R
(r+1)l×n, Mr ∈ R

(r+1)l×(r+1)p, and

Ψr ∈ R
(r+1)l×(n+(r+1)p) by

Γr
△
=















C
CA
CA2

...

CAr















,

Mr
△
=















G 0 0 · · · 0
CH G 0 · · · 0

CAH CH G · · · 0
...

...
...

. . .
...

CAr−1H CAr−2H CAr−3H · · · G















,

(II.5)

and

Ψr
△
=

[

Γr Mr

]

. (II.6)

Note that M0 = G, Γ0 = C and thus Ψ0 =
[

C G
]

.

Next, from (II.1), (II.2), we can write

Yr = Γrx0 + MrEr = Ψr

[

x0

Er

]

, (II.7)

so that

Ur = N(Ψr). (II.8)

Let R(Ψr) denote the range space of matrix Ψr. We then

have the following definition.

Definition II.2. The system (II.1), (II.2) is L-delay input

and state observable if there exists r0 ≥ 1 such that Ur ⊆

R

[

0n+(r−L+1)l×Lp

ILp

]

for all r ≥ r0.

Definition II.2 implies that if (II.1), (II.2) is L-delay input

and state observable, then, for all r ≥ r0, the initial condition

x0 and input sequence {ei}
r−L
i=0 are uniquely determined

from the measured output sequence {yi}
r
i=0.

Definition II.3. The system (II.1), (II.2) is input and

state observable if (II.1), (II.2) is 0-delay input and state

observable.

If (II.1), (II.2) is input and state observable, then the initial

state and inputs for all time steps can be estimated from the

output measurements.

Let Ψ† represents the Moore-Penrose generalized inverse

of Ψ, Ψ†
r = (ΨT

r Ψr)
−1ΨT

r . Then, the following result gives

necessary and sufficient conditions for (II.1), (II.1) to be L-

delay input and state observable.

Theorem II.1. The following statements are equivalent:

i) (II.1), (II.2) is L-delay input and state observable.

ii) N(Ψr) ⊆ R

[

0n+(r−L+1)l×Lp

ILp

]

.

iii)

[

x0

Er−L

]

= (Ψ+
r Yr)n+(r−L+1)p.

Proof. The proof of i) ⇔ ii) follows from (II.8) and

Definition II.2. Next, to show that ii) ⇔ iii), from (II.7)

and Proposition 6.1.7 in [2], it follows that
[

x0

Er

]

= Ψ+
r Yr + (I − Ψ+

r Ψr)

[

x0

Er

]

. (II.9)

Furthermore, noting that R(I −Ψ+
r Ψr) = N(Ψr), it follows

from (II.9) that iii) holds for all

[

x0

Er

]

, if and only if ii)

holds.

From Theorem II.1, it follows that if (II.1), (II.1) is L-

delay input and state observable, then for r ≥ r0, the first

n + (r − L + 1)p columns of Ψr have full column rank.

The first n + (r − L + 1)p columns of Ψr is denoted by

Ψr,n+(r−L+1)p. Finally, it follows from Theorem II.1 that

if (II.1), (II.2) is L-delay input and state observable, then

estimates of the states and inputs can be obtained as
[

x0

Er−L

]

=
(

Ψ+
r Yr

)

n+(r−L+1)p
. (II.10)

The following result follows from the structure of matrix

Ψr.

Proposition II.1. If

rank(Ψr0,n+(r0−L+1)p) = rank(Ψr0+1,n+(r0+1−L+1)) + p
(II.11)

and

N(Ψr0
) ⊆ R

[

0n+(r0−L+1)p×Lp

ILp

]

, (II.12)

then for all r ≥ r0,

N(Ψr) ⊆ R

[

0n+(r−L+1)l×Lp

ILp

]

. (II.13)

The following result follows from Proposition II.1.

Corollary II.1. Let p ≤ l. Then if (II.1), (II.2) is L-delay

input and state observable, then (II.1), (II.2) is L∗-delay input

and state observable for all L∗ ≥ L.

Corollary II.2. If p ≤ l and there exists r0 ≥ 1 such

that N(Ψr0
) ⊆ R

[

0n+(r0−L+1)p×Lp

ILp

]

, then (II.1), (II.2)

is L-delay input and state observable.

However, a similar result for p > l cannot be derived since

(II.11) cannot hold for any r0. Therefore, for p > l, the abil-

ity to estimate inputs and state from the output measurements

depends on the particular r, and general results for L-delay
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input and state observability cannot be derived. Therefore,

for the remainder of the paper, we assume that p ≤ l.

The following two results describe necessary conditions

for (II.1), (II.2) to be L-delay input and state observable.

Proposition II.2 describes necessary conditions related to

the rank of Ψr, while Proposition II.3 describes necessary

conditions related to various dimensions.

Proposition II.2. If (II.1), (II.2) is L-delay input and state

observable, then the following statements hold:

1) rank(Ψr) ≥ n + (r − L + 1)p.

2) rank(Ψr,n+(r−L+1)p) = n + (r − L + 1)p.

3) (A, C) is observable, that is, rank(Γn−1) = n.
4) rank(Ψr) = rank(Ψr−1) + p for all r ≥ r0.

The following result follows from the fact that if

Ψr,n+r−l+1 is full column rank, then the number of columns

is less than or equal to the number of rows.

Proposition II.3. If (II.1), (II.2) is L-delay input and state

observable, then the following statements hold:

1) n + (r − L + 1)p ≤ (r + 1)l.

2) L ≥ n−r(l−p)−r

p
+ 1.

3) If p = l, then L ≥ n
p

.

4) If p = l = 1, then L ≥ n.

5) If p < l, then r ≥ n−(l−p)−Lp

l−p
.

From Proposition II.3, point 2, it follows that since p ≤ l,
when p = l, L ≥ n∂ is the largest lower bound for

L. Moreover, if L ≥ n/p, it follows from the size of

Ψr,n+(r−L+1)p that, if (II.1), (II.2) is L-delay input and state

observable then r0 ≥. Also, if a SISO system (p = l = 1) is

L-delay input and state observable, then L ≥ n.

For a lower bound on r0, we note that to estimate x0 and

at least one unknown input e0, we need n+(r0−L+1)p ≥
n + p. Therefore, r0 ≥ L.

Finally, the following result provides a test for L-delay

input and state observability that is independent of r.

Proposition II.4. (II.1), (II.2) is L-delay input and state

observable if and only if

N(Ψn) ⊆ R

[

0n+(n−L+1)p×Lp

ILp

]

. (II.14)

Note that if no unknown inputs are present, that is, p = 0,

then Ψr = Γr, and Theorem II.1, ii) becomes the standard

rank test for observability.

III. M-DELAY INPUT AND STATE ESTIMABILITY

In this section, we derive conditions under which the state

and input sequence can be estimated when a part of the input

sequence is known. Specifically, we consider (II.1), (II.2)

with known outputs, and inputs known for the last last M
time-steps. That is, yk, k = 0, 1, . . . , r, and ek, k = r −
M +1, . . . , r are known. If M = 0, this is the same as Input

and state observability, throughout this section we assume

M > 0.

First, we consider the case in which ek = 0, k = r−M +
1, . . . , r. In this case, it follows from (II.7) that

Yr = Ψr,n+(r−M+1)p

[

x0

Er−M

]

. (III.1)

Therefore,
[

x0

Er−M

]

= Ψ+
r,n+(r−M+1)pYr + vM , (III.2)

where vM ∈ N(Ψr,n+(r−M+1)p). Therefore, if

N(Ψr,n+(r−M+1)p) = {0}, it follows that
[

x0

Er−M

]

= Ψ+
r,n+(r−M+1)pYr, (III.3)

and hence

[

x0

Er−M

]

can be estimated from Yr .

Next, when ek, k = r − M + 1, . . . , r are not zero but

are known, we can write

Yr = Ψr,n+(r−M+1)p

[

x0

Er−M

]

+ ΦM
r EM

r , (III.4)

where

EM
r

△
=







er−M+1

...

er






∈ R

(M−1)p, (III.5)

is the vector of known inputs, and ΦM
r denotes the last (M−

1)p columns of Ψr. Therefore, if N(Ψr,n+(r−M+1)p) = {0},
it follows that

[

x0

Er−M

]

= Ψ+
r,n+(r−M+1)p(Yr − ΨM

r EM
r ), (III.6)

and thus

[

x0

Er−M

]

can be estimated if Ψr,n+(r−M+1)p has

full column rank and ek, k = r − M, . . . , r are known.

Theorem III.1. (II.1), (II.2) is M-delay input and state

estimable if and only if rank(Ψr,n+(r−M+1)p) = n + (r −
M + 1)p.

Proposition III.1. If (II.1), (II.2) is M -delay input and

state estimable, then (II.1), (II.2) is M∗-delay input and state

estimable for all M∗ ≥ M .

Proposition III.2. If (II.1), (II.2) is M -delay input and

state estimable, then the following statements hold:

1) rank Ψr ≥ n + (r − M + 1)p.

2) rank (ΨT
r )n+(r−M+1)p = n + (r − M + 1)p.

3) (A, C) is observable, that is, rank(Γn−1) = n.
4) rank(Ψr) = rank(Ψr−1) + p for all r ≥ r0.

Proposition III.3. If (II.1), (II.2) is M -delay input and

state estimable, then the following statements hold:

1) n + (r − M + 1)p ≤ (r + 1)l.

2) M ≥ n−r(l−p)−r

p
+ 1.

3) If p = l, then M ≥ n
p

.

4) If p = l = 1, then M ≥ n.

5) If p < l, then r ≥ n−(l−p)−Mp

l−p
.
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IV. NOISE ANALYSIS

To analyze the sensitivity of the estimate (II.10) to

noise, consider (II.1), (II.2) with additive measurement and

process noise so that

xk+1 = Axk + Hek + wk, (IV.1)

yk = Cxk + Gek + vk, (IV.2)

where wk ∈ R
n and vk ∈ R

l are zero mean, uncorrelated,

white noise sequences. Then

Yr = Ψr

[

x0

Er−1

]

+ NrWr−1 + Vr, (IV.3)

where

Nr
△
=















0 0 · · · 0
C 0 · · · 0

CA C · · · 0
...

...
. . .

...

CAr−1 CAr−2 · · · C















∈ R
(r+1)l×rn,

Wr
△
=











w0

w1

...

wr











∈ R
(r+1)n, Vr

△
=











v0

v1

...

vr











∈ R
(r+1)l.

Next, let L = 0, that is, let (II.1), (II.1) be input and state

observable. We thus consider the least-squares estimate
[

x̂0

Êr−1

]

△
= Ψ†

rYr =

[

x0

Er−1

]

+ Ψ†
rNrWr−1 + Ψ†

rVr.

(IV.4)

Since wk and vk are zero mean noise sequences, (IV.4)

implies

E

[

x̂0

Êr−1

]

=

[

x0

Er−1

]

, (IV.5)

and thus (IV.4) is an unbiased estimate of

[

x0

Er−1

]

. Finally,

the variance of the estimate (IV.4) is given by

var

[

x̂0

Êr−1

]

= Ψ†
rNrRwNT

r (Ψ†
r)

T + Ψ†
rRv(Ψ

†
r)

T,

(IV.6)

where Rw
△
= E

[

Wr−1W
T
r−1

]

and Rv
△
= E

[

VrV
T
r

]

.

The above analysis can be extended to the case of L-delay

state and input estimation.

V. COMPARTMENTAL MODEL EXAMPLE

To illustrate input and state observability with noisy

data, we consider a system comprised of n = 6 com-

partments that exchange mass or energy through mutual

interaction [3]. Applying conservation yields

x1,k+1 = x1,k − βx1,k + α(x2,k − x1,k), (V.1)

xi,k+1 = xi,k − βxi,k + α(xi+1,k − xi,k) − α(xi,k − xi−1,k),

i = 2, . . . , n − 1, (V.2)

xn,k+1 = xn,k − βxn,k − α(xn,k − xn−1,k), (V.3)

where 0 < β < 1 is the loss coefficient and 0 < α <
1 is the flow coefficient. In addition, an unknown input

enters compartment 2. The outputs are the energy states in

compartments 2 and 3, and therefore l = 2. It then follows

that

xk+1 = Axk + Hek, (V.4)

yk = Cxk, (V.5)

where A ∈ R
n×n, H ∈ R

n×1 and C ∈ R
2×n are defined as

A
△
=











1 − β − α α 0 · · · 0
α 1 − β − α α · · · 0
...

. . .
. . .

...

0 · · · 0 α 1 − β − α











,

(V.6)

H
△
=











0
1
...

0











, (V.7)

C
△
=

[

0 1 0 · · · 0
0 0 1 · · · 0

]

. (V.8)

For simulations, we set α = 0.3 and β = 0.1. It can be

verified that

N(Ψr) =

[

02r+1×1

1

]

, (V.9)

and thus (II.1), (II.2) is 1-delay input and state observable.

Hence using measurements of yk, k = 0, . . . , r, we esti-

mate the initial state x0 and the unknonw inputs ek, k =
0, . . . , r − 1.

0 20 40 60 80 100
−2

0

2

4

6

8

10

12

time

Actual input

Estimated input

Fig. 1. Compartmental model example. The actual unknown inputs and
the estimates of the unknown inputs using measurements of outputs and
known model. Measurement and process noise with standard deviation
0.1 is added to the model simulation.
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The initial state is chosen to be x0 =
[

2.0 0.1 −1.0 0 0 0
]T

, and the unknown force is

chosen to be a sawtooth signal. Simulations are run with

Gaussian process noise wk and measurement noise vk with

covariances diag(0.01, 0.01, 0.01, 0.01, 0.01, 0.01) and

diag(0.01, 0.01, 0.01), respectively. Using the measured

outputs, the initial state and unknown input are estimated

using Theorem II.1 for r = 1000. Although (V.4) - (V.8)

is input and state observable, poor numerical conditioning

of Ψr can cause the estimates of the unknown inputs

to be inaccurate. In this example, the condition number

of Ψr is 82.8975 and thus Ψr is not ill-conditioned.

Figure 1 shows the unknown force and its estimate in the

presence of process noise and measurement noise with

standard deviation 0.1. In the presence of process noise and

measurement noise, the estimate of the initial state is

x̂0 =

















2.0690
0.1719

−0.9862
−0.0454

0.0136
−0.6951

















. (V.10)

The following examples discuss input and state observ-

ability/estimability properties for the compartmental system

with A given by (V.6), but with different combinations of H
and C.

Example V.1. Let A be given by (V.6), and let

C =
[

1 0 0 0 0
]

,

H =

















1
0
0
0
0
0

















.

Then, rank(CH) = p = 1, and since rank(Ψn) =
rank(Ψn,n+1) = 7 = n + p, the system is 6-delay input and

state estimable. Furthermore, since N(Ψn,n+(r−L+1)p) 6⊆

R

[

0n+(r−L+1)l×Lp

ILp

]

for any 0 ≤ L ≤ n, it follows that

the system is not L-delay input and state observable for any

L.

Example V.2. Let A be given by (V.6), and let

C =
[

1 0 0 0 0
]

,

H =

















0
0
0
0
0
1

















Then, rank(CH) = 0 6= p, and since rank(Ψn) =
rank(Ψn,n+1) = 7 = n + p, the system is 6-delay input

and state estimable. Furthermore, since N(Ψn,n+(r−6+1)p) =

R

[

0n+(r−6+1)l×6p

I6p

]

, it follows that the system is 6-delay

input and state observable.

Example V.3. Let A be given by (V.6), and let

C =

[

1 0 0 0 0 0
0 0 0 0 0 1

]

,

H =

















1 0
0 1
0 1
0 1
0 1
1 0

















.

Then, rank(CH) = 1 < p, and rank(Ψn) = 10 and

rank(Ψn,n+1) = 7 <= n + p. Therefore, the system is

not L-delay input and state observable/estimable for any

0 ≤ L ≤ n. However, note that (A, H) is not controllable.

Example V.4. Let A be given by (V.6), and let

C =













1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0













,

H =

















1 1
1 1
1 1
1 1
1 1
1 0

















.

Then, rank(CH) = 1 6= p, and since rank(Ψn) = 17,

rank(Ψn,(n−2+1)p) = 16 = n + (n − 2 + 1)p, the system

is 2-delay input and state estimable. Furthermore, since

N(Ψn,n+(n−2+1)p) ⊂ R

[

0n+(r−L+1)l×2p

I2p

]

, it follows

that the system is 2-delay input and state observable.

VI. STATE ESTIMATION

For state estimation, we consider Example V.1, which is

6-delay input and state estimable. We use a square wave for

the unknown input, However, we assume that the inputs for

the last 6 time-steps are known. In this example, since the

input is a unit square wave, the last 6 time-steps are just −1.

We first use (III.6) to estimate the unknown inputs and the

initial state. Then we build a Kalman filter based on known

model equations and the estimated states. It can be shown

that if wk ∈ R
n and vk ∈ R

l in (IV.1), (IV.2) are zero

mean, uncorrelated, white noise sequences, tthen he state

estimates obtained in a manner described earlier are unbiased

estimates of the states. Figure 2 shows the actual input and

the input estimated using (III.6), while Figure 3 shows the

actual second state and the estimated second state.

This technique is useful for events such as failure of

sensors for a brief time interval, in which case some of the

previous inputs are known.
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t

 

 

Actual input

Estimated input

Fig. 2. The actual input and the estimated input for the compart-
mental model example.
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−0.5
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te
 1

 

 

Actual state
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Fig. 3. The actual second state and the estimated second state for
the compartmental model example.

VII. CONCLUSIONS

In this paper we considered the problem of estimating
the state and the input from known output measurements.
We derived neccessary and sufficient conditions for which
a system is L-delay input and state observable/estimable.
Next, we explored the sensitivity of the estimates to addi-
tional noise. Finally, we presented a compartmental model
with several combinations of input and output matrices to
illustrate different scenarios for L-delay input and state ob-
servability/estimability. We then assumed known partial input
information to estimate the unknown inputs and subsequently
estimate the states using a Kalman filter.
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