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Abstract— We extend previous works on real-time estimation,
via algebraic techniques, to the recovering of the switching
signal and of the state for switching linear systems. We
characterize also singular inputs for which the switched sys-
tems become undistinguishable. Several convincing numerical
experiments are illustrating our techniques which are easily
implementable.
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I. INTRODUCTION

Many systems encountered in practice exhibit switchings
between several subsystems, both as a result of controller de-
sign, such as in switching supervisory control, and inherently
by nature, such as when a physical plant has the capability
of undergoing several operational modes.

Switched systems may be viewed as higher–level ab-
stractions of hybrid systems, obtained by neglecting the
details of the discrete behavior. Informally, a switched system
is composed of a family of dynamical subsystems (linear
or nonlinear), and a rule, called the switching law, that
orchestrates the switching between them. In recent years,
there has been increasing interest in the control problems
of switched systems due to their significance from both a
theoretical and practical point of view and also because of
their inherently interdisciplinary nature. So several important
results for switched systems have been achieved, including
various results on stability [1], [3], [5], [9], [10], [18],
[20], [36], [21], [28], [31] (with many applications see, for
example, [12] for application to electrical power converters),
stabilization [6], [23], [25], [26], [27], [39], [38], [40], [42],
[37], tracking [7], controllability results [32], [41], and input-
to-state properties, . . . . See, e.g., [8], [11], [20], [19], [33]
for a survey of this type of results.

Observability and state estimation is a key problem for
such systems, where discrete and continuous parts are mixed.
Consider, for instance, a finite set of ordinary differential
equations (ODE)1 ẋ = fi(t, x, u), where fi : R×R

n×R
m →

R
n, i ∈ I , {1, . . . ,M}. The vector-valued output is a
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1In the rest of the paper the time argument is omitted for sake of
brevity when the context is clear for example fi(t, x, u) should be read
as fi(t, x(t), u(t)).

function of the continuous state. The observation problem
is to determine the continuous state and the active ODE
driving the current continuous state evolution. A generic
setting for the observability of switched linear systems in
continuous setting has been given in [4]. In [2], [34], [35]
the observability of switched linear systems in the case of
deterministic switching signal was carried out. Unobserved
switching case was analyzed in [29].

It is clear that if one knows which current ODE is active
(the current index “i”) then one can say something about
the current continuous state. Thus a key problem is the real
time computation of the so-called switching signal defined
by σ(t, x) : R × R

n → I, (t, x) 7→ σ(t, x), where σ(t, x) ∈
I , {1, . . . ,M} corresponds to the index associated with
the current active ODE. In the rest of the paper we will
only consider linear ordinary differential equations (LODE).
Taking a pair of such LODE, one can distinguish the two
LODE if for any non trivial input the two systems produce
two different outputs (roughly speaking). On this basis, one
can encounter the following facts:

1) some pairs of LODE may be indistinguishable: any
non trivial input will produce for the two systems the
same output.

2) for a given pair of LODE, some peculiar inputs will
produce the same outputs: the two systems are in-
distinguishable. For example, for the two following
LODE ẏ1 = u1, ÿ2 + ẏ2 = 2u2, it is clear that if
the input of these systems is u1 = u2 = exp(t) then
the two systems have a common trajectory namely
y(t) = exp(t).

It is thus important to characterize such singular inputs
and then to give efficient tools for observations.Except for
these pathological cases, the state (continuous and discrete
or the switching signal) reconstruction of an hybrid system
is a three stage process as follows:

1) using the measured output y (and eventually the input
u) one needs to reconstruct y, ẏ, . . . , y(ky) up to some
finite order ky which is not necessarily equal to the
state dimension (ky may be smaller) and eventually
u, u̇, . . . , u(km),

2) reconstruct the switching signal or the discrete state:
a set of signal are constructed using the obtained
reconstructed signals y, ẏ, . . . , y(ky);u, u̇, . . . , u(km) in
order to distinguish the active subsystem.

3) reconstruct the continuous state: using for example step
1 or eventually a refined technic using the knowledge
of the actual active subsystem.
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II. DINSTINGUISHABILITY

A. Problem formulation: an Input-output behavior

Consider switched monovariable2 linear systems of the
form:

ẋ = Aσ(t)x + Bσ(t)u,

y = Cσ(t)x + Dσ(t)u,

x ∈ R
n, u ∈ R, y ∈ R, (1)

where σ(t) is the switching signal taking value within the
index set I = {1, ...,M}. In the rest we address the problem
of the reconstruction of the switching signal σ(t) in“real-
time”, and of the state variables if is possible. From the
problem formulation it is clear that for each i ∈ I we only
need an input/output representation of our linear subsystems.
In the rest we adopt a matrix transfer representation of the
input/output behavior:

ai

(

d

dt

)

yi = bi

(

d

dt

)

u, i ∈ I. (2)

B. Distinguishability

Consider two monovariable linear systems with transfer
functions bi

ai
, i = 1, 2, ai, bi ∈ R[s], bi 6= 0, (ai, bi) = 1. It is

clear that they do not exhibit the same input-output behavior
if the two transfer functions are different, i.e., a1b2−a2b1 6=
0. There might exist nevertheless particular inputs for which
the two outputs coincide.

Assume that two input-output systems satisfy ai(
d
dt

)yi =
bi(

d
dt

)u, i = 1, 2. It is clear that we cannot distinguish their
input-output behaviors if, and only if, u and y = y1 = y2

satisfy the matrix differential equation
(

a1 −b1

a2 −b2

)(

y
u

)

=

(

0
0

)

. (3)

Classic algebraic manipulations show that Eq. (3) is equiva-
lent to

A
(

d
dt

)

u = 0 B
(

d
dt

)

y = 0. (4)

where A,B ∈ R[ d
dt

], AB 6= 0. The two systems are said
to be strongly distinguishable if, and only if, A and B are
constant. This is equivalent saying that the two systems have
the same input-output behavior only for u = y1 = y2 = 0.
If not the two systems are said to be weakly distinguishable.
The next result summarizes the above computations.

Theorem 1 In (4) A and B are given by

A = gcd(b1p
1
1, b2p

2
1),

B = (a2b
′

1 − a1b
′

2) ,
(5)

where b = gcd(b1, b2), b1 = bb′1, b2 = bb′2, a =
gcd(a1, a2), a1 = aa′1, a2 = aa′2, p1 = lcm(a′1, a

′

2b
′

1−a′1b
′

2),
and p1 = p1

1a
′

1 = p1
2(a

′

2b
′

1 − a′1b
′

2), p2 = lcm(a′2, a
′

2b
′

1 −
a′1b

′

2), and p2 = p2
1a

′

2 = p2
2(a

′

2b
′

1 − a′1b
′

2). Strong distin-

guishability is equivalent to (a2b
′

1 − a1b
′

2) ∈ R \ {0} and

gcd(b1p
1
1, b2p

2
1) ∈ R \ {0}.

2Extension to the multivariable case will be discussed in a coming paper.

Proof: Omitted for sake of brevity (Just use simple
algebraic manipulations on polynomials).

Remark 2 The two systems are said to be strongly distin-
guishable if, and only if, the only solution to (4)–(5) is the

trivial one that is y = u = 0. This is equivalent saying that

the two systems have the same input-output behavior only

for u = y1 = y2 = 0. If not the two systems are said to be

weakly distinguishable.

C. Example: first order systems

Let us consider (1) with n = 1 and M = 2 : for a given
i ∈ I the corresponding system has a transfert function of
the form

Fi(s) =
ki

1 + τis
, ki =

bi

ai

, τi =
1

ai

, (6)

the two transfer functions are different iff

k1(1 + τ2s) − k2(1 + τ1s) 6= 0. (7)

Nevertheless for the two systems some input/output behavior
cannot be distinguish iff

(

(1 + τ1s) −k1

(1 + τ2s) −k2

)(

y
u

)

=

(

0
0

)

. (8)

a) k1τ2 = k2τ1 and k1 6= k2, thus (8) has a unique
singular behavior for which the two systems can not be
distinguishu = 0, y = 0, which means that, when at rest,
the two systems can not be distinguished: they are strongly
distinguishable. This result comes directly from Theorem
1: since a1 = 1 + τ1s, b1 = k1, a2 = 1 + τ2s, b2 = k2

we have (a′2b
′

1 − a′1b
′

2) = k1 − k2, it comes out that
p1 = lcm(a′1, a

′

2b
′

1 − a′1b
′

2) = (k1 − k2) (1 + τ1s) , p2 =
lcm(a′2, a

′

2b
′

1 − a′1b
′

2) = (k1 − k2) (1 + τ2s) and thus Eq (4)
and (5) reads as

gcd(b1p
1
1, b2p

2
1)u = 0 ⇔ (k1 − k2)u = 0,

(a2b
′

1 − a1b
′

2) y = 0 ⇔ (k1 − k2) y = 0,
(9)

leading to the following singular i/o: y = 0, u = 0.
b) k1τ2−k2τ1 6= 0, thus (8) has a unique singular behavior

for which the two systems can not be distinguish

0 = (k1τ2 − k2τ1)ẏ + (k1 − k2)y, (10)

u =
τ1ẏ + y

k1
=

τ2ẏ + y

k2
, (11)

solutions of (10) are of the form y = c exp(αt), α =
−(k1−k2)

(k1τ2−k2τ1)
which include the case c (constant) when k1 =

k2 ; moreover (11) gives u = c τ1α+1
k1

exp(αt) leading to

u = d exp(αt) with d = c (τ2−τ1)
(k1τ2−k2τ1)

. Thus (8) has a
unique singular behavior for which the two systems can
not be distinguish y = c, u = c

k1
when k1 = k2 or

y = c exp(αt), u = d exp(αt), when k1 6= k2. This can
be obtained directly suing Theorem 1, for example:

• When k1 = 2, τ1 = 1, k2 = 1, τ2 = 2: k1τ2 − k2τ1 =
3 6= 0, one has a1 = s + 1, b1 = 2, a2 = 2s + 1, b2 = 1
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from which one gets b′1 = 2, b′2 = 1, a1 = a′1, a2 = a′2,
and finally :

(a′2b
′

1 − a′1b
′

2)) = 3s + 1. (12)

Thus p1 = lcm(s + 1, 3s + 1) = (s + 1) (3s + 1) and
p2 = lcm(2s + 1, 3s + 1) = (2s + 1) (3s + 1) leads to

p1 = p1
1a

′

1 = p1
2(a

′

2b
′

1−a′1b
′

2), p
1
1 = (3s + 1) , p1

2 = (s + 1)

p2 = p2
1a

′

2 = p2
2(a

′

2b
′

1−a′1b
′

2), p
2
1 = (3s + 1) , p2

2 = (2s + 1)

Eq (4) and (5) reads as

gcd(b1p
1
1, b2p

2
1)u = 0 ⇔ (3s + 1) u = 0,

(a2b
′

1 − a1b
′

2) y = 0 ⇔ (3s + 1) y = 0,
(13)

leading to the following singular i/o: y = y0 exp(−t/3),
u = u0 exp(−t/3), note that y0

3 = u0.
• When k1 = 1, τ1 = 1, k2 = 2, τ2 = 1: k1τ2 − k2τ1 =

−1 6= 0, one has a1 = s+1, b1 = 1, a2 = s+1, b2 = 2
from which one gets b′1 = 1, b′2 = 2, a1 = a′1 = a2 =
a′2, and finally

(a′2b
′

1 − a′1b
′

2) = − (s + 1) . (14)

Thus p1 = lcm(s+1, s+1) = (s + 1) and p2 = lcm(s+
1, s + 1) = (s + 1) leads to

p1 = p1
1a

′

1 = p1
2(a

′

2b
′

1 − a′1b
′

2), p
1
1 = 1, p1

2 = −1,

p2 = p2
1a

′

2 = p2
2(a

′

2b
′

1 − a′1b
′

2), p
2
1 = 1, p2

2 = −1,

Eq (4) and (5) reads as

gcd(b1p
1
1, b2p

2
1)u = 0 ⇔ u = 0,

(a2b
′

1 − a1b
′

2) y = 0 ⇔ (s + 1) y = 0,
(15)

leading to the following singular i/o: u = 0, y =
y0 exp(−t).

III. SWITCHING SIGNAL ESTIMATION

Assume from now on that all the subsystems models are
known and that any pair is strongly distinguishable. Let us
consider a switching system defined by a finite collection of
input/output behaviors driven by LODE satisfying the above
given assumptions. As soon as the system is not at rest,
for the given control, the measured output can be used to
determine which subsystem is active. From now we want to
obtain effective real-time algorithm to determine the current
“i”. If one is able to construct in real time the following
quantities

ri(t) = ai

(

d

dt

)

yi − bi

(

d

dt

)

u,

it is clear that the current “i” is such that ri(t) = 0 on a
sub-set of R with non zero measure. The problem is thus
reduced to the real-time computation of time derivative of
the output and input despite the noise.

The numerical differentiation technics introduced below
are of non asymptotic nature, and the desired estimation can
be obtained instantaneously (there is a singularity at time
t = 0). But in practice they are numerically implemented
with discrete measured data, thus from a practical point of

view, it will be necessary that the sampling time should be
small enough with respect to the duration time between two
successive switchings3.

A. Numerical differentiation

Consider a signal4 y(t) =
∑

∞

i=0 y(i)(0) ti

i! which is as-
sumed to be analytic around t = 0 and its truncated Taylor
expansion yN (t) =

∑N

i=0 y(i)(0) ti

i! at order N . The usual
rules of symbolic calculus in Schwartz’s distribution theory
[30] yield y

(N+1)
N (t) = y(0)δ(N) + . . . + y(N)(0)δ, where δ

is the Dirac measure at zero. Multiply both sides by (−t)i

and apply the rules tδ = 0, tδ(i) = −iδ(i−1), i ≥ 1. We
obtain a triangular system of linear equations from which
the derivatives y(i)(0) can be obtained (1 ≤ i ≤ N )

(−t)iy
(N+1)
N (t) =

N !

(N − i)!
δ(N−i)y(0) + . . . + δy(N−i)(0)

(16)
It means that the coefficients y(0), . . . , y(N)(0) are linearly

identifiable [16], [17]. The time derivatives of yN (t), the
Dirac measures and its derivatives are removed by integrating
with respect to time both sides of Eq. (16) at least ν times
(ν > N ):

∫ t

0

∫ tν−1

0

· · ·

∫ t1

0

(−τ)iy
(N+1)
N dtν−1 · · · dt1dτ =

N !

(N − i)!

tν−N−i−1

(ν − N − i − 1)!
y(0)+. . .+

tν−1

(ν − 1)!
y(N−i)(0)

It is clear that the numerical estimation rely on
limN→+∞[y

(i)
N (0)]estim(t) = y(i)(0).

Remark 3 These iterated integrals are low pass filters

which attenuate the noises, which are viewed as highly

fluctuating phenomena (see [13] for more details).

Remark 4 The above formulae may easily be extended to

sliding time windows in order to obtain real time estimates

(see [22] for further details).

B. Algorithm

Off line:

1) determine the maximum number of output derivative
necessary for estimation (take the highest derivative of
the output in the collection of LODE describing the
switching system),

2) test distinguishability using conditions given in (5)
which will provide the “bad” input, let us note that
the second relation of (5) can be used to check if the
input is a “bad” one just by checking if it satisfies the
differential relation.

On line:

1) using Alien technics (see section III-A) compute
y, ẏ, . . . , y(kymax); u, u̇, . . . , u(kumax),

3In practice at least 100 times smaller (Thus Zeno phenomenon is assume
not to happen).

4This approach started in [14]. See [15] for references and [24] for
interesting discussions and comparisons.
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2) check if ri(t) is zero for some time interval then the
corresponding active subsystem is the “i-th”,

3) deduce the continuous state estimate using 1.

C. Example

Let us consider the following switching system (2) where

i = 1 : ẋ1 = −x1 + u, y = x1: (i/o) ẏ + y = u,
i = 2 : ẋ1 = x2, ẋ2 = −x1 − x2 + u, y = x1 + x2: (i/o)

ÿ + ẏ + y = u̇ + u,
i = 3 : ẋ1 = − 1

2x1 + u, y = x1: (i/o) 2ẏ + y = 2u,
i = 4 : ẋ2 = −2x1−x2+u, y = x1+x2: (i/o) ÿ+ẏ+2y =

u̇ + u,

For the first order systems, in that follows, x2 is enforced
to zero. Moreover, the output continuity is ensured between
two systems whereas initial condition of derivative output is
randomly chosen in [−0.5,+0.5].
Residuals associated to previous systems are

i = 1 : ri = [ẏ]e + [y]e − u

i = 2 : ri = [ÿ]e + [ẏ]e + [y]e − [u̇]e − u

i = 3 : ri = 2[ẏ]e + [y]e − 2u

i = 4 : ri = [ÿ]e + [ẏ]e + 2[y]e − [u̇]e − u

where [•]e is the estimation of • and to [y]e corresponds
the y denoised signal. The following table gives the singular
input/ouput for which distinuishability is lost.

i\j 1 2

1 X

�
u = u0
y = u0

2

�
u = u0
y = u0

X

3

�
u = 0
y = 0

�
u = u0 exp(t)
y = u0 exp(t)

4

�
u = u0 exp(−t)
y = u0 exp(−t)

�
u = u0 exp(−t)

y = 0

i\j 3 4

1

�
u = u0
y = u0

�
u = u0 exp(−t)
y = u0 exp(−t)

2

�
u = u0 exp(t)
y = u0 exp(t)

�
u = u0 exp(−t)

y = 0

3 X

�
u = u0 exp(3t)
y = u0 exp(3t)

4

�
u = u0 exp(3t)
y = u0 exp(3t)

X

Without noise, output derivatives are estimated according to
the well known Euler’s method. A convincing simulation
when y0 = u0 = 1 shows that systems 1 and 2 are
indistinguishable (i.e. r1 = r2 = 0). Figure 1, system
distinguishability is obtained easily and ensures a very good
state estimation (see figure 1-(d)).
In noisy case (additive output noise N(0, 0.01)), Euler’s
method is not available. We propose to apply recent
results on derivative estimation (see [22]) in order to
evaluate residuals. They are approximatively null when
the associated system is active and becomes non zero in
other case. However, to take the decision, that is to say
to know what is the active system, is not easy (see figure
2-(c)). Here, the mean of each residual is calculated along
a sliding window. Thus at the smallest mean of residual is
associated the active system. According to this logic, states
are estimated (figure 2-(d)).
Figure 3, rather than to estimate output derivative in real
time, a small constant and known delay is allowed for

estimations (see [22] for more details). In this case, as
shown figure 3-(a), in exactly the same simulation context
than previously, decision according to residuals is easier.
Clearly, figure 3-(b), state estimation is improved.

IV. CONCLUSION

System distinguishability has been investigated. Easy to
check necessary and sufficient conditions were obtained,
which provide “bad input” that should be avoided in order
to be able to distinguish the subsystems of the whole linear
switching system. The proposed technics can be imple-
mented in real time as soon as the sampling period is
small enough with respect to the duration time between
two successive switchings. They provide estimation of the
index corresponding to the current active subsystem, and
the state variable of this subsystem, via methods which are
quite robust with respect to corrupting noises. Our approach
will be extended to other switching systems (nonlinear, and
taking into account the discrete part) as for other kind of
systems (linear partial differential equations) in some future
publications.
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Fig. 2: Noised results: sinusoidal input
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