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Abstract— This paper presents a result on the robust synchro-
nization of outputs of statically interconnected non-identical
cyclic feedback systems that are used to model, among other
processes, gene expression. The result uses incremental versions
of the small gain theorem and dissipativity theory to arrive
at an upper bound on the norm of the synchronization error
between corresponding states, giving a measure of the degree
of convergence of the solutions. This error bound is shown to
be a function of the difference between the parameters of the
interconnected systems, and disappears in the case where the
systems are identical, thus retrieving an earlier synchronization
result.

I. INTRODUCTION

Networks of interconnected oscillating dynamical systems
often exhibit some convergence property in terms of the
values of their states or frequencies, leading to state synchro-
nization or phase-locking. Whether or not this phenomenon
takes place depends on the coupling structure, the strength of
this coupling and the similarity of the interconnected systems
in terms of structure and parameters.

This paper investigates the relationship between the degree
of output synchronization in networks of parametrized cyclic
feedback systems (CFSs) and the variation of their parameters
under the assumption that the CFSs are structurally the same.

CFSs represent a class of dynamical systems that has been
widely studied in the literature and has been used to model
gene expression [1], [2], [3], [4], [5]. CFSs have a common
overall structure composed of a unity-gain negative feedback
around a cascade of subsystems. The last subsystem in the
cascade is generally a bounded, monotonically increasing
nonlinearity.

In [5] it was shown that the solutions of the above defined
class of systems are limited to a number of scenarios: a single
equilibrium, a single (non-constant) periodic solution or a
combination of equilibria with homoclinic and heteroclinic
orbits. The more recent work [6] presents a necessary and
sufficient condition for the existence of a diagonal Lya-
punov function proving the global asymptotic stability of
the system. This result was obtained using the passivity
properties of the subsystems making up the cascade and their
interconnection structure. The condition obtained placed an
upper bound on the product of the individual subsystems’
‘secant gains’, see [7]. As is seen in [1], limit cycles are
typically observed when stability is lost due to the breaking
of the above described secant gain condition.

The results herein extend those in [8] where incremental
dissipativity tools were employed to show that the differences
between the outputs of interconnected, identical CFSs tend to
zero under strong, linear, static coupling. Such incremental
stability analysis of signals was covered in [9], [10], [11].
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In this paper, we prove that under the same coupling
assumption as in [8], the differences between the outputs of
interconnected, non-identical CFSs will asymptotically tend
to finite, generally non-zero limits. To do this, we compare
each CFS subsystem to a corresponding nominal subsystem
representing an ‘average’ of the corresponding subsystems.
Based on the monotonicity property of the defining function
of each CFS subsystem, we show that each subsystem is
incrementally output semipassive with an associated positive
scalar quantity, henceforth referred to as the ‘incremental
secant gain’. From here we relate the output synchronization
error to the coupling strength. We do this in two ways:

We first present a small-gain theorem result that shows
that in a network of interconnected, nonidentical CFSs, if
the product of the incremental secant gains is less than
unity, which can always be achieved by strengthening the
coupling, then the differences between corresponding states
of the different CFSs of the network will be upper-bounded
by a constant.

The second method directly employs the incremental dis-
sipation inequalities defining the incremental output semi-
passivity of each subsystem. Using the tools in [6] and [8],
we show that if the coupling is larger than a certain threshold
(determined by the incremental secant gains), the entire
network becomes incrementally output semipassive, with the
result that the corresponding outputs of the interconnected
CFSs converge to within a finite distance of each other.

Each method leads to different sufficient conditions (the
latter being less conservative) allowing to prove that, under
strong coupling, the differences between corresponding states
of the different CFSs of the network are asymptotically
upper-bounded by a constant. Furthermore we show that in
both cases the value of this constant tends towards zero as
the difference between the CFSs reduces, thereby recovering
the result presented in [8].

II. NOTATION

This section introduces the notation that will be used in
later sections. We shall be considering networks of N cyclic
feedback systems (CFSs). Each individual CFS is composed
of a cascade of n scalar subsystems Hi, i = 1, · · · , n, in
negative feedback with a unity gain, as illustrated in Figure 1.

H1 H2 Hnuext

y1

ynu1

Fig. 1. Isolated cyclic feedback system.

The ith state of the jth CFS is represented by xij
∈ R,

which is also the output yij
of the ith subsystem of the jth

CFS. The vector xi ∈ R
N is the vector of the ith states from
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each CFS, i.e. xi = [ xi1 · · · xiN ]
T

. The input to the ith

subsystem of the jth CFS is given by uij
∈ R, and the vector

of inputs to the ith subsystems is ui = [ ui1 · · · uiN ]
T

.

The vector of outputs from the ith subsystems is yi =
[ yi1 · · · yiN ]

T
, and the vector of all the outputs is

Y = [ y11
· · · yn1

· · · y1N
· · · ynN ]T .

We define the operator Π as Π = IN − 1
N

11T , N ∈ Z+,
IN being the N×N identity matrix and 1 the N -dimensional
vector of ones. As described in [12], [8], the operator Π
measures the lack of consensus between the elements of a
vector z ∈ R

N in the following sense: the jth element of the
vector Πz is the difference between the jth element of z and
the average of all the elements of z. Note that ΠT Π = Π.

For any real matrix Γ, we denote by Γs its symmetric
part, i.e. Γs = 1

2

(

Γ + ΓT
)

. Finally, we use the notation | · |
to denote the euclidian norm of a vector.

III. CYCLIC FEEDBACK SYSTEMS

As illustrated in Figure 1, a CFS is defined as a cascade
of subsystems with a unity negative feedback.

Each constitutive subsystem Hij
can be either dynamic or

static. Dynamic subsystems are assumed to have the structure

Hij

{

ẋij
= −fij

(xij
) + uij

yij
= xij

(1)

where fij
(·) is in C1(R≥0), monotonically increasing and

is such that fij
(0) = 0 ∀i, j. On the other hand, static

subsystems are assumed to have the structure

Hij

{

xij
= gij

(uij
)

yij
= xij

(2)

where gij
(·) is in C1(R≥0), monotonically increasing ∀i, j,

and, for i = 1, · · · , n−1, gij
(0) = 0 ∀j. The last subsystem

of the cascade is assumed to be static and represented by the
monotonically increasing, C1(R≥0) map gnj

(·) : [0,∞) →
[−ĝnj

, 0), ĝnj
> 0. Therefore gnj

(·) is bounded ∀j and

g−1
ij

(·) exists ∀i, j. Note that with the above properties, the

positive orthant is invariant (see [6]), and so, assuming all
initial conditions lie in the positive orthant, we need only
consider signals xij

≥ 0, ∀i, j.
The inputs uij

to each of these subsystems satisfy the
following cyclic feedback interconnection rules:

u1j
=uextj

− ynj

uij
=yi−1j

, i = 2, · · · , n
(3)

where uextj
is the external input to the jth CFS, which can

be used to interconnect several CFSs.
In the rest of the paper, we will use the following ultimate

boundedness assumption:
Definition 1 (Ultimate boundedness): The solution of a

cyclic feedback system j is said to be ultimately bounded
if, ∀i ∃Tij

, x̂ij
such that xij

(t) ≤ x̂ij
∀t > Tij

.
The bound x̂ij

can be found explicitly for several classes
of CFSs. For example the Goodwin model given in [3] is a
CFS which can be proven to be semipassive (see [13] for
a definition of semipassivity), and therefore its solutions are
bounded in the sense of Definition 1. However, even for some
CFS models that are not semipassive, such as those discussed
in [1], the bounds x̂ij

can be found for both the isolated and
the interconnected CFSs cases. Since the states xij

form the

arguments of the functions fij
(·) and gij

(·), the invariance
of the positive orthant, the boundedness properties of xij

and
the monotonicity of these functions limit their domains and
hence images to

fij
(·) : [0, x̂ij

] → [0, fij
(x̂ij

)] i = 1, · · · , n

gij
(·) : [0, x̂i−1j

] → [0, gij
(x̂i−1j

)] i = 1, · · · , n − 1

gnj
(·) : [0, x̂n−1j

] → [−ĝnj
, gnj

(x̂n−1j
)] i = 1, · · · , n − 1

Henceforth we shall refer to the domain and image of
fij

(·) or gij
(·) as Dij

and Iij
respectively.

A. Coupling

We assume that network coupling is static and linear. This
type of coupling is conveniently defined using a coupling
matrix Γ ∈ R

N×N . The network coupling topology is thus
defined by the following relation between the inputs and
outputs of the CFSs:

uext = −Γy1 (4)

We further restrict the topology by assuming that:

(A1) rank(Γ) = N − 1
(A2) Γ + ΓT ≥ 0
(A3) Γ1 = ΓT 1 = 0, where 1,0 ∈ R

N are vectors
whose elements are all 1 and 0 respectively.

Note that from (A3), ΓΠ = ΠΓ = Γ. We refer to [8] Section
IV.A for a graph interpretation of these assumptions.

B. Incremental Systems & Incremental Storage Functions

We assume that all corresponding subsystems have the
same parametric structure and only differ by the parameters
of these structures, i.e. Hik

and Hil
have the same parametric

structure, ∀k, l ∈ 1, · · · , N . With each subsystem Hij
, j =

1, · · · , N , we associate the incremental dynamic subsystem

Hi∆

{

Πẋi = − ΠFi(xi) + Πui

Πyi =Πxi

(5)

or the incremental static subsystem

Hi∆

{

Πxi =ΠGi(ui)

Πyi =Πxi

(6)

where Fi(xi) = [ fi1(xi1) · · · fiN
(xiN

) ]
T

, Gi(ui) =

[ gi1(ui1) · · · giN
(uiN

) ]
T

, and where fij
(·) and gij

(·)
satisfy the previous assumptions (see (1) and (2)). The
incremental inputs Πui are given by

Πu1 =Πuext − Πyn

Πui =Πyi−1, i = 2, · · · , n
(7)

where uext = [ uext1 · · · uextN ]
T

.
Proposition 1: For the incremental subsystem Hi∆ de-

fined in (5) or (6), we can write an incremental storage
function Vi which obeys a dissipation inequality of the form

V̇i = −γix
T
i ΠT ΠMi(xi) + γix

T
i ΠT Πui (8)

where γi is a positive constant, Mi(xi) =

[ mi1(xi1) · · · miN
(xiN

) ]
T

and mij
(·) : R → R

is a monotonically increasing function which equals fij
(·)

when Hij
is defined as in (1) and g−1

ij
(·) when Hij

is

defined as (2).
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Proof: Suppose the subsystem is of the dynamic type
(1). Then using Vi = γi

2 xT
i ΠT Πxi we obtain (8) with

Mi(xi) = Fi(xi). For static subsystems, we use Vi = 0
as the storage function. This gives the dissipation inequal-

ity V̇i = 0 = −γix
T
i ΠT ΠMi(xi) + γix

T
i ΠT Πui. with

Mi(xi) = G−1
i (xi) =

[

g−1
i1

(xi1) · · · g−1
iN

(xiN
)
]T

.
We now define a nominal CFS to which each CFS in the

network is compared. As notation, the nominal counterpart of
a set of functions mij

(·), j = 1, · · · , N is m̃i(·). Let m̃i(·) :
Di → Ii, where Di, Ii ⊂ R, be a monotonically increasing
function that is a convex combination of the functions mij

(·),
j = 1, · · · , N :

m̃i(x) =
N
∑

j=1

αij
mij

(x),
N
∑

j=1

αij
= 1, αij

∈ [0, 1],∀j

(9)
where mij

(·) is defined in Proposition 1 and the positive
scalars αij

are to be chosen. The domain Di and image Ii

of the functions m̃i(·) are then respectively the unions of the
domains and the images of the constituent functions mij

(·)
for j = 1, · · · , N .

We also define the function φij
(·) : [0, x̂mi

] → R to be
φij

(xij
) = mij

(xij
) − m̃i(xij

). In vector form, we have

Φi(xi) = [ φi1(xi1) · · · φiN
(xiN

) ]
T

with

Φi(xi) = Mi(xi) − M̃i(xi) (10)

where M̃i(xi) = [ m̃i(xi1) · · · m̃i(xiN
) ]

T
. Finally we

define metrics on the differences between a signal mij
(·)

and its nominal counterpart m̃i(·)

φ̂ij
= sup

xij
∈Di

|mij
(xij

) − m̃i(xij
)| (11)

Φ̂i =
[

φ̂i1(xi1) · · · φ̂iN
(xiN

)
]T

(12)

Lemma 1: For M̃i(·) defined as above, xT
i ΠT ΠM̃i(xi) >

0. Furthermore, if the CFSs, coupled as in (4), are ul-
timately bounded in the sense of Definition 1, ∃γi :
γix

T
i ΠT ΠM̃i(xi) ≥ xT

i Πxi.

Proof: By expanding xT
i ΠM̃i(xi) we obtain

xT
i ΠM̃i(xi) =

1

2N

N
∑

j=1

N
∑

k=1

[(

xij
− xik

)

(m̃i(xij
) − m̃i(xik

))
]

Since m̃i(·) is monotonically increasing, we have
(

xij
− xik

)

(m̃i(xij
) − m̃i(xik

)) ≥ 0, ∀j, k. Therefore

xT
i ΠM̃i(xi) ≥ 0.

For the second part simply let 1
γi

= infx∈Di

dm̃i(x)
dx

, where

the infimum is over the domain of m̃i(·) (which is closed and
bounded because of the ultimate boundedness of the state
xij

). Then, by the mean value theorem we have γi(xij
−

xik
)(m̃i(xij

)− m̃i(xik
)) > (xij

−xik
)2,∀i, j and the result

follows since

xT
i Πxi =

1

2N

N
∑

j=1

N
∑

k=1

(

xij
− xik

)2

We now aim to write incremental dissipation inequalities
satisfied by the incremental subsystems of the CFSs and
refer the reader to [14], [15] for comprehensive treatments
of passivity and the more general concept of dissipativity.
We will show that in general these inequalities will be such
that these subsystems are incrementally output semipassive:
that is, they are incrementally output passive outside a ball
centered on the origin |Πyi| = 0. To show this we make use
of the nominal systems defined above. Before proceeding,
however, we give a formal definition of incremental output
semipassivity:

Definition 2 (Incremental Output Semipassivity): System
Hi∆ is incrementally output semipassive with respect to
input ui and output yi if there exists a positive definite
incremental storage function Vi : R

N → R≥0, a constant
̺ > 0, and a function Hi(·) such that

V̇i ≤ −Hi(Πyi) + (Πui)
T (Πyi)

with Hi(Πyi) > 0, ∀|Πyi| > ̺.

As a result, if there is no incremental input (Πui = 0), the
incremental outputs Πyi will decrease to an absolute value
of at least ̺.

Lemma 2: Assume that the CFSs as defined in (1)-(3),
and coupled as in (4), are ultimately bounded in the sense of
Definition 1. Then the incremental subsystem Hi∆ as defined
in (5) or (6) is incrementally output semipassive in the sense

of Definition 2 with ̺ = γi|Φ̂i| if

1

γi

= inf
xij

∈Di

dm̃i(xij
)

dxij

> 0

where γi is the incremental secant gain of the ith nominal
subsystem and m̃i(·) is defined in (9).

Proof: Using the incremental storage functions sug-

gested in Proposition 1 with 1
γi

= infxij
∈Di

dm̃i(xij
)

dxij

, the

incremental dissipation equality then becomes:

V̇i = −γix
T
i ΠT ΠMi(xi) + γiu

T
i ΠT Πxi (13)

Using ΠT Π = Π and (10) we obtain

xT
i ΠT ΠMi(xi) =xT

i ΠMi(xi)

=xT
i ΠM̃i(xi) + xT

i ΠΦi(xi)
(14)

Using (14) and Lemma 1,

V̇i ≤ −xT
i Πxi − γix

T
i ΠΦi(xi) + γiu

T
i Πxi

≤ −yT
i Πyi − γiy

T
i ΠΦi(yi) + γiu

T
i Πyi

≤ −|Πyi|
(

|Πyi| − γi|Φ̂i|
)

+ γiu
T
i Πyi

(15)

The subsystem is therefore incrementally output semipas-

sive in the sense of Definition 2 with ̺ = γi|Φ̂i|.

C. Synchronization and Incremental Stability

Definition 3 (Output synchronization): The ith output of
a collection of N CFSs is said to be synchronized when,

yij
= yik

,∀j, k ∈ 1, · · · , N
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Definition 4 (Output synchronization error): The
synchronization error σi of the ith output yi, is defined as

σi = lim
t→∞

sup

(
√

(Πyi(t))
T

(Πyi(t))

)

The total output synchronization error is then given by

σ = lim
t→∞

sup
[

((Π ⊗ In)Y (t))T ((Π ⊗ In)Y (t))
]

1

2

=

(

n
∑

i=1

σ2
i

)
1

2

We denote by σ̂i and σ̂ an upper bound on σi and σ
respectively.

Obviously, output synchronization implies zero output
synchronization error (σi = 0, ∀i). Therefore to prove
asymptotic output synchronization, it is enough to prove
that the signal Πyi is asymptotically stable. Furthermore, if
this signal is not asymptotically stable, we shall nevertheless
prove that under certain conditions its magnitude will asymp-
totically decrease below a fixed value that will be referred to
as the upper bound on the asymptotic synchronization error.

IV. MAIN RESULTS

In this section, we obtain bounds on the synchronization
error using two approaches: an incremental small-gain theo-
rem approach and an approach based on incremental output
semipassivity.

A. A incremental small-gain theorem result

Theorem 1: Consider a network of N non-identical CFSs
as defined in (1)-(3), satisfying the assumptions of Lemma
2, coupled as in (4) via a coupling matrix Γ which satisfies
the properties (A1) − (A3), and such that each subsystem
is incrementally output semipassive in the sense of Lemma
2. Defining γi (i = 1, · · · , n) as in Lemma 2, let γ̃1 =

γ1

1+γ1λ2(Γs) , where λ2(Γs) > 0 is the second smallest

eigenvalue of the symmetric part of Γ, and let γ̃i = γi

for i = 2, · · · , n. If the coupling is such that λ2(Γs) >
−1+γ1γ2···γn

γ1
then γ̃1 · · · γ̃n < 1 and an upper bound σ̂i on

the synchronization error σi for the ith output of the CFSs
is

σ̂i = Υ
i
∏

j=1

γ̃j + Θi

where we define Θi =
∑i

j=1 |Φ̂j |
∏i

k=j γ̃k and Υ =

min
(

|ŷn|,
1

1−γ̃1···γ̃n
Θn

)

and ŷn = [ ĝn1
· · · ĝnN ]T .

Proof: Using the dissipation inequality (15), the inter-
connection rules (7) and the coupling (4) we have, for the
first incremental dissipation inequality

V̇1 ≤ −|Πy1|
(

(1 + γ1λ2(Γs))|Πy1| − γ1|Φ̂1| − γ1|Πyn|
)

(16)
From this, observe that V1 = 1

2x
T
1 Πx1 = 1

2y
T
1 Πy1

is monotonically decreasing with time for all |Πy1| >
γ1

1+γ1λ2(Γs)

(

|Φ̂1| + |Πyn|
)

= γ̃1

(

|Φ̂1| + |Πyn|
)

.

Since |Πyn| < |ŷn|, an initial bound σ̂1(1) is given by

σ̂1(1) = γ̃1

(

|Φ̂1| + |ŷn|
)

Therefore after finite time, |Πy1| will decrease below

γ̃1

(

|Φ̂1| + |ŷn|
)

. Now consider the dissipation inequality

V̇2 ≤ −|Πy2| (|Πy2| − γ̃2|Φ2| − γ̃2|Πy1|)

The incremental storage function V2 is monotonically de-

creasing for all |Πy2| > γ̃2(|Φ̂2|+ |Πy1|). Since after finite

time |Πy1| < γ̃1

(

|Φ̂1| + |ŷn|
)

, we know that |Πy2| will,

also after finite time, decrease below γ̃2γ̃1

(

|Φ̂1| + |ŷn|
)

+

γ̃2|Φ̂2|, and so an initial upper bound on the synchronization
error for the second output is

σ̂2(1) = γ̃2γ̃1

(

|Φ̂1| + |ŷn|
)

+ γ̃2|Φ̂2|

This bound will place a limit on the synchronization error
of the subsequent outputs. By repeating this method, the
incremental state Πyi obeys, after finite time, the initial
upper bound σ̂i(1) on the synchronization error σi

|Πyi| < σ̂i(1) = (γ̃i · · · γ̃1)|ŷn| + Θi (17)

We then have an upper bound on the synchronization error
of each incremental output.

Specifically, if γ̃1 · · · γ̃n < 1, we have two upper bounds
on |Πyn|, which are |ŷn| and σ̂n(1). The smaller upper
bound is determined by the magnitude of the differences
in the CFS parameters and the strength of the coupling: if
Θn < |ŷn| then by making the coupling strength λ2(Γs)
large enough γ̃1 can be made sufficiently small so that
σ̂n(1) = (γ̃n · · · γ̃1)|ŷn| + Θn < |ŷn|. As a result, for
the nth output, the upper bound is such that |Πyn| <
min(|ŷn|, σ̂n(1)). If |ŷn| ≤ σ̂n(1), then this upper bound
cannot be reduced and the upper bound on σi is given by
(17). However if σ̂n(1) < |ŷn| then substituting the bound
on |Πyn| into (16) yields

V̇1 ≤ −|Πy1|
(

(1 + γ1λ2(Γs))|Πy1| − γ1|Φ̂1| − γ1σ̂n(1)
)

This iteration gives a new, reduced upper bound σ̂1(2) on σ1

|Πy1| < σ̂1(2) = γ̃1

(

Φ̂1 + σ̂n(1)
)

As a consequence, the upper bound on σi is also reduced to

σ̂i(2) = (γ̃i · · · γ̃1)σ̂n(1) + Θi

This iterative procedure yields a difference equation for the
κth iteration of the synchronization error of the ith output

σ̂i(κ + 1) = (γ̃i · · · γ̃1)σ̂n(κ) + Θi (18)

Letting σ̂n(0) = |ŷn|, it is easy to show that

σ̂n(κ) = (γ̃1 · · · γ̃n)κσ̂n(0) + Θn

κ
∑

m=1

(γ̃1 · · · γ̃n)m−1

and so clearly, if γ̃1 · · · γ̃n < 1

lim
κ→∞

σ̂n(κ) =
1

1 − γ̃1 · · · γ̃n

Θn (19)

Therefore if σ̂n(1) < σ̂n(0) = |ŷn| then we can see from
(18) that σ̂n(κ+1)−σ̂n(κ) = (γ̃1 · · · γ̃n)κ(σ̂n(1)−σ̂n(0)) <
0 and hence σ̂n(κ) decreases to (19) as κ → ∞.
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From this we infer that the minimum value of σ̂n is either
|ŷn| (in the case σ̂n(1) ≥ |ŷn|) or (19) otherwise. Letting

Υ = min

(

|ŷn|,
1

1 − γ̃1 · · · γ̃n

Θi

)

then (18) implies that, after finite time

|Πyi| < σ̂i = Υ

i
∏

j=1

γ̃j + Θi, ∀i

which gives the result.
Remark 1: Note that if all the CFSs are identical, that is,

if φ̂ij
= 0, ∀i, j (from (11)), we obtain zero synchronization

error and hence full output synchronization.
Another feature to note is that strengthening the coupling
(by increasing the coupling gain and therefore λ2(Γs)) can
make the upper bound on the synchronization error for the
first output σ̂1, arbitrarily small and reduce the upper bound
on the synchronization error for the ith output, σ̂i, ∀i =
2, · · · , N , arbitrarily close to σ̂i =

∑i

j=2 |Φ̂j |
∏i

k=j γ̃k.

B. An incremental output semipassivity result

Theorem 2: Consider a network of N non-identical CFSs
as defined in (1)-(3), satisfying the assumptions of Lemma
2, coupled as in (4) via a coupling matrix Γ which satisfies
the properties (A1) − (A3), and such that each subsystem
is incrementally output semipassive in the sense of Lemma
2. Let λ2(Γs) be the second smallest eigenvalue of the

symmetric part of Γ. If λ2(Γs) > k∗ =
−1+γ1···γn(cosn(π

n ))
γ1

then the network of interconnected CFSs is incrementally
output semipassive with a finite total output synchronisation
error upper bound σ̂ given by the right hand side of (25).

Proof: From (15), an incremental dissipation inequality
of the form

V̇i ≤ −yT
i Πyi + γiu

T
i Πyi − γiy

T
i ΠΦi(yi)

can be written for the ith subsystem of the CFSs. Scaling V̇1

by 1
1+kγ1

, k > 0, we then add and subtract kγ1

1+kγ1
yT

1 ΠT Πy1

to it and using ΠT Π = Π we obtain

V̇1 ≤− yT
1 ΠT Πy1 + γ̃1u

T
1 ΠT Πy1 + kγ̃1y

T
1 ΠT Πy1

− γ̃1y
T
1 ΠT ΠΦ1(y1)

where γ̃1 = γ1

1+kγ1
. Notice that we can make γ̃1 arbitrarily

small by increasing k. We then take as an incremental
storage function V for the entire network of CFSs the linear
combination of the incremental storage functions Vi of the
individual subsystems i: V =

∑n

i=1 diVi where di > 0.
The values of di are the same as those in [6], with r =
(γ̃1γ2 · · · γn)

1

n :

d1 = 1, d2 =
r2

γ2
2

, d3 =
r4

(γ2γ3)2
, · · · , dn =

r2n−2

(γ2 · · · γn)2
(20)

Let D = diag{ d1, · · · , dn } and

A =



















−1 0 · · · 0 −γ̃1

γ2 −1 0
. . . 0

0 γ3 −1
. . . 0

...
. . .

. . .
. . . 0

0 0 · · · γn −1



















Using the interconnection rules (7) we obtain:

V̇ ≤
1

2
((Π ⊗ In)Y )

T (

IN ⊗ (DA + AT D)
)

((Π ⊗ In)Y ) +

d1γ̃1(u
T
extΠ

T Πy1 + kyT
1 ΠT Πy1) +

n
∑

i=1

diγiy
T
i ΠΦi(yi)

(21)

Now we include the coupling, uext = −Γy1. Note that ΓΠ =
ΠΓ. We thus obtain

−yT
1 ΓT ΠT Πy1 = −yT

1 ΠT ΓT Πy1 ≤ −λ2(Γs)y
T
1 ΠT Πy1

(22)
Substituting (22) into (21)

V̇ ≤
1

2
((Π ⊗ In)Y )

T (

IN ⊗ (DA + AT D)
)

((Π ⊗ In)Y ) +

d1γ̃1(k − λ2(Γs))y
T
1 ΠT Πy1 +

n
∑

i=1

diγiy
T
i ΠΦi(yi)

Note (from [6]) that if the secant gain condition

γ̃1γ2 · · · γn ≤ secn
(π

n

)

(23)

holds then DA+AT D ≤ −ǫIn ≤ 0 (see [6]). By increasing
k sufficiently, γ̃1 can be made arbitrarilly small, and so
the secant gain condition is satisfied provided that k ≥

k∗ =
−1+γ1···γn cosn(π

n )
γ1

. For k > k∗, we thus can write

the incremental dissipation inequality in the following way:

V̇ ≤− ǫ ((Π ⊗ In)Y )
T

((Π ⊗ In)Y ) +

d1γ̃1(k − λ2(Γs))y
T
1 ΠT Πy1 +

n
∑

i=1

diγiy
T
i ΠΦi(yi)

Finally, if the coupling strength λ2(Γs) ≥ k(> k∗), we have:

V̇ ≤− ǫ ((Π ⊗ In)Y )
T

((Π ⊗ In)Y ) +
n
∑

i=1

diγiy
T
i ΠΦi(yi)

(24)

Define Φ̂ = [ φ̂11
· · · φ̂n1

· · · φ̂1N
· · · φ̂nN

]T

and the diagonal matrix Λ = diag{ γ̃1, γ2, · · · , γn }.
We can equivalently rewrite (24) as

V̇ ≤− ǫ ((Π ⊗ In)Y )
T

((Π ⊗ In)Y ) +

((Π ⊗ In)Y )
T

((IN ⊗ DΛ)Φ̂)

Therefore V̇ < 0 for all

|(Π ⊗ In)Y | >
|((IN ⊗ DΛ)Φ̂)|

ǫ
(25)

showing that the network of CFSs is incrementally output
semipassive and that it achieves an upper bound on the total

output synchronisation error given by σ̂ = |((IN⊗DΛ)Φ̂)|
ǫ

.

Remark 2: Note that if all the CFSs are identical, that
is, if φ̂ij

= 0, ∀i, j (from (11)), the earlier result in [8] is
retrieved, as strong coupling ensures that the network then
becomes incrementally output strictly passive, resulting in
zero synchronization error and hence full output synchro-
nization.
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V. EXAMPLE

The example we will consider here consists of N =
2 interconnected Goodwin model oscillators [3]. The jth

oscillator is given by the following model:

ẋ1j
= −x4j

− bjx1j
+ uextj

ẋ2j
= bjx1j

− bjx2j

ẋ3j
= bjx2j

− bjx3j

x4j
= −

1

1 + x
pj

3j

where uextj
= −k

(

Nx1j
−
∑N

l=1 x1l

)

. Since the system is

semipassive, its solutions are bounded with or without the
coupling, as required by Theorems 1 and 2. The oscillator
parameters are as follows b1 = b2 = 1

2 , p1 = 17 and
p2 = 20. We take as the nominal system the first oscillator
(where j = 1) and so the second oscillator’s deviation

from the first is such that φ̂12
= φ̂22

= φ̂32
= 0 and

φ̂42
= 0.0358. The incremental secant gains of the nominal

system are then γ̃1 = b1
b1+kN

, γ̃2 = 1, γ̃3 = 1
b1

and

γ̃4 = supx3

(

d
dx3

(

− 1
1+x

p1
3

))

= 4.6385. With a coupling

gain k = 10 we have γ̃1γ̃2γ̃3γ̃4 = 0.2263 < 1, thus
satisfying the conditions of both Theorems 1 and 2. With
these parameters, and applying Theorem 1 we see that the
upper bounds on the synchronization errors are as follows:

σ̂1 = 0.0052 σ̂2 = 0.0052

σ̂3 = 0.0105 σ̂4 = 0.2144

The time evolutions and the error bounds for the states x3j

and x4j
, for j = 1, 2 are shown in Figures 2(a) and 2(b).

The upper bound on the total synchronization is then given
by

σ̂ =
∣

∣

∣
[ σ̂1 σ̂2 σ̂3 σ̂4 ]

T
∣

∣

∣
= 0.2148

Using the passivity approach of Theorem 2 however, we
find that the upper bound on the total output synchronization
error is given by (25): σ̂ = 0.2182.

VI. DISCUSSION & FUTURE WORK

We have presented two methods for deriving upper bounds
on the synchronization error of cyclic feedback systems that
are interconnected via static, linear coupling. In the case of
the example given in the previous section we saw that using
either method gives a similar upper bound on the total output
synchronization error σ̂. The advantage of the method given
in Theorem 1 is that bounds on the synchronization error
of individual outputs yi may be found. The disadvantage of
that approach is that it requires the secant gain product to
be less than unity whereas Theorem 2 requires that quantity
to satisfy (23), a less conservative condition as highlighted
in [6].
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Fig. 2. Synchronization error bounds (dashed) and limit cycles (solid).
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