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Abstract— In this paper, we consider one of the basic esti-
mation problem, that of identifying an unknown parameter
in a given model from measurements of input/output data.
The existing methods have been conceived for the estimation
of the value taken by the parameter in a given functioning
condition. However, there are situations where one has to
provide an estimator equally valid for different values of the pa-
rameter associated with various functioning conditions (multi-
value estimation problem). The application of the available
techniques lead then to poor accuracy in estimation. In this
paper we propose a novel approach, the two-stage approach,
tailored to the multi-value estimation problem. We compare
its performances with those achievable with other parameter
estimation techniques such as Prediction Error and Kalman
Filter based methods. By means of a benchmark example, we
spot out advantages and drawbacks of each method, by also
discussing their domain of applicability. It turns that the two
stage approach offers significant improvements.

Index Terms— System identification, Parameter estimation,
White box identification, Extended Kalman filter methods.

I. INTRODUCTION

This paper focuses on the basic problem of estimating
unknown parameters in a given plant from observed data.
To be precise, suppose that data are generated by a dy-
namical system (continuous time or discrete time, linear or
nonlinear, finite or infinite dimensional, noise free or subject
to disturbances) depending on a certain parameter vector
θ ∈ R

q. The system is denoted by P(θ ) as in Figure 1.
While a mathematical model (and a corresponding simulator)

P(θ)
y(t)

e(t)

u(t)

Fig. 1. The data generating system.

for P(θ ) is available, the current value of parameter θ is
unknown and it has to be retrieved based on an experiment
on the plant (white-box identification, [5]). The system
behavior is thus observed for a certain time interval over
which a number N of input and output observations D̄N =
{ȳ(1), ū(1), . . . , ȳ(N), ū(N)} are collected. The issue is then
how to exploit the information contained in the data in order
to obtain a fair estimate of the uncertain parameter θ . Of
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course, the above setting applies also in a purely time-series
framework where no input signal is present. In that case,
D̄N = {ȳ(1), . . . , ȳ(N)}.
This basic problem has been addressed many times in the
literature, [4], [5], [8], [14], [19], but still there are situations
where a satisfactory solution is not available. In particular,
problems are often encountered when the parameter vector θ
can cover a wide range of values corresponding to different
dynamics of the plant P. In those situations, the estimation
method should be designed so as to be equally valid for all
possible values taken by θ . We will refer to such a problem
as multi-value estimation problem.
In order to apply currently available estimation algorithms to
multi-value problems, it is necessary to adapt the “algorithm
tuning knobs” to the current situation associated with the
unknown value taken by θ . This means that a human-
supervised tuning is required from time to time. However,
in many application frameworks such a human-supervision
is not possible and the estimation process should be fully
automatic, able to properly work independently of the value
taken by the unknown θ . To be more concrete, this is
illustrated in the following example.

Example 1 (Pacejka’s model parameters estimation):

The determination of the lateral force generated by a tyre
and acting on a car can be made by resorting to the so-called
Pacejka’s magic formula which supplies the lateral force
as a function of the steering angle, [16]. As is well known
such a formula is a non-linear function depending on five
parameters. Hence the problem of determining the lateral
force is indeed that of estimating these parameters.
Depending on the tyre in use, with its own characteristics
in term of size, constitutive material, inflation pressure,
deterioration, etc., the Pacejka’s parameters may cover a
wide variety of values. The issue is to set-up an estimation
algorithm of these parameters supplying a reliable estimate
of the lateral force for any tyre operating conditions.
Clearly, if the estimation algorithm has to be embedded
in a device installed in the car, no human-supervision is
allowed, and furthermore the estimation algorithm should
work in absence of any information on the specific tyre
characteristics, so as to obtain fair estimates notwithstanding
the tyre changes during the life of the car. �

In this paper, we propose a new estimation method, named
the two-stage approach, which is suitably tailored to multi-

value estimation. Its basic rationale is to reconstruct off-line
the relationship linking the data to parameter θ through
simulation trials. This is achieved thanks to an intermediary
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step aiming at the generation of a set of artificial data. The
procedure develops in two phases: the first one transfers the
information contained in the original data into the artificial
data, while the second one enables establishing the link
between these last data and parameter θ .
The two-stage method has a range of applicability which
looks much wider than that of other approaches today
available.

The paper is organized as follows. First, traditional
approaches to parameter estimation are briefly summarized
in Section II and their advantages and drawbacks are spotted
out. The new two-stage approach is then discussed in
Section III, while Section IV presents a benchmark example
allowing the comparison between different techniques.

II. TRADITIONAL APPROACHES IN MULTI-VALUE

ESTIMATION

Conceptually, a parameter estimator is nothing but a func-
tion f̂ : R

2N → R
q which maps the measured observations

D̄N = {ȳ(1), ū(1), . . . , ȳ(N), ū(N)} into a value for θ . The
design of an estimator consists in finding such a map so that
the returned estimate is as close as possible to the true value.
Normally, f̂ is deduced by exploiting the model equations
for P(θ ), and turns out to be implicitly given through some
optimization procedure.
Three widely used methods are now outlined.

A. Prediction Error approaches

In this approach, a prediction error loss function

V (θ ) =
N

∑
i=1

(y(i)− ŷ(i,θ ))2

is considered, where ŷ(i,θ ) is a predictor of the system
output derived through the model equation for P(θ ). Then,
the estimate of θ is obtained by minimizing V (θ ), i.e.

θ̂ = argminV (θ ).

Here, the function f̂ mapping observations into an estimated
value is implicitly defined by this optimization procedure.
Although very intuitive, this approach suffers from severe
drawbacks as reported in the literature, see e.g. [5]. First
of all, the derivation of ŷ(i,θ ) may not be easy when the
model P(θ ) is complex (nonlinear, infinite dimensional, etc.).
Moreover, when the predictor ŷ(i,θ ) is not perfectly tuned,
the method is highly sensitive to disturbances, especially at
low frequencies, see e.g. [5].
On top of that, one cannot neglect the computational burden
required by these methods. Indeed, V (θ ) is typically a non
convex function and its minimization may be tough. If one
resorts to simple gradient-based methods, the obnoxious
problem of local minima cannot be avoided. Alternatively,
one can consider gridding methods, but then “simulation
would require supercomputers, and optimization an order of
magnitude more”, [5].
All these difficulties make it impossible the efficient use of
these methods when parameter θ can cover a multitude of
values as required in multi-value estimation problems.

B. Maximum likelihood

The maximum likelihood (ML) approach [7], [3], [2] is
another well known estimation method taken from statistics.
It consists in computing the likelihood of possible values of
θ given the observed data; then, the estimate of θ is defined
as the value maximizing the likelihood.
In case of complex systems, ML suffers from major draw-
backs since it requires the full knowledge of the probability
distribution of the disturbances in order to construct the
probability density of data as a function of the unknown
parameter. Furthermore, the calculation and maximization of
the likelihood raises all the computational complexity issues
mentioned before for the prediction error approaches.

C. Kalman filter based approaches

In Kalman filter based methods, [1], [8], [9], [10], [11],
[12], [15], [18], [21], [22], [23], parameter θ is seen as a
state variable by introducing an additional state equation of
the type: θ (k + 1) = θ (k) or θ̇ (t) = 0, depending if time
is discrete or continuous1. Then, the estimation problem is
reformulated as a state prediction problem. In this way, the
function f̂ mapping the data into the estimate is implicitly
defined by the Kalman filter equations.
As is well known, even if P(θ ) were a linear model, the
resulting prediction problem would be nonlinear due to the
introduction of the additional state equation. Thus, typically
one has to resort to nonlinear Kalman filtering, for which
the two most common approaches are the so-called Extended
Kalman Filter (EKF), or the Unscented Kalman Filter (UKF).
There is a huge literature on KF methods, see e.g. [1], [8],
[9], [10], [12], [18], to which we refer the reader for the
EKF and UKF equations.
Apart from the difficulties one can encounter when the
system is continuous-time and/or infinite dimensional, the
actual critical issue of EKF and UKF is that, being settled in a
Bayesian framework, an initial guess for the estimation error
mean and covariance matrix must be supplied. However, the
convergence of the parameter estimate is very sensitive to
the tuning of this mean and covariance matrix, and there
are celebrated (yet simple) examples showing the possible
divergence/nonconvergence depending on the initialization
(see e.g. [13]). In multi-value estimation problems, the only
possibility to obtain reasonable estimates is the re-tuning
of mean and covariance for the current value of θ in
each operating condition. Indeed only local convergence is
achievable, as shown in [6], [13], [17], [20]). Normally,
however, no a-priori information is available on the current
θ and the re-initialization can be performed only by data
manipulation with trial and error empirical attempts and
questionable findings.
In conclusion, it appears that there is no way of making
the estimation process via KF methods fully automatic
independent of a human-operator supervision. This prevents

1Perhaps it is worth noticing that many times an additional equation of
the type θ (k + 1) = θ (k) + w(k) or θ̇(t) = w(t) where w is white noise
with suitable variance is preferred in order to increase the reactivity of the
algorithm.
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the use of these approaches in many problems encountered
in practice.

III. THE TWO-STAGE APPROACH

In this section we propose a new parameter estimation
method which is suitably tailored for the multi-value estima-
tion problem.
The basic rationale is to resort to the plant simulator and
to perform off-line intensive simulation trials in order to
reconstruct the function f̂ mapping measured input/output
data into an estimate for the parameter θ .
To be precise, we use the simulator to generate input/output
data for a number of different values of the unknown
parameter θ . That is, we collect N measurements

DN
1 = {y1(1),u1(1), . . . ,y1(N),u1(N)}

for θ = θ1; N measurements

DN
2 = {y2(1),u2(1), . . . ,y2(N),u2(N)}

for θ = θ2; and so on and so forth. By repeated simulation

θ1 DN
1 = {y1(1),u1(1), . . . ,y1(N),u1(N)}

θ2 DN
2 = {y2(1),u2(1), . . . ,y2(N),u2(N)}

...
...

θm DN
m = {ym(1),um(1), . . . ,ym(N),um(N)}

TABLE I

THE SIMULATED DATA CHART AS THE STARTING POINT OF THE

TWO-STAGE METHOD.

experiments one can work out a set of, say m, pairs {θi,D
N
i }

as summarized in Table I. Such set of data is referred to as
the simulated data chart.
From the simulated data chart, f̂ : R

2N→R
q is reconstructed

as that map minimizing the estimate error over simulated
data, i.e.

f̂ ←min
f

1
m

m

∑
i=1

∥∥∥θi− f (yi(1),ui(1), . . . ,yi(N),ui(N))
∥∥∥

2
. (1)

Should f̂ be found, then the θ corresponding to actual mea-
surements D̄N = {ȳ(1), ū(1), . . . , ȳ(N), ū(N)} is estimated as

θ̂ = f̂ (ȳ(1), ū(1), . . . , ȳ(N), ū(N)).

As is clear, solving Problem (1) requires the preliminary
choice of a suitable class of functions F within which
performing optimization. This is indeed a critical issue, due
to the high dimensionality of the problem. Indeed f depends
upon 2N variables, normally a very large number if compared
to the number m of experiments. If F is a class of low-
complexity functions, then it is difficult to replicate the
relationship linking DN to θ for all values of θ (bias error).
On the opposite, if F is a class of high-complexity functions,
then the over-fitting issue arises (variance error), see [14],
[19].
In order to achieve a sensible compromise between bias and
variance error, the two-stage approach is proposed. In this
method, the selection of the family of functions F is split
in two steps. This splitting is the key to select a proper class

F and, in turn, to obtain a good estimator f̂ .
To be more precise, the objective of the first step is to
reduce the dimensionality of the estimation problem, by
generating a new data chart: the new chart is composed
again of m sequences; however, each sequence is constituted
by a limited number n of samples (n≪ N). We will call
such sequences compressed artificial data sequences and the
corresponding chart the compressed artificial data chart. In
the second step, the map between the compressed artificial
observations and parameter θ is identified. By combining the
results of the two steps, the map f̂ is finally unveiled.
We now will give more details on each of the two stages.

First stage. The first step consists in a compression of the
information conveyed by measured input/output sequences
DN

i in order to obtain data sequences D̃n
i of reduced di-

mensionality. While in the data DN
i the information on the

unknown parameter θi is scattered in a long sequence of
N samples, in the new compressed artificial data D̃n

i such
information is compressed in a short sequence of n samples
(n≪ N). This leads to a new compressed artificial data chart

θ1 D̃n
1 = {α1

1 , . . . ,α1
n }

θ2 D̃n
2 = {α2

1 , . . . ,α2
n }

...
...

θm D̃n
m = {αm

1 , . . . ,αm
n }

TABLE II

THE COMPRESSED ARTIFICIAL DATA CHART.

constituted by the pairs {θi,D̃
n
i }, i = 1, . . . ,m, see Table II.

The compressed artificial data sequence D̃n
i can be derived

from DN
i by resorting to a standard identification method.

To be precise, one can fit a simple model to each sequence
DN

i = {yi(1),ui(1), . . . ,yi(N),ui(N)} and then adopts the
parameters of this model, say α i

1,α
i
2, . . . ,α

i
n, as compressed

artificial data, i.e. D̃n
i = {α i

1, . . . ,α
i
n}.

To fix ideas, we suggest the following as a typical method
for the generation of compressed artificial data. For each
i = 1,2, . . . ,m, the data sequence

DN
i = {yi(1),ui(1), . . . ,yi(N),ui(N)}

can be concisely described by an ARX model:

yi(t) = α i
1yi(t−1)+ · · ·α i

ny
yi(t−ny)+

α i
ny+1ui(t−1)+ · · ·+ α i

ny+nu
ui(t−nu),

with a total number of parameters n = ny + nu. The param-
eters α i

1, . . . ,α
i
n of this model can be worked out by means

of the least squares algorithm ([14], [19]):



α i
1
...

α i
n


 =

[ N

∑
t=1

ϕ i(t)ϕ i(t)T
]−1 ·

N

∑
t=1

ϕ i(t)yi(t), (2)

ϕ i(t) = [yi(t−1) · · ·yi(t−ny) ui(t−1) · · ·ui(t−nu)]
T .

Remark 1 (Physical interpretation of the artificial data):

While P(θ ) is a mathematical description of a real plant,
the simple model class selected to produce the compressed
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artificial data does not need to have any physical meaning;
this class plays a purely instrumental and intermediary role
in the process of bringing into light the hidden relationship
between the unknown parameter and the original collected
data. In this connection, we observe that the choice of the
ARX model order is not a critical issue. Anyhow, one can
resort to the available complexity selection criteria such as
FPE or AIC. �

In conclusion, the first stage of the method aims at finding
a function ĝ : R

2N → R
n transforming each simulated data

sequence DN
i into the a new sequence of compressed artificial

data D̃n
i conveying the information on θi. As compressed

artificial data we take the parameters of a simple model,
identified from DN

i . In this way, function ĝ is implicitly
defined by the chosen class of simple models together with
the corresponding identification algorithm.

Second stage. Once the compressed artificial data chart
in Table II has been worked out, problem (1) becomes
that of finding a map ĥ : R

n → R
q which fits the set of

m compressed artificial observations to the corresponding
parameter vectors, i.e.

ĥ←min
h

1
m

m

∑
i=1

∥∥∥θi−h(α i
1, . . . ,α

i
n)

∥∥∥
2
. (3)

Function minimization in (3) is reminiscent of the original
minimization problem in (1). However, being n small, the
bias versus variance error trade-off is no more an issue.
As for the choice of h one can select a linear function:
h(α i

1, . . . ,α
i
n) = c1α i

1 + . . . + cnα i
n, ci ∈ R

q, i.e. each com-
ponent of h is just a linear combination of the compressed
artificial data α i

1, . . . ,α
i
n. As in any linear regression, the

parameters ci appearing here can be easily computed via least
squares, at a low computational cost. Of course such a way of
parameterizing h is computationally cheap but possibly loose.
Better results are expected by choosing a class of nonlinear
functions, such as Neural Networks or NARX models. The
minimization in (3) can be performed by resorting to the
back-propagation algorithm or to other standard algorithms
developed for these classes of nonlinear functions.

Remark 2 (The functions ĝ and ĥ): The two-stage meth-
ods is based on two functions: ĝ and ĥ. The former is
the compression function, transforming simulated data into
compressed artificial data. The latter is the fitting function

providing the map from the compressed artificial data to the
unknown parameter. While ĝ is chosen by the designer, ĥ is
identified by fitting the parameter values to the corresponding
compressed artificial data. �

Use of the two-stage method. Once function ĝ has been
chosen and function ĥ has been identified, the function
f̂ mapping input/output data into the estimate for θ is
given by ĥ(ĝ(·)), see Figure 2. When an actual input/ouput
sequence is observed, say D̄N = {ȳ(1), ū(1), . . . , ȳ(N), ū(N)},
the corresponding unknown parameter can then be estimated
as: θ̂ = ĥ(ĝ(D̄N)).
As previously discussed, viewing this data-θ function as the

J

R U L J L Q D O

G D W D

DUWLILFLDO

G D WD

K

Q

Fig. 2. The estimator function composition.

composition of ĝ and ĥ is the key to transform a numerically
intractable problem into an affordable one.

Remark 3 (Nonlinearity in estimation): Suppose that
both in the first stage and in the second one, a linear
parametrization is used. In other words: in the first stage,
the simple class of models is the ARX one and in the
second stage a linear regression of the compressed artificial
data sequences is used to fit θ . Even in such case, the final
estimation rule is nonlinear. Indeed, the generation of the
compressed artificial data in the first stage requires the use
of the LS algorithm applied to the simulated data sequences
DN i, and this is by itself a nonlinear manipulation of data,
see (2). Hence only the second stage is actually linear.
As a matter of fact, in some cases, such nonlinearity
limited to the first stage of elaboration suffices for
capturing the relationship between the unknown θ and
the data y(1),u(1), . . . ,y(N),u(N). In other cases, instead,
introducing also a nonlinearity in the second stage (namely,
taking h as a nonlinearly parameterized function of the
compressed artificial data) is advisable and leads to better
global results. �

Remark 4 (Two-stage and multi-value estimation): As it
appears the two-stage approach relies on intensive simula-
tions of the plant model and this fact can be computation-
ally demanding. Yet, differently from other approaches, all
these simulations have to performed once for all, through a
single laboratory experiment. The result then is an explicit
expression for f̂ (i.e. f̂ = ĥ(ĝ(·)) which can be easily applied
over and over, for estimating all possible values of θ without
any supervision from an human-operator. Thus, the two-stage
approach is well-suited for multi-value estimation. �

IV. A BENCHMARK-EXAMPLE

Consider the following data-generation mechanism:

x1(k + 1) = θ · x1(k)+ v11(k) (4a)

x2(k + 1) = x1(k)+ θ 2 · x2(k)+ v12(k) (4b)

y(k) = θ · x1(k)+ x2(k)+ v2(k), (4c)

where θ is an unknown real parameter in the range
[−0.9,0.9] and v11∼WGN(0,1), v12∼WGN(0,1), and v2∼
WGN(0,0.01) (WGN = White Gaussian Noise) are mutually
uncorrelated noise signals. In all our experiments, system (4)
was initialized with x1(0) = 0 = x2(0).
In order to test the behavior of various approaches in a
multi-value estimation problem, we extracted 800 values
for the parameter θ uniformly in the interval [−0.9,0.9]
and, for each extracted value of θ , we generated N = 1000
observations of the output variable y. Each time, the N =
1000 observations were made available to the considered
estimation algorithms which returned an estimate of the
corresponding θ . Thus, for each estimation algorithm, we
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obtained 800 estimates θ̂ which then was compared with the
corresponding 800 true values of θ .

A. Prediction Error approaches

The system output can be written as an ARMA process
of the type2:

y(k) =
N(z,θ )

z2− (θ + θ 2)z+ θ 3 e(k), e(k)∼WN(0,λ 2),

where the numerator N(z,θ ) is a second order polynomial
whose coefficients depends on θ in a complex way.
Even in this simple case, due to the complexity of
N(z,θ ), an explicit expression for ŷ(k|θ ) is difficult to
find and, moreover, the minimization of the loss function
∑N

i=1 (y(i)− ŷ(i,θ ))2 is extremely hard. Yet, the ARMA rep-
resentation suggests that θ can be estimated by: 1. modeling
the system output as

y(k) =
z2 + c1z+ c2

z2 + a1z+ a2
e(k), e(k)∼W N(0,λ 2),

where all numerator and denominator coefficients are free; 2.
using the Prediction Error approach to identify the numerator
and denominator coefficients ĉ1, ĉ2, â1, â2; 3. retrieving an
estimate for θ according to the expression θ̂ = 3

√
â2 (note

that if the true values were exactly identified then â2 = θ 3).
The obtained results are displayed in Figure 3 by plotting
the estimates versus the parameter actual values. In other
words, for each point in the figure, the x-coordinate is
the extracted value for θ , while the y-coordinate is the
corresponding estimate θ̂ supplied by the used filter. Clearly
a good estimator should return points concentrating around
the bisector of the first and third quadrant.
As it appears the returned estimates are rather spread show-
ing that this approach is not suitable for parameter estima-
tion.

B. Kalman filters

In order to apply both EKF and UKF, system (4) was
rewritten as:

x1(k + 1) = x3(k) · x1(k)+ v11(k)

x2(k + 1) = x1(k)+ x3(k)
2 · x2(k)+ v12(k)

x3(k + 1) = x3(k)+ w(k)

y(k) = x3(k) · x1(k)+ x2(k)+ v2(k),

where x3 is an additional state variable representing param-
eter a. Herein, we will report the simulation results obtained
by taking as w(k) a WGN(0,10−6).
For each extracted value, θ was estimated as the 1-step ahead
prediction of x3 when 1000 values of the output y were
observed, i.e. θ̂ = x̂3(1001|1000). In such a computation,
both EKF and UKF were applied, but since the obtained
results were quite similar, here the results for EKF are
reported only.

2Note that the ARMA model is fed by a single white noise, while
system (4) is affected by three exogenous disturbances; this is made possible
by the well known spectral factorization theorem, [12].
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Fig. 3. Estimates of θ (h linearly parameterized).

Figures 4-5 display the result obtained in different operating
conditions. Precisely, Figure 4 depicts the results obtained
when EKF was used with the following initialization: x̂1(0)=
x̂2(0) = 1, x̂3(0) =−0.4, and

P(0) =




10 0 0
0 10 0
0 0 2


 (5)

(P(0) is the initial covariance of the estimation error).
Figure 5, instead, displays the results obtained when

P(0) =




1 0 0
0 1 0
0 0 10−2




. (6)

As it appears, the filter behavior is quite different from
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Fig. 4. Estimates of θ via EKF (large initial variance).
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Fig. 5. Estimates of θ via EKF (small initial variance).

the optimal expected one. In many instances the estimate
does not converge to the true value of θ . Furthermore, the
filter behavior strongly depends on the choice of x̂(0) and
P(0). Such a selection, however, is in general non trivial and
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an human-operator supervision is needed to achieve sensible
results. This makes Kalman filters ill-suited for multi-value
estimation problems.
Perhaps it is worth noticing that further simulations were
performed by changing the initialization of x̂3(0) (precisely,
to −0.8, 0.4, and 0.8), but such simulations are not reported
here due to space limitations. The results, however, were
similar to those previously presented, and the conclusions
drawn above remain still valid.

C. The two-stage approach

In order to apply the two-stage approach to system (4),
m = 500 new values of θ were extracted uniformly from
the interval [−0.9,0.9] and correspondingly 500 sequences
of 1000 output values were simulated so as to construct the
simulated data chart.
For each sequence yi(1), . . . ,yi(1000), i = 1, . . . ,500, the
compressed artificial data sequence was obtained by iden-
tifying through the least squares algorithm the coefficients
α i

1, . . . ,α
i
5 of an AR(5) model (yi(t) = α i

1y(t − 1) + · · ·+
α i

5y(t−5)). The final estimator ĥ(α i
1, . . . ,α

i
5), instead, was
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Fig. 6. Estimates of θ (h linearly parameterized).
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Fig. 7. Estimates of θ (h parameterized via neural networks).

computed by resorting, first, to a linear parametrization
(h = c1α i

1 + . . .+c5α i
5)), with coefficients c1, . . . ,c5 estimated

again by the least squares algorithm. As an alternative, ĥ was
also derived by resorting to a neural network (to be precise,
we considered an Elman neural network with 2 layers, 10
neurons in the first layer and one neuron in the second one;
the network was trained with the 500 artificial observations
by the usual back-propagation algorithm).
The obtained estimator was then applied to the 800 data

sequences used also to test the other estimation approaches.
The returned 800 estimates θ̂ were compared with the
corresponding 800 values of θ 3. The performance of the
obtained estimates can be appreciate in Figure 6 (h linearly
parameterized) and in Figure 7 (h parameterized via neural
networks).
As can be seen, the two-stage estimator works much better
than other methods.
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