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Abstract— We consider a class of hybrid systems which is
modelled by continuous-time linear systems with Markovian
jumps in the parameters (LSMJP). We assume that only an
output of the system is available, and therefore the values of
the jump parameter are not known. It is desired to design a
dynamic linear filter such that the closed loop system is mean
square stable and minimizes the stationary expected value of
the square error. We consider uncertainties on the parameters
of the possible modes of operation of the system. A Linear
Matrix Inequalities (LMI) formulation is proposed to solve the
problem.

I. INTRODUCTION

There has been by now a steadily rising level of activity
with linear systems which are subject to abrupt changes in
their structures. This is particularly true for the case in which
the abrupt changes are modelled by a Markov chain. In this
scenario, linear systems with Markovian jump parameters
(LSMJP) outstand with a coherent body of theory. This class
have been the subject of extensive research over the last few
years and the associated literature is now fairly extensive
(see, e.g., [1], [2], [3], [10], [12] and the references therein).
This, in turn, has led to a litany of applications in a variety
of fields (see, e.g., [3], [10], and references therein). The
application of these models includes, for instance, safety-
critical and high-integrity systems (e.g., aircraft, chemical
plants, nuclear power station, robotic manipulator systems,
large scale flexible structures for space stations such as
antenna, solar arrays, etc.).

An enormous impetus to the theory of filtering was given
with the appearance of the seminal papers [7], [9] and [13],
which have been widely celebrated as a great achievement in
stochastic systems theory and of fundamental importance in
applications. One of the challenging questions that remains
in this area is that the description of the optimal nonlinear
filter can rarely be given in terms of a closed finite system
of stochastic differential equations, i.e., the so-called finite
filters (the exceptions are the classical Kalman filter and
those described, for instance, in [11]). Unfortunately, this is
what happens with the optimal nonlinear filter for the LSMJP
model when the jump and state variables are not available. In
[4] it was derived the best linear mean square estimator for
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such systems. The approach adopted there produced a filter
which bears those desirable properties of the Kalman filter:
a recursive scheme suitable for computer implementation
which allows some offline computation that alleviates the
computational burden. This filter has dimension Nn, with
n denoting the dimension of the state vector and N the
number of states of the Markov chain. In [5] it was derived
a stationary version of this filter, which was written in terms
of a Riccati filter equation, leading to a linear time-invariant
filter. In particular it was proved that the covariance matrix
of the error converges to a stationary value, which coincides
with the unique positive semi-definite solution of the Riccati
filter equation.

As in [4] and [5] we consider in this paper that only an
output of the system is available, and therefore the values of
the jump parameter are not known. We consider uncertainties
on the parameters of the possible modes of operation of the
system. An LMI approach is proposed to obtain a robust
linear filter for the LSMJP, that is, a dynamic linear filter
such that the closed loop system is mean square stable and
minimizes the stationary expected value of the square error.

A brief outline of the content of this paper is as follows.
In section II it is presented some assumptions, notation, the
model we will consider and some preliminary results. The
dynamic filter that will be considered and some auxiliary
results are introduced in section III. In section IV it is
presented some mean square stability results and the dynamic
filter problem formulation. Finally in section V the LMI filter
formulation for the case in which there are uncertainties on
the parameters of the possible modes of operation of the
system is presented.

II. NOTATIONS, PRELIMINARIES, AND AUXILIARY
RESULTS

We shall denote by Rn the n-dimensional Euclidean space
and by B(Rn,Rm) the normed bounded linear space of all
m × n matrices with B(Rn) := B(Rn,Rn). The n × n
identity matrix will be denoted by In or simply by I
whenever the dimension is clearly defined. For L ∈ B(Rn),
we denote σ(L) the spectrum of L, L′ will indicate the
transpose of L, and tr(L) the trace of L. As usual, L ≥
0 (L > 0) will mean that the symmetric matrix L ∈ B(Rn)
is positive semi-definite (positive definite), respectively. In
addition, we set B(Rn)+ := {L ∈ B(Rn); L = L′ ≥ 0}.
We use R+ to denote the interval [0,∞) and define by
L ⊗ K ∈ B(Rsn ,Rrm), the Kronecker product for any
L ∈ B(Rs ,Rr ) and K ∈ B(Rn ,Rm). For Di ∈ B(Rn), i =
1, . . . , N , diag(Di) stands for an Nn × Nn matrix where
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the matrices Di, i = 1, . . . , N , are put together corner-
to-corner diagonally, with all other entries being zero, and
dg(Dj) stands for an Nn × Nn matrix where only Dj

is put together corner-to-corner diagonally with all other
entries being zero. In addition, set Hn,m the linear space
made up of all N -sequences of matrices V = (V1, . . . , VN )
with Vi ∈ B(Rn ,Rm), i = 1, . . . , N and, for simplicity, set
Hn := Hn,n . We denote by IRe{λ} the real part of a complex
number λ. For L ∈ B(Hn ,Hn) we set IRe{λ(L)} :=
sup {IRe{λ};λ ∈ σ(L)}. Finally 1{.} stands for the Dirac
measure.

Let (Ω,F , IP ) be a complete probability space carrying
its natural filtration {Ft, t ∈ R+}, as usual augmented by
all null sets in the IP–completion of F , and consider the
class of hybrid dynamical systems modelled by the following
Markovian jump linear system. For t ∈ R+:

dx(t) = Aθt
x(t)dt + Cθt

dw(t), (1)
dy(t) = Hθt

x(t)dt + Gθt
dw(t), (2)

v(t) = Lθt
x(t), (3)

where {x(t)} denotes the state vector in Rn (signal pro-
cess), {y(t)} the output process in Rm, which generates
the observational information that is available at time t, and
{v(t)} denotes the vector in Rr that it is desired to estimate.
Furthermore, we assume that:
A.1) W = {(w(t),Ft) , t ∈ R+} is a standard Wiener

process in Rp.
A.2) θ={(θt,Ft) , t ∈ R+} is a homogeneous ergodic

Markov process with right continuous trajectories and
taking values on the finite set S := {1, 2, . . . , N}. In
addition

IP (θt+h = j|θt = i) =
{

λijh + o(h), i 6= j
1 + λiih + o(h), i = j

.

(4)
where [(λij)] is the stationary N × N transition
rate matrix of {θ} with λij ≥ 0, i 6= j and
λi = −λii =

∑
j: j 6=i λij < ∞. We define

pij(t):=IP (θt+s = j|θs = i), i, j = 1, . . . , N and de-
note pi(t):=IP (θt = i), for any i ∈ S . Notice that,
in this setting, Pt:= (p1(t), . . . , pN (t))′, satisfies the
Kolmogorov forward differential equation dPt/dt =
ΛPt; P0 = P, t ∈ R+, where Λ:=[(λij)] . We set
pi = limt→∞ pi(t) > 0.

A.3) x and {θt} are independent of {w(t)} .
We set A = (A1, . . . , AN ) ∈ Hn , C =

(C1, . . . , CN ) ∈ Hp,n , H = (H1, . . . ,HN ) ∈ Hn,m

and G = (G1, . . . , GN ) ∈ Hp,m , L = (L1, . . . , LN ) ∈
Hn,r . We define zi(t) := x(t)1{θt=i} and Zi(t) :=
E

(
zi(t)zi(t)

′)
i ∈ S , in Rn and B(Rn)+, respec-

tively, Z(t) = (Z1(t), . . . , ZN (t)) ∈ Hn+, and
z(t) := (z1(t)

′
, . . . , zN (t)′)

′ ∈ RNn. Set R(t) =
(R1(t), . . . ,RN (t)) ∈ Hn+, Ri(t) = pi(t)CiC

′
i and R =

(R1, . . . ,RN ) ∈ Hn+, Ri = piCiC
′
i. Set the operator

L ∈ B(Hn ,Hn) as follows: for P = (P1, . . . , PN ) ∈ Hn ,

Lj(P ) := AjPj + PjA
′
j +

∑N
i=1 λijPi. (5)

For system (1) it has been shown in [6] that:
Proposition 2.1: For t ∈ R+ and i=1,. . . ,N, we have:

Ż(t) = L(Z(t)) +R(t). (6)

If IRe{λ(L)} < 0 then Z(t) → −L−1(R) ≥ 0 as t →∞.
We recall now the following definition of mean square

stability for system (1).
Definition 2.2: System (1) is mean square stable (MSS),

if with w(t) = 0 we have that E(‖x(t)‖2) → 0 whenever
t →∞ for any initial condition x(0) and θ0.

The following result was proved in Proposition 5.4 and
Theorem 5.2 in [6].

Proposition 2.3: System (1) is MSS if and only if
IRe{λ(L)} < 0.

We will need a matricial representation of (6) to get the
LMI formulation of the robust filter. In order to do that we
consider the following notation: For matrices Zi ∈ B(Rn),
i ∈ S , and Z = diag(Zi) ∈ B(RNn), set the operator V(Z)
as follows

V(Z) := diag

(
N∑

i=1

λijZi

)
−

{(Λ′ ⊗ In)Z + Z(Λ′ ⊗ In)′} . (7)

Define also

A := Λ′ ⊗ In + diag(Ai) ∈ B
(
RNn

)
, (8)

Gt :=
[√

p1(t)G1 . . .
√

pN (t)GN

] ∈ B(
RNp ,Rm

)
,
(9)

G :=
[√

p1G1 . . .
√

pNGN

] ∈ B(
RNp ,Rm

)
, (10)

Ct := diag(
√

pi(t)Ci) ∈ B
(
RNp ,RNn

)
, (11)

C := diag(
√

piCi) ∈ B
(
RNp ,RNn

)
, (12)

H :=
[
H1 . . . HN

] ∈ B(
RNn ,Rm

)
, (13)

L :=
[
L1 . . . LN

] ∈ B(
RNn ,Rr

)
. (14)

Set Z(t) := E
(
z(t)z(t)′

)
= diag(Zi(t)). From (6) it can be

easily shown the following matricial equation for Z(t):

Ż(t) = AZ(t) + Z(t)A′ + V(Z(t)) + CtC′t. (15)

III. DYNAMIC FILTER

It is desired to design a dynamic estimator v̂(t) for v(t)
given in (3) of the following form:

dẑ(t) = Af ẑ(t)dt + Bfdy(t), (16)
v̂(t) = Lf ẑ(t), (17)
e(t) = v(t)− v̂(t), (18)

where Af ∈ B(Rnf ,Rnf ), Bf ∈ B(Rm,Rnf ), Lf ∈
B(Rnf ,Rr), and e(t) denotes the estimation error. Defining
xe(t)′ =

[
x(t)′ ẑ(t)′

]
, we have from (1), (2) and (16)-(18)

that

dxe(t) =
[

Aθt 0
BfHθt Af

]
xe(t)dt +

[
Cθt

BfGθt

]
dw(t) (19)

e(t) = [Lθt − Lf ]xe(t)
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which is a continuous-time Markovian jump linear system.
We will be interested in filters such that (19) is mean square
stable. Define

Ẑ(t) := E
(
ẑ(t)ẑ(t)′

)
,

U(t) :=




U1(t)
...

UN (t)


 , Ui(t) := E

(
zi(t)ẑ(t)′

)
,

P (t) := E
( [

z(t)
ẑ(t)

] [
z(t)′ ẑ(t)′

] )

=
[

Z(t) U(t)
U(t)′ Ẑ(t)

]
. (20)

L̃ :=
[
L −Lf

]
, Ã :=

[ A 0
BfH Af

]
,

C̃ :=
[ C
BfG

]
, C̃t :=

[ Ct

BfGt

]
.

We have that:
Proposition 3.1: For t ∈ R+,

Ṗ (t) =ÃP (t) + P (t)Ã′ +
[V(Z(t)) 0

0 0

]
+ C̃tC̃′t. (21)

Proof: By Ito’s calculus and noting that BfHθtx(t) =
BfHz(t), we have from (19) that:

˙̂
Z(t) = BfHU(t) + Af Ẑ(t) + U(t)′H ′B′

f + Ẑ(t)A′f
+ BfGtG′tB′

f . (22)

Similarly by Ito’s calculus,

U̇(t) = AU(t) + Z(t)H ′B′
f + U(t)A′f + CtG′tB′

f . (23)

By combining (15), (22) and (23) we get (21).

We want now to re-write (15) so that the term V(Z(t))
can be decomposed as a sum of matrices. In order to do that
we first define Γ` :=

[
ϕ`,i,j

]
, ` ∈ S where

ϕ`,i,j =





|λ`i| i = j,

−λ`i i 6= j, j = `,

−λ`j i 6= j, i = `,

0 otherwise

.

After some straightforward calculations we have that (7) can
be re-written, for Z = diag(Zi), as

V(Z) =
N∑

`=1

(
Γ` ⊗ In

)
dg(Z`).

We have the following result:
Proposition 3.2: Γ` ≥ 0.

Proof: For any vector v′ =
[
v1 · · · vN

]
, we have

that

v′Γ`v =
N∑

i=1

N∑

j=1

ϕ`,i,jvivj = |λ``|v2
` +

∑

i 6=`

λ`iv
2
i

− v`

(∑

j 6=`

λ`jvj

)
−

(∑

i 6=`

viλ`i

)
v`.

But recalling that −λ`` =
∑

j 6=` λ`j , we get that

v′Γ`v =
∑

i 6=`

λ`iv
2
` +

∑

i6=`

λ`iv
2
i − 2

(∑

i 6=`

λ`iviv`

)

=
∑

i 6=`

λ`i

(
v2

` + v2
i − 2viv`

)
=

∑

i 6=`

λ`i

(
v` − vi

)2

≥ 0

showing the desired result.
It follows from Proposition 3.2 that for Z = diag(Zi) ≥

0 , we have that

V(Z) =
N∑

`=1

(Γ1/2
` ⊗ In)(Γ1/2

` ⊗ In)dg(Z`)

=
N∑

`=1

(Γ1/2
` ⊗ In)dg(Z`)(Γ

1/2
` ⊗ In) ≥ 0. (24)

Therefore, writing for ` ∈ S, Ψ` = Γ1/2
` ⊗ In and Υ` :=[

Ψ`

0

]
we have from (21) that

Ṗ (t) = ÃP (t) + P (t)Ã′+
N∑

`=1

Υ`dg(Z`(t))Υ′` + C̃tC̃′t. (25)

IV. MEAN SQUARE STABILITY CONDITIONS

In this section we present some conditions to get the
mean square stability of the system (19). First we present
a necessary and sufficient condition based on the spectrum
of the operator L and the matrix Af .

Proposition 4.1: System (19) is MSS if and only if
IRe{λ(L)} < 0 and Af is a stable matrix.

Proof: (=⇒) If (19) is MSS then, considering w(t) = 0
in (19), we have for any initial condition xe(0), θ0, that

E
(‖xe(t)‖2

)
= E

(‖x(t)‖2) + E
(‖ẑ(t)‖2) t→∞→ 0,

that is, E
(‖x(t)‖2) t→∞→ 0 and E

(‖ẑ(t)‖2) t→∞→ 0. From
[6], IRe{λ(L)} < 0. Consider now an initial condition
xe(0) =

(
0′ ẑ(0)′

)′. Then clearly ẑ(t) = eAf tẑ(0) and
since ẑ(t) t→∞→ 0 for any initial condition ẑ(0), it follows
that Af is a stable matrix.

(⇐=) Suppose now that IRe{λ(L)} < 0 and Af is a stable
matrix. From [6], IRe{λ(L)} < 0 implies that ‖eLt‖ ≤ ae−bt

for some a > 0, b > 0 and t ∈ R+. From (19) with w(t) = 0
and according [6], E

(‖x(t)‖2) ≤ ce−bt‖x(0)‖2 for some
c > 0. Moreover,

dẑ(t) = Af ẑ(t)dt + BfHθ(t)x(t)dt

and thus

ẑ(t) = eAf tẑ(0) +
∫ t

0

eAf (t−s)BfHθ(s)x(s)ds.

From the triangular inequality,

E
(‖ẑ(t)‖2)1/2 ≤ E

(‖eAf tẑ(0)‖2)1/2+∫ t

0

E
(‖eAf (t−s)BfHθ(s)x(s)‖2)1/2

ds
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≤ ‖eAf t‖E(‖ẑ(0)‖2)1/2+

‖Bf‖‖H‖max

∫ t

0

‖eAf (t−s)‖E(‖x(s)‖2)1/2
ds

where ‖H‖max = max{‖Hi‖, i = 1, . . . , N}. Since Af is
stable, we can find a′ > 0, b′ > 0, such that ‖eAf t‖ ≤
a′e−b′t. Then, for some ā > 0, b̄ > 0,

E
(‖ẑ(t)‖2)1/2 ≤ ā

(
e−b′t‖ẑ(0)‖+ e−b̄tt‖x(0)‖

)

showing that E
(‖xe(t)‖2

)
= E

(‖x(t)‖2) +E
(‖ẑ(t)‖2)

t→∞→ 0 for any initial condition xe(0), θ0, so that, from [6],
system (19) is MSS.

The next proposition presents a necessary and sufficient
condition for MSS of system (19) based on an LMI repre-
sentation.

Proposition 4.2: System (19) is MSS if and only if there
exists P > 0, with

P =
[
diag(Qi) U

U ′ Ẑ

]

such that

ÃP + P Ã′ +
N∑

`=1

Υ`dg(Q`)Υ′` < 0. (26)

Proof: (=⇒) Consider the operator L̃ ∈
B(Hn+nf ,Hn+nf ) as follows: for Ṽ = (Ṽ1, . . . , ṼN ) ∈
Hn+nf , L̃(Ṽ ) = (L̃1(Ṽ ), . . . , L̃N (Ṽ )) is given by:

L̃j(V ) := ÃjVj + VjÃ
′
j +

N∑

i=1

λijVi. (27)

where
Ãi =

[
Ai 0

BfHi Af

]
.

Consider model (19) with w(t) = 0, and for t ∈ R+,

P̃i(t) =
[
E(zi(t)zi(t))′ E(zi(t)ẑ(t)′)
E(ẑ(t)zi(t)′) E(ẑ(t)ẑ(t)′1θ(t)=i)

]
, (28)

and P̃ (t) = (P̃1(t), . . . , P̃N (t)) ∈ Hn+nf . From Proposition
2.1, ˙̃P (t) = L̃(P̃ (t)), and from [6] system (19) is MSS if
and only if there exists P̃ = (P̃1, . . . , P̃N ) ∈ Hn+nf , P̃i > 0,
i = 1, . . . , N , such that (see [6])

L̃j(P̃ ) < 0, j ∈ S. (29)

Partitionate P̃j as follows

P̃j =
[
Qj Uj

U ′
j Ẑj

]
, j ∈ S

where Qj ∈ B(Rn), and Ẑj ∈ B(Rnf ), and define Ẑ =∑N
j=1 Ẑj , Z = diag(Qi), and

U =




U1

...
UN


 , P =

[
Z U

U ′ Ẑ

]
.

Notice that P > 0. Indeed since for each j ∈ S , P̃j > 0, it
follows from Schur’s complement that Ẑj > U ′

jZ
−1
j Uj , for

j ∈ S , so that

Ẑ =
N∑

j=1

Ẑj >

N∑

j=1

U ′
jQ

−1
j Uj = U ′Z−1U.

From Schur’s complement again it follows that
[

Z U

U ′ Ẑ

]
= P > 0.

Re-organizing equations (29) and using (24) we obtain that
(26) holds.

(⇐=) From (26) and (24), it follows that L(Q) < 0
where Q = (Q1, . . . , QN ) ∈ Hn which means, from [6],
that IRe{λ(L)} < 0. From the Lyapunov equation (26), it
is easy to see that Ã is stable, and thus in particular Af is
stable. Since IRe{λ(L)} < 0, Af is stable it follows from
Proposition 4.1 that system (19) is MSS.

The next result guarantees the convergence of P (t) as
defined in (20), (21) to a P ≥ 0 when t →∞.

Proposition 4.3: Consider P (t) given by (20), (21) and
that IRe{λ(L)} < 0, Af is stable. Then P (t) t→∞→ P ≥ 0,
with P of the following form:

P =
[

Z U

U ′ Ẑ

]
, Z = diag(Qi) ≥ 0.

Moreover, P is the only solution of the equation in V

0 = ÃV + V Ã′ +
N∑

`=1

Υ`dg(X`)Υ′` + CC′ (30)

V =
[
X R

R′ X̂

]
, X = diag(Xi). (31)

Furthermore if V satisfies

0 ≥ÃV + V Ã′ +
N∑

`=1

Υ`dg(X`)Υ′` + C̃C̃′ (32)

then V ≥ P .
Proof: Consider the operator L̃(·) as in (27), P̃i(t) as

in (28). As shown in [6],

˙̃Pj(t) = L̃j(P̃ (t)) + pj(t)
[

CjC
′
j CjG

′
jB

′
f

BfGjC
′
j BfGjG

′
jB

′
f

]

and P̃j(t)
t→∞→ P̃j ≥ 0, with P̃ = (P̃1, . . . , P̃N ) satisfying

0 = L̃j(P̃ ) + pi

[
CjC

′
j CjG

′
jB

′
f

BfGjC
′
j BfGjG

′
jB

′
f

]
. (33)

Note that P̃i(t) =
[
Qi(t) Ui(t)
U ′

i(t) Q̂i(t)

]
k→∞→

[
Qi Ui

U ′
i Q̂i

]
where

Q̂i(t) = E(ẑ(t)ẑ(t)′1{θ(t)=i}). Moreover

Ẑ(t) =
N∑

i=1

Q̂i(t)
t→∞→

N∑

i=1

Q̂i = Ẑ.
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Defining P =
[

Z U

U ′ Ẑ

]
, Z = diag(Qi), U =




U1

...
UN


 it

follows that P (t) t→∞→ P . Furthermore from (33) we have
that P satisfies (30), (31). Suppose that V also satisfies (30),
(31). Then 0 = AjXj + XjA

′
j +

∑N
i=1 λijXi, 0 = AjQj +

QjA
′
j +

∑N
i=1 λijQi, and since IRe{λ(L)} < 0 we have

from [6] that Qj = Xj , j ∈ S . This yields that 0 = Ã(V −
P )+ (V −P )Ã′. From [6], Proposition 4.3, IRe{λ(L)} < 0
implies that A is stable and thus that the block diagonal
matrix Ã is also stable, yielding that V = P . Finally suppose
that V is such that (31), (32) are satisfied. Then 0 ≥ AjXj +
XjA

′
j +

∑N
i=1 λijXi and it follows that 0 ≥ L(X − Q)

where X = (X1, . . . , XN ). This implies from Proposition
5.6 in [6] that X ≥ Q. Using this fact, we conclude that
0 ≥ Ã(V − P ) + (V − P )Ã′ and again from stability of Ã
it follows that V − P ≥ 0.

Recall that v(t) = Lz(t) and that e(t) = v(t) − v̂(t) =
Lz(t)−Lf ẑ(t). We will be interested in finding (Af , Bf , Lf )
such that Af is stable and minimizes limt→∞E(‖e(t)‖2),
that is, minimizes

lim
t→∞

E(‖e(t)‖2) = tr
(

lim
t→∞

E
(
e(t)e(t)′

))
=

tr

(
L̃ lim

t→∞
P (t)L̃′

)
= tr

(
L̃P L̃′

)
(34)

where the last equality follows from Proposition 4.3 and

P =
[

Z U

U ′ Ẑ

]
, Z = diag(Qi)

which satisfies, according to Proposition 4.3, the equation

0 =ÃP + P Ã′ +
N∑

`=1

Υ`dg(Q`)Υ′` + C̃C̃′. (35)

V. LMI FORMULATION

In this section we shall formulate the filter problem seen
in the previous section as an LMI optimization problem. In
the sequel we present the robust version of the filter. From
the results of the previous section we have that the problem
we want to solve is:

min tr(W ) subject to:

P =
[

Z U

U ′ Ẑ

]
> 0, Z = diag(Qi), (36)

[
P PL̃′

L̃P W

]
> 0 (37)




ÃP + P Ã′ Υ1dg(Q1) . . . ΥN dg(QN ) C̃
dg(Q1)Υ′1 −dg(Q1) . . . 0 0

...
...

...
...

...
dg(QN )Υ′N 0 . . . −dg(QN ) 0

C̃′ 0 . . . 0 −I




< 0.

(38)

Indeed, suppose that P̄ > 0, W̄ > 0, (Af , Bf , Lf ) satisfy
(36), (37) and (38). Then from Schur’s complement,

tr(W̄ ) > tr(L̃P̄ L̃′) (39)

0 > ÃP̄ + P̄ Ã′ +
N∑

`=1

Υ`dg(Q̄`)Υ′` + C̃C̃′. (40)

From Proposition 4.2 we have that system (19) is MSS.
From Proposition 4.3 we know that P (t) t→∞→ P , and (34) e
(35) hold. Furthermore, from Proposition 4.3, we have that
P̄ ≥ P . Since we want to minimize tr(W ), it is clear that
for (Af , Bf , Lf ) fixed, the best solution would be, in the
limit, P , W satisfying (39), (40) with equality. However, as
it will be shown next, it is more convenient to work with
the strict inequality restrictions (36)-(38). We consider from
now on that nf = Nn.

Theorem 5.1: The problem of finding P,W, and
(Af , Bf , Lf ) such that minimizes tr(W ) and satisfies
(36)-(38) is equivalent to:

min tr(W ) subject to
X = diag(Xi), (41)


X X L′ − J ′

X Y L′

L− J L W


 > 0, (42)




P (X, Y, F, R, H,A) S(X,Y ) T (X, Y, C,G)
S(X, Y )′ −D(X) 0

T (X, Y, C,G)′ 0 −I


 < 0,

(43)

where

P (X,Y, F, R,H,A) =[
XA+A′X XA+A′Y + H ′F ′ + R

A′X + YA+ FH + R A′Y + YA+ FH + H ′F ′

]
,

S(X, Y ) =
[
XΨ1 . . . XΨN

Y Ψ1 . . . Y ΨN

]
,

T (X, Y, C,G) =
[

XC
Y C + FG

]
,

D(X) =




dg(X1) . . . 0
...

...
...

0 . . . dg(XN )


 ,

which are now LMI since the variables are Xi, i =
1, . . . , N , Y,W,R, F, J . Once we have X, Y, R, F , we
recover P, Af , Bf , Lf as follows. Choose a non-singular
(Nn × Nn) matrix U , make Z = X−1 = diag(X−1

i ) =
diag(Qi), and choose Ẑ > U ′Z−1U . Define V = Y (Y −1−
Z)(U ′)−1 (which is non-singular since from (42), X >
XY −1X ⇒ Z = X−1 > Y −1). Then

Af = V −1R(U ′X)−1, (44)

Bf = V −1F, (45)

Lf = J(U ′X)−1. (46)
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Proof: For (Af , Bf , Lf ) fixed, consider P , W satis-
fying (36)-(38). Without loss of generality, suppose further
that U is non-singular (if not, re-define U as U + εI so that
it is non-singular). As in [8] define

P−1 =
[

Y V

V ′ Ŷ

]
> 0

where Y > 0 and Ŷ > 0 are Nn × Nn. We have that
ZY + UV ′ = I , U ′Y + ẐV ′ = 0, and thus Y −1 = Z +
UV ′Y −1 = Z − UẐ−1U ′ < Z, V ′ = U−1 − U−1ZY =
U−1(Y −1 −Z)Y implying that V is a non-singular. Define
the non-singular 2Nn× 2Nn matrix

T =
[
Z−1 Y
0 V ′

]

and the non-singular matrices T1, T2 as follows:

T1 =
[
T 0
0 I

]
T2 =




T 0 0 0 0
0 dg(Q−1

1 ) 0 0 0

0 0
. . . 0 0

0 0 0 dg(Q−1
N ) 0

0 0 0 0 I




.

Set X = Z−1 = diag(Xi), Xi = Q−1
i , i = 1, . . . , N , J =

LfU ′Z−1 = LfU ′X , F = V Bf and R = V AfU ′Z−1 =
V AfU ′X . Pre and pos multiply (37) by T ′1 and T1 yields
(42). Pre and pos multiply (38) by T ′2 and T2 yields (43),
showing the desired result.

Assume now that A = (A1, . . . , AN ) ∈ Hn , C =
(C1, . . . , CN ) ∈ Hp,n , H = (H1, . . . , HN ) ∈ Hn,m and
G = (G1, . . . , GN ) ∈ Hp,m , are not exactly known but
instead there are known matrices Aj = (Aj

1, . . . , A
j
N ) ∈ Hn ,

Cj = (Cj
1 , . . . , Cj

N ) ∈ Hp,n , Hj = (Hj
1 , . . . , Hj

N ) ∈ Hn,m ,
Gj = (Gj

1, . . . , G
j
N ) ∈ Hp,m , j = 1, . . . ,M such that for

0 ≤ λj ≤ 1,
∑M

j=1 λj = 1, we have that

A =
M∑

j=1

λjA
j , C =

M∑

j=1

λjC
j

H =
M∑

j=1

λjH
j , G =

M∑

j=1

λjG
j . (47)

Define Aj , Cj , Gj as respectively in (8), (10), (12) replacing
Ai, Gi, Ci by Aj

i , Gj
i , Cj

i .
Our final result presents the robust linear filter for system

(1)-(3):
Theorem 5.2: Suppose that the following LMI optimiza-

tion problem has an (ε−) optimal solution X̄, Ȳ , W̄ , R̄, F̄ , J̄ :

min tr(W ) subject to (41), (42) and for j = 1, . . . , M,


P (X, Y, F,R, Hj ,Aj) S(X, Y ) T (X, Y, Cj ,Gj)
S(X,Y )′ −D(X) 0

T (X, Y, Cj ,Gj)′ 0 −I


 < 0.

(48)

Then for the filter given as in (44)-(46) we have that system
(19) is MSS, and limt→∞ E(‖e(t)‖2) ≤ tr(W̄ ).

Proof: Since (48) holds for each j = 1, . . . , M , and
A,H, C,G are as in (47), we have that (by taking the sum
of (48) multiplied by λj , over j from 1 to M ) that (48) also
holds for A, C, G, H . From Theorem 5.1 we get the result.

VI. CONCLUSION

In this paper we have considered the filtering problem for
LSMJP in the case in which, both, the base-state {x(t)}
and the regime {θ(t)}, are not accessible. Although much
work has been done in this theme, the problem still remains
a challenging one, since the optimal nonlinear filter is not
finite. In view of this, it is considered either a particular
structure for the Markov process or some approximated
filters.

This paper is, to some extent, a continuation of previous
papers by the authors (see, e.g., [4] and [5]). Besides bridging
some gaps in the previous papers, we formulate the LMI and
robust version for the optimal stationary linear filter. The
result is tailored in such a way that it just requires to solve
off-line a set of algebraic equations.

It is perhaps noteworthy here that, when compared with
the Kalman filter and the optimal filter for the case in which
the regime is known, our filter has an additional complexity
in the sense that the innovation gain is given in terms of two
algebraic equations.
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