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Abstract— The aim of this paper is to address left invertibil-
ity for dynamical systems with inputs and outputs in discrete
sets. We study systems that evolve in discrete time within a
continuous state-space. Quantized outputs are generated by
the system according to a given partition of the state-space,
while inputs are arbitrary sequences of symbols in a finite
alphabet, which are associated to specific actions on the system.
We restrict to the case of contractive dynamics for fixed inputs.
The problem of left invertibility, i.e. recovering an unknown
input sequence from the knowledge of the corresponding output
string, is addressed using the theory of Iterated Function
Systems (IFS), a tool developed for the study of fractals. We
show how the IFS naturally associated to a system and the
geometric properties of its attractor are linked to the left
invertibility property of the system. Our main results are a
necessary and sufficient condition for a given system to be
left invertible with probability one on the space of inputs (i.e.
for almost all input sequences), and necessary and sufficient
conditions for left invertibility and uniform left invertibility
under some weak additional hypotheses. A few examples are
presented to illustrate the application of the proposed method.

I. INTRODUCTION

Invertibility of dynamical systems is a fundamental prob-

lem of systems theory, and is distinguished in two aspects:

right invertibility, which is concerned with surjectivity of the

I/O map; and left invertibility, corresponding to injectivity

of the map. While right inversion allows to find inputs and

initial conditions which can produce a given output, left

invertibility deals with the possibility of recovering unknown

inputs from the knowledge of the outputs.

Invertibility problems are of interest in applications like

fault detection in Supervisory Control and data Acquisition

(SCADA) systems, system identification, and cryptography

([15], [9]). Invertibility of linear systems is a well un-

derstood problem, pioneered by [4], and then considered

with algebraic approaches (see e.g. [25]), frequency domain

techniques ([16], [17]), and geometric tools (cf. [19]). More

recent work has addressed the invertibility of nonlinear

systems ([23]). Right-invertibility is studied with differential

geometry methods for instance in [20] and [22] for classes
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of smooth nonlinear systems. In [29], the left invertibility

problem for a switched system is discussed.

This paper deals with left invertibility of a class of

discrete–time nonlinear dynamical systems in a continuous

state-space with inputs and outputs in finite sets. In particu-

lar, we consider the case that inputs are arbitrary sequences

of symbols in a finite alphabet, each symbol being associated

to a specific action on the system. Information available on

the system is represented by sequences of output values in a

discrete set. Such outputs are obtained by quantization, i.e.

are generated by the system evolution according to a given

partition of the state-space.

Quantized control systems have been attracting increasing

attention of the control community in recent years (see

[7], [27], [21] and references therein). The mathematical

operation of quantization and the possibility of considering

only finite inputs occurs in many communication and control

systems. Finite inputs arise because of the intrinsic nature of

the actuator, or anyway wherever the system operates under

a logical supervisor. On the other hand, output quantization

may occur because of the digital nature of the sensor, or

if data need to be digitally transmitted. Most recently, the

attention to quantization has been stimulated by the growing

number of application involving “networked” control sys-

tems, which are systems interconnected through channels of

limited capacity (see e.g. [28], [2]).

The problem considered in this paper is that of determin-

ing whether a given quantized system is left invertible. To

this purpose, we first define the properties of distinguisha-

bility and uniform distinguishability of two input sequences.

Loosely speaking, two input sequences are distinguishable if

they generate two output strings that differ from each other

on a finite time horizon. The main tool used in the paper

is the theory of Iterated Function Systems (IFS). IFS have

been already used as a model in different fields ([5], [24]).

One can construct a natural map in the space of compact

subsets of the euclidean space, simply by mapping a set

in the union of the images of all contractions forming the

IFS. The resulting dynamical systems has a unique attractor,

which is also a compact set. Using recent results, we can

determine the properties of the original control systems in

terms of such compact attractor. More precisely, for every

finite subset C of the finite input alphabet, there exists an

attractor AC. If all attractors are not inside a particular

”diagonal” set, then almost every couple of distinct output

strings is distinguishable (see Theorem 3). These results are

valid in a probabilistic sense, i.e. they hold with probability
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one with respect to the invariant probability measure for the

given IFS.

The property of uniform left invertibility is of even greater

interest for applications. We address such problem using a

graph: paths on this graph are associated to orbits of the

system. The main result about uniform left invertibility is

Theorem 5, that gives necessary and sufficient conditions.

Random Iteration Algorithm (RIA [8]) is also useful to study

uniform left invertibility. This consists simply in choosing

randomly input sequence linked to given probability distri-

bution functions, and generating the corresponding orbits

of the systems. A recent result in dynamical system theory

(Theorem 2) tells us that the asymptotic probability of

belonging to a given set in the state space is linked to

the measure of the set (for the probability measure which

is invariant for the IFS). Moreover such number can be

computed by the RIA as limiting behavior. Finally, we

illustrate our approach on examples.

The paper is organized as follows. The section 2 is

devoted to the background knowledge, the section 3 to the

basic setting of the paper, the definition of simple, uniform,

and almost every distinguishability and invertibility. The

section 4 shows principal results about almost every left

invertibility and almost every uniform left invertibility: its

principal result, Theorem 3, gives necessary and sufficient

conditions for the almost every left invertibility. In section

5 the construction of invertibility graph is illustrated and

a necessary and sufficient condition for left invertibility

and uniform left invertibility is proved under some weak

additional hypothesis. Section 6 contains examples about

the difference between simple and uniform distinguishability

and about the application of the method described in section

5 and 6. Section 7 shows conclusions and future perspec-

tives.

II. BACKGROUND

Definition 1: Let (X,d) be a complete metric space. A

map F : X → X is contractive if ∃c ∈ R, 0 < c < 1 such that

d
(

F(x),F(y)
)

≤ cd(x,y) for all x,y ∈ X. ♦
Definition 2: An Iterated Function System with probabil-

ities is a collection

{X,F1, . . . ,Fn, p1, . . . , pn}, (1)

where where (X,d) is a metric space, Fi : X → X for

i = 1, . . . ,n, and pi ∈ R such that ∑
n
i=0 pi = 1, 0 < pi < 1,

for i = 1, . . . ,n. When the pi’s are not specified we refer to

{X,F1, . . . ,Fn} simply as an IFS. ♦
We refer to [1], [11] for general theory of Iterated

Function Systems (also called Iterated Function Schemes).

In what follows we use σ = {σi}
∞
i=1 to indicate a sequence

of indices in {1, . . . ,n}. Moreover, for every C ⊂ {1, . . . ,n}
we indicate by ΣC the set of all sequence in C, and we define

Σ = Σ{1,...,n}.

Definition 3: An orbit for the IFS (1) is a sequence

{x(k)}∞
k=0 = {x(k)x(0),σ}

∞
k=0 ⊂ X given by the choice of an

initial condition x(0) ∈ X and a sequence σ ∈ Σ, according

to the following rule: x(k +1) = Fσk
(x(k)). ♦

We now define, in a standard way, a measure on

{1, . . . ,n}N.

Definition 4: For i1, . . . , ir ∈ N, j1, . . . , jr ∈ C, the cylin-

drical subsets ν
j1,..., jr

i1,...,ir
of ΣC, is the set of strings defined

by:

σ ∈ ν
j1,..., jr

i1,...,ir
⇔ σk =







j1 f or k = i1
. . .

jr f or k = ir

♦

A cylindrical subset ν
j1,..., jr

i1,...,ir
is the set of all strings that on

the ik − th component assume the value jk, for k = 1, . . . ,r.

The collection of all cylindrical subsets of Σ generates a

σ−algebra B on Σ. On these subsets we define the measure

µ by

µ[ν j1,..., jr
i1,...,ir

] = p j1 · . . . · p jr . (2)

This essentially means that the probability of the choice of

the map Fi is pi independently of the time. The equality

(2) uniquely defines a probability measure on the entire

σ−algebra B denoted by the same symbol µ (see [13]).

Definition 5: [3] A set AC ⊂X is an attractor for the IFS

(1) with respect to the index set C if for all initial condition

x(0) ∈ X and σ ∈ ΣC the orbit {x(k)x(0),σ} of the IFS (1)

tends to AC:

lim
k→∞

d
(

x(k),AC

)

= 0,

where d
(

x(k),AC

)

= infa∈AC
d(x(k),a). ♦

The orbit “is forced” to approach the attractor: we have

then asymptotic information about orbits.

Definition 6: A set IC ⊂X is an invariant set for the IFS

(1) with respect to the index set C if

IC =
⋃

i∈C

Fi(IC). ♦ (3)

Note that, if IC is an invariant set, given any initial

condition x(0) in IC, every possible orbit of the IFS (1)

with indexes in C is contained in IC. The next result shows

that attractors and invariant sets exist for contractive IFS and

are compact for all input sets C.

Theorem 1: [1][11][3] Let the IFS with probabilities (1)

be contractive and let C ⊂ {1, . . . ,n} be given. Then, for

every σ ∈ ΣC the limit

φ(σ) = lim
k→∞

Fσ1
◦ . . .◦Fσk

(x)

exists for every x ∈ X and is independent of x. The set

φ(ΣC) = AC is the unique compact attractor and invariant

set with respect to {F1, . . . ,Fn}. Moreover, for all ini-

tial condition x(0) and µ−almost every σ ∈ ΣC, the set

{x(k)}k∈N

⋂

AC is dense in AC. ♦
Proposition 1: [1] Let C1,C2 ⊆ {1, . . . ,n} such that C1 ⊆

C2. Then AC1
⊆ AC2

♦.

The attractor AC in the Theorem 1 is easily algorithmic

computable with the so called Random Iteration Algorithm

([8]). Let us briefly illustrate how the Random Iteration

Algorithm proceeds. An initial point x0 ∈ X is chosen. One

of the transformations is selected “at random” from the set

{F1, . . . ,Fn}, but the probability that each Fi is selected is

pi for i = 1, . . . ,n. The selected transformation is applied
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to produce a new point x1 ∈ X. Again a transformation is

selected using associated probabilities, in the same manner,

independently from the previous choice, and applied to x1

to produce a new point x2, and so on. The application of

the Random Iteration Algorithm with any initial condition

let the orbit tend to the attractor (see [1][8]). Moreover, the

Random Iteration Algorithm has further properties, due to

ergodic properties of the dynamics on the attractor of an

IFS:

Theorem 2 (Elton): [10]

Let {X,F1, . . . ,Fn, p1, . . . , pn} be an IFS, and indicate with

{xk}
∞
k=0 a generic orbit of the IFS. Let B Borel subset of X

with boundary of zero Lebesgue measure. Let N (B,k) be

the number of points in {x0, . . . ,xk}∩B. Then, for all initial

conditions x0 and µ-almost every σ ∈ Σ the limit

LB = lim
k→∞

{

N (B,k)

k +1

}

(4)

exists and assumes a common value. ♦
Remark 1: Both the Theorem 1,2 have a “practical” in-

terpretation: running the Random Iteration Algorithm these

results holds “almost surely”, namely with probability one

with respect to the measure µ . This is of course desirable

because it allows the help of computers. ♦
There is another way of looking at IFS, or equivalently at

their attractors, that make the IFS “equivalent”, in a precisely

specified sense, to a space of strings, namely the code space:

Definition 7: The code space Σ associated with the IFS

(1), is the space of all sequences on n symbols. An address of

a point a∈A{1,...,n} is any member of the set φ−1(a) = {σ ∈
Σ : φ(σ) = a}. The attractor is said to be totally disconnected

if each point possesses a unique address. ♦
Proposition 2: [1] The attractor A = A{1,...,n} is totally

disconnected if and only if Fi(A )∩Fj(A ) = /0 ∀i 6= j. ♦

III. BASIC SETTING

In this paper we consider discrete-time, time-invariant,

non-linear systems of the form
{

x(k +1) = f
(

x(k),u(k)
)

= fu(k)(x(k))
y(k) = q

(

x(k)
) (5)

where x(k) ∈ R
d is the state, y(k) ∈ Y is the output, and

u(k) ∈ U is the input. We assume that Y is a discrete set.

The map q : R
d →Y is induced by a partition P =

⋃M
i=1 Pi

of R
d through q : (x ∈ Pi) 7→ i and will be referred to

as the output quantizer. We admit infinite partitions, i.e.

M ∈ N ∪ +∞, but we assume that U is a finite set of

cardinality m. With no loss of generality (modulo redefining

the dynamics f (·, ·) and the function q), we will assume

U = {1, . . . ,m} and Y = {1, . . . ,M}. We further assume

that the system dynamics are contractive, in the sense of the

following definition:

Hyp 1: fu : R
d → R

d , u = 1, . . . ,m, is a contraction. ♦
We suppose that to each i ∈ {1, . . . ,m} it is associated a

real number pi with 0 < pi < 1, ∑
m
i=1 pi = 1 that is interpreted

as the probability of the event {u(k) = i}.

If x0 is an initial condition and (u1, . . . ,uk2
) a sequence

of inputs, we let f
k2
k1

(x0,u1, . . . ,uk2
) denote the sequence of

outputs (yk1
, . . . ,yk2

) generated by the system (5) with initial

condition x0 and input string (u1, . . . ,uk2
).

Definition 8: A pair of inputs strings {ui}i∈N, {u′i}i∈N is

distinguishable if ∀x0,x
′
0 ∈ R

d ∃k = k(x0,x
′
0,{ui},{u′i}) ∈ N

such that

f k
0 (x0,u1, . . . ,uk) 6= f k

0 (x′0,u
′
1, . . . ,u

′
k). ♦

Definition 9: A pair of input strings {ui}i∈N, {u′i}i∈N is

uniformly distinguishable if for every compact set K ∈R
d ×

R
d there exists k = k({ui},{u′i}) ∈ N, l = l(K) such that

∀(x0,x
′
0) ∈ K and ∀m > l the following holds:

um 6= u′m ⇒ f m+k
m (x0,u1, . . . ,um+k) 6= f m+k

m (x′0,u
′
1, . . . ,u

′
m+k).

In this case, we say that the strings are uniformly distin-

guishable in k steps (or with invertibility time k) and after

time l (or with waiting time l). ♦

Definition 10: A system of type (5) is left invertible if

the following holds:

X For every u,u′ ∈ U N, there exists l(u,u′) ∈ N such that,

if ui 6= u′i with i > l, then the pair u,u′ is distinguishable. ♦

Definition 11: A system of type (5) is µ-almost every-

where left invertible if the relation X in Definition 10 is valid

for µ-almost every pair of different input strings, where µ
is the measure defined in (2). ♦

Definition 12: A system of type (5) is uniformly left

invertible in k steps if, for initial conditions in a compact

set K ⊂ R
d ×R

d , every pair of distinct input sequences is

uniformly distinguishable in k steps after a finite time l,

where k is constant and l depends only on K.

A system of type (5) is µ-almost everywhere uniformly

left invertible in k steps if, for initial conditions in a compact

set K ⊂ R
d × R

d , µ-almost every pair of distinct input

sequences is uniformly distinguishable in k steps after a

finite time l, where k is constant and l depends only on

K (µ is the measure defined in (2)). ♦

So, for a left invertible system, it is possible to recover

infinite input strings observing the corresponding infinite

output strings. For a uniform left invertible system, it is

possible to recover the input string until the instant m

observing the output string until the instant m + k, and to

obtain an algorithm to reconstruct the input symbol used at

time m > l by processing the output symbols from time m

to m+ k.

IV. ATTRACTORS AND LEFT INVERTIBILITY

In this section we introduce a technique that links the

invertibility problem to the theory of Iterated Function

Systems and the properties of their attractors. Define

Q =
⋃

y∈Y

{q−1(y)×q−1(y)} ⊂ R
2d

i.e. the union of the preimages of two identical output

symbols. In other words, Q contains all pairs of states that

are in the same element of the partition P .
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To address left invertibility, we are interested in studying

the following system on R
2d :

X(k +1) = FU(k)(X(k)) =

[

f (x1(k),u(k))
f (x2(k),u

′(k))

]

(6)

where X(k) =

[

x1(k)
x2(k)

]

; U(k) = (u(k),u′(k)) ;

If it is possible to find an initial state in Q and an

appropriate choice of the strings {uk},{u′k} such that the

orbit of (6) remains in Q, it means that the two strings

of inputs give rise to the same output for the system (5).

Conditions ensuring that the state is outside Q will be seeked

to guarantee left invertibility.

Definition 13: The IFS associated to the system (6) is

{K;F(1,1),F(1,2), . . . ,F(m,m);P(1,1),P(1,2) . . . ,P(m,m)}, (7)

where K is a compact subset of R
2d , and Pi, j = pi p j. ♦

Definition 14: For any C ⊂ U ×U it is denoted by ΣC

the set of all sequences σ = {σi}
∞
i=0 such that σi ∈ C for

every i ∈ N. Moreover we define n = m2 and Σ = ΣU ×U to

be the code space on n elements. ♦
Thanks to the Theorem 1, given a system of type (5) and

a subset of input symbols C for the corresponding system

of type (6), it is possible to describe a set AC that is both

an attractor and an invariant set.

Note that the attractor associated to a single U ∈ U ×
U , indicated by XU , by Contraction Theorem (see [12]), is

a unique fixed point, and it can be approximated iterating

the map FU . For every U ∈ U ×U , for all X ∈ R
2d XU =

limk→∞ Fk
U (X). The relative position of these fixed points

with respect to Q is sufficient to conclude about the µ-almost

every left invertibility. Let ∆ denote the diagonal of U ×U ,

i.e. ∆ = {(1,1),(2,2), . . . ,(m,m)}.
Theorem 3: If there exists U 6∈ ∆ such that XU ⊂ Q, then

the system (5) is not left invertible. If every XU ,U 6∈ ∆ is not

in Q̄, the closure of Q, the system (5) is µ-almost everywhere

left invertible. ♦
Proof: Suppose that there exists U 6∈ ∆ such that XU ⊂ Q.

Select XU as initial condition and choose σ to be the constant

sequence σi = U ∀i ∈ N. The resulting orbit is the constant

orbit X(i) = XU ∀i ∈ N, and it is clearly contained in Q, so

the system is not left invertible.

Suppose that U ∈U ×U ,U 6∈∆ ⇒ XU 6∈ Q̄. First observe

that in this hypothesis no attractors AC,C 6⊂ ∆ are included

in Q̄, because of the Proposition 1: indeed every attractor

AC,C 6⊂ ∆ must contain a XU ,U 6∈ ∆.

So Theorem 1 assures that for µ-almost every couple of

input strings the trajectory is dense in A . So, if A has

a point p not in Q̄, the generic trajectory contains points

arbitrarily close to p and so contains points that are not

included in Q. This proves the µ-almost everywhere left

invertibility result. ♦

V. INVERTIBILITY GRAPH AND LEFT INVERTIBILITY

We now introduce a graph, whose properties are linked

to uniform left invertibility.

Definition 15: The graph Gk of depth k associated to the

attractor A is given by:

• The set of vertices V = {Aσ1...σk
= Fσk

◦ . . .◦Fσ1
(A ) : σi ∈

Σ}
• There is an edge from Aσ1...σk

to Aω1...ωk
if and only if

σi+1 = ωi, for i = 1, . . . ,k− 1. In this case we say that the

edge is induced by the input ωk. ♦

Remark 2: It follows from the definition of Gk that

1) If there is an edge between Aσ1...σk
and Aω1...ωk

, then

there exists U ∈ U × U such that FU (Aσ1...σk
) ⊂

Aω1...ωk
.

2)
⋃

σi∈Σ Aσ1...σk
= A : i.e. the union of vertexes of Gk,

considered as sets, is the whole attractor.

3) If the attractor A is totally disconnected, the vertices

of Gk provide a partition of the attractor. ♦

Definition 16: Consider the graph Gk, and collapse to a

single vertex, denoted by AI , all vertices Aσ1...σk
such that

Aσ1...σk
∩{R

2d \Q} 6= /0. Moreover every edge from AI is

deleted. This new graph is called internal invertibility graph,

and denoted with IGk. The set of vertices of IGk is denoted

by VIGk
.

Now consider the graph Gk, and collapse to a single ver-

tex, denoted by AE , all vertices Aσ1...σk
such that Aσ1...σk

∩
Q = /0. This new graph is called external invertibility graph,

and denoted by EGk. The set of vertices of EGk is denoted

by VEGk
. In the following we use the symbols VIGk

,VEGk
to

denote the vertices of the graphs as well as the set of points

that they represent. ♦

Definition 17: A path {Vi}i∈N on EGk or IGk is called

proper if for every l ∈ N there exists an input Ui 6∈ ∆ with

i > l, that induces the edge Vi →Vi+1.

A finite path {Vi}
m
i=0 on EGk or IGk is called finite proper

path if the first edge is induced by an input not in ∆. ♦

Proposition 3: There exists an orbit of the system (6)

included in the set of vertices of VIGk
\AI , if and only if

there exists an infinite path in IGk.

Proof: If there is an orbit {Xi} = {σi ◦ . . . ◦ σ1(X0)}
∞
i=1

included in VIGk
\ AI , then we can construct an infinite

path on IGk by associating to each Xi, i ≥ k the vertex

Aσi−k,...,σi−1
such that Xi ∈ Aσi−k,...,σi−1

. It is really a path

(of infinite length) on the graph IGk thanks to the Remark

2, and never touches AI .

Conversely, if there is an infinite path {V1,V2, . . .} in IGk,

first note that it cannot touch AI because there is no edge

starting from AI . Then, thanks to the first part of Remark 2,

it is possible to exhibit an orbit included in VIGk
\AI . Indeed

if any X1 ∈V1 is chosen, then there exists an U1 ∈ U ×U

such that X2 = FU (X1) ∈V2; there exists U2 ∈ U ×U such

that X3 = FU (X2) ∈ V3. Continuing in this way for every

i∈N it is found an Ui−1 ∈U ×U such that Xi = FU (Xi−1)∈
Vi. This procedure gives rise to an orbit of the system (6)

included in VIGk
\AI . ♦

Proposition 4: Fix i ∈ N. A sufficient condition for the

uniform left invertibility of the system (6) is the absence of

finite proper paths of arbitrary length in EGi.
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Proof: Suppose that the system (6) is not uniformly left

invertible. Then, for every j ∈N there exists an orbit {Xp}=
{σp ◦ . . .◦σ1(X0)}

∞
p=1 such that X1 = FU (X0) with U 6∈∆ and

{Xp}
j
p=0 ⊂ Q∩A . Then we can construct a path on EGi by

associating at each Xp, p ≥ i the vertex Aσp−i,...,σp−1
such

that Xp ∈ Aσp−i,...,σp−1
. It is really a proper path (because

X1 = FU (X0) with U 6∈ ∆) on the graph EGi thanks to the

Remark 2, and for every p ≤ j Vp 6= AE , because AE ∩

Q = /0 and {Xp}
j
p=0 ⊂ Q. It remains to note that, since this

construction can be made for every j ∈ N, proper paths of

arbitrary length are present in EGi. ♦

Proposition 5: Suppose that no point of A belongs to the

boundary ∂Q of Q, or equivalently that infa∈A d(a,∂Q) > 0.

Then there exists a k ∈N such that VIGk
\AI =VIGk

∩Q. This

in turn implies that IGk = EGk

Proof: We first show that A ∩ ∂Q = /0 if and only if

infa∈A d(a,∂Q) > 0.
Suppose that A ∩ ∂Q = /0. If infa∈A d(a,∂Q) = 0, then

choose a sequence {ak}⊂A such that limk→∞ ak ց 0. Since

A is compact there is an accumulation point a∈A for {ak}.

Then it is immediate to see that d(a,∂Q) must be zero. So

a should belong to ∂Q because ∂Q is a closed set. This is

impossible because we supposed that A ∩∂Q = /0. So it must

be infa∈A d(a,∂Q) > 0. Conversely if infa∈A d(a,∂Q) > 0,

then A ∩∂Q = /0.

So, assume now that c = infa∈A d(a,∂Q) > 0. Choose k

such that every set V i
IGk

has a diameter δi < c. Then VIGk
\

AI = VIGk
∩Q because no VIGk

can intersect ∂Q. ♦

Theorem 4: Suppose that A ∩∂Q = /0. Then the follow-

ing conditions are equivalent:

1) The system (5) is left invertible;

2) IGk̄ does not contain a proper path, where k̄ is such

that VIGk̄
\AI = VIGk̄

∩Q;

Proof: Suppose that IGk̄ contains a proper path {Vi}i∈N.

By Proposition 3 there exists an orbit {Xi}i∈N, where Xi ∈Vi.

Note that Xi 6∈AI because no edges start from AI . The orbit

is included in Q because Xi ∈VIGk̄
\AI =VIGk̄

∩Q. Moreover

U 6∈ ∆ for an infinite number of times, because the path is

proper. This contradicts left invertibility.

Viceversa, suppose that the system (5) is not left in-

vertible. Then there exists an orbit {Xi}i∈N ⊂ Q, such that

Xi = FU (Xi−1) and U 6∈ ∆ for an infinite number of i ∈ N.

This orbit, induces, in the same way as in the proof of

Proposition 3, a proper path in IGk̄. ♦

Theorem 5: Suppose that A ∩∂Q = /0. Then the follow-

ing conditions are equivalent:

1) The system (5) is uniformly left invertible;

2) IGk̄ does not contain finite proper path of arbitrary

lengths, where k̄ is such that VIGk̄
\AI = VIGk̄

∩Q;

Proof: Suppose that IGk̄ contains finite proper paths of ar-

bitrary length {V α
i }mα

i=0. By Proposition 3 there exists an orbit

{Xα
i }i∈N, where Xα

i ∈V α
i . The orbit is included in Q because

Xα
i ∈ VIGk̄

\AI = VIGk̄
∩Q. Moreover Xα

1 = FUα (Xα
0 ), with

Uα 6∈ ∆. This contradicts uniform left invertibility. The

inverse implication is true by Proposition 4. ♦

VI. EXAMPLES

Consider the system
{

x(k +1) = Jα
d (a)x(k)+1du(k)

y(k) = ⌊π1x(k)⌋
(8)

Where Jα
d (a) is the matrix of dimension d with a’s on the

principal diagonal and α in the upper one, with x(k) ∈ R
d ,

y(k) ∈ Z, 1d = (1,1, . . . ,1)T , u(k) ∈ {u1, . . . ,um} ⊂ R, and

⌊·⌋ is the floor function. We examine a situation in which

all inputs are equally probable, i.e. we know no information

about recurrence of inputs: ∀i = 1, . . . ,m pi = 1
m

. Define

U(i, j) = (1ui,1u j)
T , Si = [0, i), S =

(

S3×S3×S3×S3×S3

)2

,

and M =

(

J
1/2

5 ( 1
10

) 0

0 J
1/2

5 ( 1
10

)

)

.

Example 1: Consider the system (8), with d = 5, a =
1/10, α = 1/2 and u ∈ {0,1/20,1}. Then we have, for

example, X(0,1/20) ∈ Q (X(0,1/20) can be computed iterating

the transformation x 7→ Mx+U(0,1/20)), so the system is not

left invertible by Theorem 3.

Consider instead the system (8), with U ∈ {0,1}. Then

X(0,1) 6∈ Q and X(1,0) 6∈ Q. By Theorem 3 the system is

µ−almost everywhere left invertible.

We are going to show that the system is indeed uniformly

left invertible. Direct calculations show that
⋃

(i, j)∈{0,1}2

M(S)+U(i, j) ⊂ S; (9)

U(i, j) 6= U(i′, j′) ⇒ M(S)+U(i, j)

⋂

M(S)+U(i′, j′) = /0; (10)

(i, j) 6∈ ∆ ⇒ M(S∩Q)+U(i, j)

⋂

Q = /0. (11)

Equation (9) implies by Theorem 1 that S contains the attrac-

tor, equation (10) implies by theorem 2 that the attractor is

totally disconnected, and equation (11) implies by Theorem

?? that the system is uniformly left invertible in 1 step. ♦
Finally, we give another example in dimension 1, drawing

the attractor of the system and the invertibility graph.

Example 2: Consider a linear system with

d = 1, a = 1/5, U = {0.2,0.9} (12)

System (12) is contractive because a < 1. The attractor

of the system, in Figure 2, has been drawn with Random

Iteration Algorithm, and it is totally disconnected. Indeed

calculations show that it is included in the square S =
[0.2,1.2]× [0.2,1.2], and that

{

1/5 ·S +(u1,u2)
}

⋂

{

1/5 ·S +(u3,u4)
}

= /0

if (u1,u2) 6= (u3,u4)∈U ×U . This suffices, by Proposition

2, to conclude that the attractor of system (12) is totally

disconnected. To our purpose we can divide the attractor

in 16 parts (indicated by a circle around them), each one

being represented by an address of two symbols in the

alphabet U ×U . Then direct calculations shows that IG2

and EG2 coincide, and that the resulting graph is that

one of figure 2, where we write UiU j instead of AUiU j
,
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