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Abstract— Stability, tracking and the trajectories of a class of
hysteretic systems controlled by a PI controller is considered.
The system output (not its derivative) is measured and con-
trolled. Only a simple bound on the controller gain parameter
is assumed. The closed-loop system is BIBO-stable with a finite
gain of one. Furthermore, provided that the desired output is
within the limits of the system output, the system will track a
constant reference input with zero steady-state error. A bound
on the time required to achieve a specified error is obtained.

I. INTRODUCTION

Hysteretic systems are seen in many applications. Smart

materials, such as piezoceramics, shape-memory alloys and

magnetostrictive materials, are an important group of hys-

teretic systems. Uncertainties seen in the physical system

together with complex nonlinear behaviour of the system

make it difficult to provide a robustly stabilizing controller

for a hysteretic system.

A popular approach for control of a hysteretic system

is to linearize the system by incorporating the inverse of

the hysteresis, and then design a linear controller for the

resulting linear system that is close to unity [1]–[3, e.g.].

In this approach, the model must of course be invertible.

Furthermore, an accurate model of the hysteretic system

is required since modelling errors will affect the overall

performance and could lead to instability. Even small errors

in the model can lead to quite large errors in the inverse

model. Also, the inclusion of the inverse of the hysteresis

model in the controller leads to a complex controller.

In [4], a magnetostrictive actuator is controlled by a

hybrid optimal controller. The actuator input is computed

by a hysteresis model offline. A PI controller is added to

compensate for unmodeled dynamics and other errors.

For a passive hysteretic system, the stability of the con-

trolled system can be established using the passivity theorem.

The passivity of the Preisach model [5], [6], commonly used

for smart materials, is shown in [7]. The system output is

the time-derivative of the Preisach model output. In [8], a

physics-based argument is used to prove the passivity of a

magnetostrictive actuator. In this proof, no specific model is

used and the results apply to any hysteresis model for mag-

netostrictive actuators. Passivity has been used to establish

L2-stability of velocity controllers for smart-material based

actuators in [7] and [9].
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However, for many applications the position, not the

velocity, is measured and controlled. In particular, position

tracking is a common objective of many control systems.

One example is a scanning microscope. The microscope tip

is driven by a smart-material based actuator. The tip must

move to a specified location.

In [10], [11], closed-loop control of hysteretic systems is

studied using techniques for nonlinear dynamical systems.

There is a common set of assumptions that the hysteretic

system must satisfy, but different control system config-

urations are studied. In [10], pure integral control with

a time-varying gain is studied, with additional dynamics

included in the loop. Only constant inputs are considered.

It is shown that the system is well-posed and that, if certain

conditions are satisfied, the steady-state tracking error is zero.

In [11], PID control of a second-order system that includes

a hysteretic component is studied. Under certain conditions,

it is shown that the system asymptotically tracks a constant

input. One key assumption in these results is that the system

has monotonic input/output behaviour.

In this work, the system is assumed to satisfy certain

assumptions, one of which is related to monotonicity. The

assumptions used are simpler than those used in [10], [11].

The Preisach model [6] is one of the most important hystere-

sis models in the literature. This model is frequently used for

many smart materials [12]–[16]. In general, Preisach models

satisfy the assumptions used here.

The system output, not its derivative, is measured and

controlled. We are concerned with obtaining a controller with

reasonable gains that can be implemented experimentally.

A PI controller was chosen because of its availability and

simplicity. For arbitrary reference signals, the closed-loop

system is bounded-input-bounded-output (BIBO) stable with

a finite gain of one. It is shown that the absolute value of

the error decreases monotonically for a constant reference

signal. In this case, provided that the desired output is

within the limits of the system output, zero steady-state error

is guaranteed. A bound on the time required to achieve

a specified error is obtained. The results apply to a wide

class of hysteretic systems and only a simple bound on the

controller parameters is required. The results imply robust

position control, even if errors in the model exist. Unlike the

results presented in [10], [11], variable reference inputs are

considered and BIBO stability with a finite gain is proven.

In addition, more details about the trajectories of the closed-

loop system for a constant input are given. Saturation is

generally considered to be a destabilizing influence on a

controlled system. However, in this approach, it is shown to

assist stability. An expanded version of the work discussed
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in this paper can be found in [17].

In the next section, definitions and the framework used in

this paper are established. BIBO stability of the closed-loop

system is shown in Section 3. Section 4 is concerned with

tracking of a constant input using a PI controller. In Section

5, the theory in the preceding sections is used to implement

position control for a magnetostrictive actuator.

II. FRAMEWORK

Define R+ to be the set of non-negative real numbers. For

any interval I ⊂ R+, let Map(I) indicate the set of real-

valued functions defined on I . For T > 0 in some interval

I , the truncation of f ∈ Map(I) to the interval [0, T ] is

fT (t) =

{

f(t), 0 ≤ t ≤ T,

0, T < t.

Define C(I) to be the set of continous functions on an interval

I . The norm of a function f in C(I) is

‖f‖∞ = sup
t∈I

|f(t)| .

Definition 1: [5] An operator Γ : Map(R+) →
Map(R+) has the Volterra property if, for any v, w ∈
Map(R+) and any non-negative T , vT = wT implies that

(Γv)T = (Γw)T .

Definition 2: [18] An operator Γ : Map(R+) →
Map(R+) is rate independent if

(Γv) ◦ ϕ = Γ(v ◦ ϕ)

for all v ∈ Map(R+) and all continuous monotone time

transformations ϕ : R+ → R+ satisfying ϕ(0) = 0 and

limt→∞ ϕ(t) = ∞.

Definition 3: [18] An operator Γ : Map(R+) →
Map(R+) is a hysteresis operator if it is rate independent

and has the Volterra property.

The Volterra property states that the hysteretic system output

does not depend on future inputs; that is, determinism.

A deterministic, rate independent operator is a hysteresis

operator.

For any δ > 0, 0 ≤ t1 < t2, and any w ∈ C([0, t1]) define

B1(w, t1, t2) := {u ∈ C([0, t2])| ut1 = wt1} (1)

B2(w, t1, t2, δ) := {u ∈ C([0, t2])| ut1 = wt1 , (2)

max
t1≤τ≤t2

|u(τ) − w(t1)| < δ}.

Denote the hysteresis model input and output by u and y,

respectively. The following assumptions on the system are

used in this paper.

(A1) If u(t) is continuous then y(t) is continuous. That

is, Γ : C(I) → C(I) where I is the interval of interest.

(A2) (Lipshitz property) There exists λ > 0 such that

for every interval [t1, t2] where 0 ≤ t1 < t2 and every

w ∈ C([0, t1]), the following inequality holds for all u1, u2 ∈
B1(w, t1, t2).

sup
t1≤τ≤t2

|Γ(u1)(τ) − Γ(u2)(τ)| ≤ λ sup
t1≤τ≤t2

|u1(τ) − u2(τ)|.

(3)
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Fig. 1. (a) A clockwise hysteresis loop, and (b) a counter-clockwise
hysteresis loop.
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Fig. 2. The closed-loop system.

(Note by definition of B1(w, t1, t2) and B2(w, t1, t2, δ),
the Volterra property implies that Γ(u1)(τ) = Γ(u2)(τ) for

0 ≤ τ ≤ t1.)

(A3) Consider an arbitrary interval [ti, tf ]. If for every

t ∈ [ti, tf ], u(ti) ≥ u(t), then y(ti) ≥ y(tf ). Alternatively,

if for every t ∈ [ti, tf ], u(ti) ≤ u(t), then y(ti) ≤ y(tf ).
(A4) (saturation) There exists some usat > 0, y+ and

y− such that if u(t) ≥ usat then (Γu)(t) = y+ and

(Γ(−u))(t) = y−.

There is a close connection between assumption (A3) and

monotonicity of the hysteretic system, in a sense that an

increasing input results in increasing output and the same for

decreasing inputs/outputs. By setting t = tf , it is seen that if

assumption (A3) holds, the hysteretic system is monotonic.

The converse is not true. In Figure 1(a), a hysteretic system

with a clockwise hysteresis loop is shown. This plant is

monotonic, but does not satisfy assumption (A3). In Figure

1(b), a plant with a counter-clockwise hysteresis loop is

shown. The plant is monotonic and assumption (A3) is

satisfied.

Many standard hysteretic systems satisfy these assump-

tions. The main restriction in our framework is the restriction

to hysteresis operators (Definition 3). In particular, the com-

monly used Preisach model [5], [6] satisfies the assumptions

for any practical system [17].

III. STABILITY OF THE CLOSED-LOOP SYSTEM

In this section, the trajectories of the solutions for the

closed-loop system are examined. It is shown that the system

is bounded-input-bounded-output (BIBO)-stable.

Definition 4: A mapping R : C(I) → C(I) is BIBO-stable

if for every u ∈ C(I), Ru ∈ C(I) and there exists a finite

constant ρ such that

‖(Ru)(t)‖∞ ≤ ρ‖u‖∞, ∀u ∈ C(I) (4)

The smallest such constant ρ is the gain.

Consider the closed-loop feedback system shown in Figure

2, where the plant is represented by a hysteresis model Γ.

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 ThA01.3

3788



The following PI controller is used for position control:

Ĉ(s) =
KI

s
+ KP (5)

where KI and KP are constants. The controller parameters

are assumed only to satisfy

(B1) For the controller in (5), 0 ≤ KP λ < 1 and KI > 0
where λ > 0 is the Lipchitz constant in assumption (A2).

The following additional assumption on the reference

input is used.

(B2) The reference signal r(t) is a continuous function of

time; that is, r(t) ∈ C(I) where I is the interval of interest.

The closed-loop system shown in Figure 2 is described by

the following equations:

e(t) = r(t) − y(t), (6)

f(t) =

∫ t

0

e(τ)dτ, (7)

u(t) = KP e(t) + KIf(t), (8)

y(t) = Γ [u(·)] (t). (9)

The only assumptions on the system required to show

existence of a unique continuous solution are (A1) and (A2).

Theorem 5: [17] Assume that (A1), (A2), (B1), and (B2)

hold. Then (6-9) have a unique solution for u ∈ C([0,∞))
and y ∈ C([0,∞)).

The following theorem establishes BIBO-stability of the

closed loop. Furthermore, the system possesses unity gain

for any choice of controller parameters.

Theorem 6: [17] Assume that the closed-loop system has

a unique solution for u, y ∈ C([0,∞)) and assumptions (A3),

(B1), and (B2) hold. Furthermore, assume that u(0) = 0. If

|y(0)| ≤ ‖r‖∞, then ‖y‖∞ ≤ ‖r‖∞. That is, the closed loop

system is BIBO-stable with gain 1.

For hysteretic systems satisfying the saturation assumption

(A4), boundedness of the output can be derived from satu-

ration. Theorem 6 extends this result to hysteretic systems

that do not satisfy the saturation assumption. Whether or not

saturation is present, the closed-loop system has a gain of 1.

IV. TRACKING

In this section we show that PI controllers provide a closed

loop system that tracks a constant input with zero steady-

state error and no overshoot. A bound on the time required

to achieve a specified error is obtained.

The following result guarantees that the tracking error

decreases monotonically.

Theorem 7: Assume that r is a constant in some interval

[t0, T ], the closed-loop system has a unique solution for

u, y ∈ C([0, T ]), and assumptions (A3) and (B1) hold. If for

some nonnegative ρ, |r − y(t0)| ≤ ρ, then |r − y(t1)| ≤ ρ

for all t0 ≤ t1 ≤ T .

Proof: Assume that for some t1, r − y(t1) < −ρ. For

r − y(t1) > ρ, the proof is similar.

e(t1) < −ρ. (10)

Define tmax u to be the time at which u(t) is maximized on

[t0, t1]:

u(tmax u) ≥ u(t),∀t ∈ [t0, t1]. (11)

Define tmax f to be the time at which f(t) is maximized on

[t0, t1]:

f(tmax f ) ≥ f(t),∀t ∈ [t0, t1].

Since the plant output y(t) is continuous, f(t) is contin-

uously differentiable. Inequality (10) implies that ḟ(t1) =
e(t1) < 0, and so f(t) is strictly decreasing in the vicinity

of t1. This implies that

tmax f 6= t1.

If tmax f 6= t0, maximization of f(t) at tmax f implies that

ḟ(tmax f ) = 0, or,

e(tmax f ) = 0, if tmax f 6= t0. (12)

By definition of tmax f and tmax u,

u(tmax f ) ≤ u(tmax u), (13)

f(tmax f ) ≥ f(tmax u). (14)

Using (8) and (13)

KP e(tmax f )+KIf(tmax f ) ≤ KP e(tmax u)+KIf(tmax u).

But inequality (14) implies that

KP e(tmax f ) ≤ KP e(tmax u). (15)

Using assumption (A3) and (11) we obtain that

y(tmax u) ≥ y(t1),

and so,

e(tmax u) ≤ e(t1). (16)

Case 1: KP > 0
By combining (10), (15), and (16) we have

e(tmax f ) < −ρ ≤ 0. (17)

Since e(tmax f ) 6= 0, (12) implies that tmax f = t0.

Rewriting inequality (17) leads to

e(t0) = r − y(t0) < −ρ

as required.

Case 2: KP = 0
Equation (8) simplifies to

u(t) = KIf(t).

Since KI > 0, any choice for tmax u is also a choice

for tmax f . At tmax f , u(t) is maximized. By repeating the

argument above for (16) we obtain that

e(tmax f ) ≤ e(t1).

Using inequality (10) leads to

e(tmax f ) < −ρ ≤ 0.
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Fig. 3. The error e(t) versus time.

Similar to the previous case, e(tmax f ) 6= 0 and (12) imply

that tmax f = t0 and so

e(t0) = r − y(t0) < −ρ.

The proof is complete.

Theorem 7 states that during a period where the input is

constant, the absolute value of the error is never increased.

As a result, an oscillatory response or an overshoot cannot

be seen. The following theorem proves that, if in addition

to the assumptions of the previous theorem, the saturation

assumption (A4) holds, then the error can be made arbitrarily

small.

Theorem 8: Let t0 be a non-negative real number. Assume

that r(t) is a constant, r, in [t0,∞), the closed-loop system

has a unique solution for u, y ∈ C([0,∞)), and that assump-

tions (A3), (A4), and (B1) hold. If y− ≤ r ≤ y+, then for

every ε > 0,

|r − y(t)| ≤ ε, ∀t ≥ t̄ + t0,

where

t̄ =
usat

KI

+ |f(t0)|

ε
. (18)

Consequently, limt→∞ y(t) = r.

Proof: Assume that for some ε and t ≥ t̄+t0, r−y(t) >

ε. The proof for the case y(t) − r > ε is identical.

Theorem 7 implies that for all t′ ∈ [t0, t],

|r − y(t′)| = |e(t′)| > ε. (19)

As illustrated in Figure 3, since e(t) > 0 and e(·) is

continuous, e(t′) > 0. Integrating (19) from t0 to t0 + t̄,

we have
∫ t0+t̄

t0

e(t′)dt′ ≥ εt̄.

Using the definition of f , (7), it follows that

f(t0 + t̄) ≥ f(t0) + εt̄. (20)

Since t̄ is defined by (18),

εt̄ ≥
usat

KI

− f(t0). (21)

Substituting this into (20) leads to

f(t0 + t̄) ≥
usat

KI

.

Since t ≥ t̄ + t0, (19) implies that

e(t0 + t̄) > ε. (22)

By using equation (8), a bound on u(t0 + t̄) can be obtained:

u(t0 + t̄) ≥ KP ε + usat ≥ usat.

Using assumption (A4), y(t0 + t̄) = y+. From (22),

r > y+.

Thus, if r−y(t) > ε for some t ≥ t̄+ t0, r > y+. Similarly,

if y(t) − r > ε, then r < y−. Hence, y− ≤ r ≤ y+ implies

that |r − y(t)| ≤ ε for all t ≥ t̄ + t0 as was to be shown.

It was shown that for every ε > 0, there is a t̄ such that

|r − y(t)| ≤ ε for all t ≥ t̄ + t0. This is the definition of

limit. Thus, limt→∞ y(t) = r.

Theorem 8 gives an upper limit for the time required to

achieve any accuracy ε. The condition y− ≤ r ≤ y+ is

just that the desired reference point is within the saturation

limits. The above theorem states that if the input to the closed

loop is within the saturation limits, zero steady-state error is

guaranteed.

Theorem 6 can be used to design a controller for position

control. The controller must only satisfy assumptions 0 ≤
λKP < 1 and KI > 0. In the next section, a position

controller is designed and evaluated experimentally.

V. EXPERIMENTAL RESULTS

In the previous sections, tracking and stability for position

control of hysteretic systems were shown for a PI controller.

In this section, these results are used to develop a stabilizing

position controller for a magnetostrictive actuator.

To evaluate the position controller experimentally, a mag-

netostrictive actuator is used. In this actuator, a rod made of

Terfenol-D, a magnetostrictive material, provides actuation.

This material reacts to a magnetic field. In the presence of

a magnetic field, this material generates a small mechanical

displacement. The displacement is measured by an optical

encoder with a resolution of 10nm.

To provide the requested magnetic field, the Terfenol-

D rod is used inside an electrical magnet. The magnet is

powered by a programmable electrical current source. The

current source is controlled by a PC computer. Several

sensors are included in the actuator to measure flux density

and temperature. Details and a photograph of the apparatus

are in [12]. The sensors’ measurements are sent to the PC

computer. MATLAB Real-Time Workshop R© is used with

the PC computer. The controller is implemented within

MATLAB.
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Terfenol-D cannot withstand tension and should be in

compression for proper operation. The compression is pro-

vided by a set of washer springs. The springs are soft enough

that it can be assumed that the compression force is constant

when the Terfenol-D rod changes size. The force of the

springs can be adjusted. The force is measured by a load

cell.

For a magnetostrictive material, magnetic field H and

magnetization M are the input and output, respectively. The

relation between magnetic field H and magnetization M can

be represented by a Preisach model with a positive weight

function with compact support [12]. Assumptions (A1)-(A4)

are satisfied.

In most applications, it is desired to control the displace-

ment λ produced by the actuator. The following equation

relates magnetization M to displacement [12], [19]:

λ = γ1M
2 + γ2M

4 (23)

where γ1 and γ2 are constants at a constant mechanical

load. Using this relation, position control is achieved by

controlling the magnetization M .

To find the magnetization in the magnetostrictive actuator,

the displacement produced is measured and equation (23) is

used to compute magnetization. The same relation is used to

compute the desired magnetization and hence, errors in (23)

do not affect the closed-loop performance.

Theorem 6 states that any PI controller satisfying assump-

tion (B1) provides stability. To find the optimal gains for the

controller, a performance criteria is needed. Here, tracking

performance is used; that is, an optimal set of controller

parameters should minimize the cost function

J =

∫ t2

t1

(y − r)2dt,

where r is the reference input, y is the closed-loop output and

[t1, t2] is the time range of interest, subject to the parameter

constraints (B1). A smaller value of J means a closer match

between the actual and desired outputs.

Because of the nonlinear and complex structure of the

system, the only method for minimizing J is numerical

optimization. For this purpose, the closed-loop is simulated

by using a Preisach model with a general weight function.

The model is identified in [12]. Using the Preisach model,

y is computed as a function of controller parameters. The

cost function J is numerically minimized using Nelder-

Mead simplex direct search method [20] with a reference

signal r chosen as a series of step inputs. Formally, the

ideal version of such a reference input is not continuous.

However, in experiment there is a rapid but continuous

change between values and so the signal is continuous.

(Furthermore, due to the nature of a hysteresis operator, there

is no difference between the output of a hysteretic system

with a step discontinuity and one with a smooth monotonic

change between the same values [5].)

The optimum values for the controller gains are: KI =
38.02s−1 and KP = 0.0785. The optimal gains were tested

experimentally for different reference signals.

 

Fig. 4. The closed-loop response to various steps.

 

Fig. 5. Transient response after a step. The effects of a moving mass are
seen.

 

Fig. 6. Transient response after a step. No vibration is seen.
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Fig. 7. Tracking response of the closed loop.

In Figure 4, the closed-loop response of the system to

step input is shown for the optimized controller. Excellent

tracking is seen. As predicted by Theorem 8, there is no

steady-state error. In Figures 5 and 6, portions of the response

are magnified. The nonlinear nature of the system exhibits

different responses in different conditions. The system settles

to ±10nm of the reference signal in 0.175s and 0.122s in

Figures 5 and 6, respectively. This is within the accuracy of

the sensor used. A small overshoot is seen in Figures 5 and

6. In Figure 5, some oscillations are also observed. Theorem

7 implies that there is no oscillatory response or overshoot.

The overshoots and oscillations are likely caused by some

unmodeled mass in the system. Simulation results are also

shown in Figures 5 and 6. Since unmodeled dynamics are

not present in the simulation, no overshoot or vibrations are

seen. This is consistent with the results of Theorem 7.

In Figure 7, the system response to a sinusoidal input

with varying amplitude is displayed. In the previous sections,

it was shown that the closed-loop system is BIBO-stable

for variable reference signals. Stability is observed and the

reference trajectory is followed accurately. In Figure 8, the

tracking error for the same experiment is shown. The root-

mean-square tracking error is 0.11µm, a relative error of

1.1%.
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