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Abstract— Robust output-feedback simplified adaptive con-
trol model following is considered for discrete-time systems
with uncertainties and disturbances. Sufficient conditions
for closed-loop stability, model following performance and
prescribed H∞ disturbance attenuation level are introduced,
under an almost-strictly-positive-realness requirement on the
plant. A numerical example, taken from the field of flight
control, demonstrates the proposed method.

I. INTRODUCTION

A class of direct adaptive controller schemes for

continuous-time systems, known as Simplified Adaptive

Control (SAC), has received considerable attention in the

literature ([1],[2],[3]). Robustness of SAC controllers fac-

ing polytopic uncertainties has been established ([3]-[6])

allowing application to real engineering problems (see e.g.

reference [6]). The stability of continuous-time SAC is

related to the Strictly Positive Real (SPR) property of the

controlled plant. The stability of closed-loop SAC is related

to the Almost Strictly Positive Real (ASPR) property of the

controlled plant. Namely, if a plant is ASPR there exists a

static output-feedback gain (possibly parameter-dependent)

which stabilizes the plant and makes it SPR. In such a case,

SAC stabilizes the closed-loop dynamics and consequently

leads to zero tracking errors. The ASPR property can be

verified, under quadratic stability assumption, by solving a

set of LMIs or by using a parameter-dependent Lyapunov

function ([5]-[6]).

Bar-Kana [3] has recently provided a proof to the fact that

any proper minimum-phase linear system with positive def-

inite input-output feed-through matrix D is Almost Strictly

Positive Real (ASPR). In addition, any strictly minimum-

phase transfer function with minimal realization A,B,C
where CB > 0 is also ASPR. In [7], a Lyapunov-based

framework for SAC stabilization of discrete-time uncertain

systems has been developed and sufficient conditions have

been derived for the stability of the closed-loop dynamics of

the SAC scheme. It has also been shown that the Minimum

Phase (MP) property (together with the requirement for a

positive definite D) is a necessary and sufficient condition

for the the system to be ASPR. In [8], a Lyapunov-based

framework for the tracking and stabilization of discrete-time

uncertain systems by SAC output-feedback controllers has

been developed, and sufficient conditions have been derived

for the stability of the closed-loop and the gain adaptation

formula. In [9], a framework for the combination of optimal

H∞ control and SAC has been developed. The objective

is to use SAC while satisfying some H∞ -norm bound on

the disturbance attenuation level. Sufficient conditions have

been derived for the stability of the closed-loop dynamics of

the SAC scheme with a prescribed disturbance attenuation

level γ.

In the present paper the relationship between optimal

H∞ control and SAC model following will be investigated

for discrete-time systems. The objective is to use SAC while

satisfying some prescribed H∞-norm bound γ. Note that

SAC can stabilize and follow an output of an uncertain

system without knowing the explicit system dynamics.

Sufficient conditions are derived for the stability and the

model following of the closed-loop dynamics of the SAC

scheme with prescribed disturbance attenuation level. These

sufficient conditions are expressed in terms of Bilinear

Matrix Inequalities (BMI), which can be solved using local

iterations. A numerical example is given which illustrates

the method.

A. Notation

Throughout the paper the superscript ‘T ’ stands for ma-

trix transposition, Rn denotes the n dimensional Euclidean

space, Rn×m is the set of all n×m real matrices, and the

notation P >0, for P ∈ Rn×n, means that P is symmetric

and positive definite. Tzw denotes the transference from

the exogenous disturbance w to the objective function z,

‖Tzw‖∞ is its H∞ -norm and ‖Tzw‖2 is its H2-norm.

col{a, b} stands for [aT bT ]T and trace{H} denotes the

trace of the matrix H and ‖Tk‖
2
2 =

∑
∞

0 TT
k Tk.

II. PRELIMINARIES

Consider the following discrete-time linear system:

x∗(k + 1) = Ax∗(k) + B2 u∗(k)
y∗(k) = C2 x∗(k) + D22 u∗(k)

(1a,b)

where x∗(k) ∈ Rn is the system state, y∗(k) ∈ Rm is the

measured plant output and u∗(k) ∈ Rm is the control input.

A, B2, C2 and D22 are constant matrices of appropriate

dimensions. We assume that D22 > 0.

Remark 1: In the general case, for any proper but not

strictly proper system, when D22 is not symmetric but

satisfies D22 + DT
22 > 0, we define u∗(k) = DT

22û
∗(k)

and obtain the following representation for (1)

x∗(k + 1) = Ax∗(k) + B̂2 û∗(k)

y∗(k) = C2 x∗(k) + D̂22 û∗(k)
(2a,b)
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where B̂2 = B2D
T
22 and D̂22 = D22D

T
22 > 0. We therefore,

assume in the sequel, without loss of generality, that D22>0.

The output of the plant (1) is required to follow the output

of the asymptotically stable model:

xm(k + 1) = Am xm(k) + Bm um(k), x(0) = 0
ym(k) = Cm xm(k) + Dm um(k)

(3a,b)

where xm(k) ∈ Rq is the system state, ym(k) ∈ Rm is

the plant output, um(k) ∈ Rm is the control input and

Am, Bm, Cm and Dm are constant matrices of appropriate

dimensions. The reference model (3) is used to define the

desired input-output behavior of the plant. It is important to

note that the dimension of the reference model state may be

less than the dimension of the plant state. However, since

y∗(k) is to track ym(k), the number of the model outputs

must be equal to number of the plant outputs.

Perfect Following (PF ) is defined as following with zero

tracking error, namely

y∗(k) = ym(k)

The next lemma presents a necessary condition for PF .

Lemma 1: PF is possible only if the system (1) is

ASPR.

Proof : In PF the relation y∗(k) = ym(k) holds, and

equation (1b) can then be written in the form

u∗(k) = D−1
22 (ym(k) − C2x

∗(k)) . (4)

Substituting (4) in (1a), one gets:

x∗(k + 1) = (A − B2D
−1
22 C2)x∗(k) + B2D

−1
22 ym(k)

Therefore, since the reference model is stable, we need

A − B2D
−1
22 C2 to be stable; this is guaranteed by the fact

that (A,B2, C2,D22) is ASPR. [7] QED

The next lemma determines the relation that exists be-

tween the plant’s and the model’s state vectors.

Lemma 2: There exist F (k) ∈ Rn×q and G(k) ∈ Rn×m

such that the trajectories of (1) are of the form:

x∗(k) = F (k)xm(k) + G(k)um(k) (5)

Proof : (5) describes n equations with n×(q+m) variables,

thus the existence of F (k) and G(k) is guaranteed for all k.

Moreover, since the number of variables is greater than the

number of equations we can impose additional constraints

on F (k) and G(k). Defining f(k) = C2F (k) and g(k) =
C2G(k) we, require f(k) = βCm + (1 − β)f(k − 1) and

g(k) = βDm + (1 − β)g(k − 1) where β ∈ (0, 1) is a

scalar. In the common case where n > m these additional

requirements can be fulfilled by choosing a large enough

model order q. QED

Define K∗

x(k) ≡ D−1
22 (Cm − C2 F (k)) and K∗

u(k) ≡
D−1

22 (Dm−C2G(k)). We note that it follows from the above

equations for f(k), g(k) that:

K∗

x(k) = (1 − β)K∗

x(k − 1) (6)

K∗

u(k) = (1 − β)K∗

u(k − 1) (7)

We also define the ideal control u∗(k) by

u∗(k) = K∗

x(k)xm(k) + K∗

u(k)um(k). (8)

Then considering the ideal system (1) and substituting (8)

in (1b) we obtain:

y∗(k) = ym(k). (9)

Therefore, the ideal control (8) and the ideal system (1)

allow PF .

III. PROBLEM FORMULATION

Consider the following continuous-time linear system:

x(k + 1) = Ax(k) + B1 w(k) + B2u(k), x(0) = x0

y(k) = C2 x(k) + D21 w(k) + D22 u(k)
(10a,b)

where x(k) ∈ Rn is the system state, y(k) ∈ Rm is

the plant output which can be measured, w(k) ∈ Rm is

the exogenous disturbance which is energy bounded and

w(k) ∈ ℓ2 and u(k) ∈ Rm is the control input. A, B1, B2,

C2, D21 and D22 > 0 are constant matrices of appropriate

dimensions.

The output of plant (10) is required to follow the output of

the asymptotically stable model (3). We define the following

objective vector:

z(k) = C1 ey(k) + D12eu(k) (11)

where, following [3], we define

ey(k) = ym(k) − y(k) = y∗(k) − y(k) (12)

eu(k) = u∗(k) − u(k) (13)

The matrices C1 and D12 are weights used to shape the

control objective (11). It is required to assure that the plant

(10) follows the output of the asymptotically stable model

(3) so that the standard H∞ cost J satisfies

J
∆
= ||z||22 − γ2||w||22 < 0 (14)

for any w(k) 6= 0 and w(k) ∈ ℓ2, by employing a SAC

controller.

IV. SOLUTION

A. Control Law

ASPR is a necessary condition for PF , however for

systems with an exogenous disturbance it is impossible

to achieve PF . Suppose that the plant (10) is ASPR and

therefore can be closed-loop stabilized and made SPR by the

non-empty set of output-feedback gain controllers Ke(k) ∈
U [3],[7]. In case w(k) ≡/ 0, we consider a controller of

the form:

u(k) = K∗(k)r(k) − ũ(k) (15)

where

K∗(k) =
[

Ke(k) K∗

x(k) K∗

u(k)
]
, (16)

r(k) = col{ey(k), xm(k), um(k)}, (17)
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where Ke(k) ∈ Rm, K∗

x(k) ∈ Rm×q and K∗

u(k) ∈ Rm

are stabilizing and bounded gains and where ũ(k) is an

auxiliary input signal which will be defined later. Note that

when ey(k) = 0, the controller (15-17) reduces to (8)

for ũ(k) = 0. This control, however, requires calculation

of F (k) and G(k) for all k = 1, 2, ... and the explicit

knowledge of the system dynamics.

Instead, we use the direct SAC scheme [3] to calculate

the gains which lead, in the steady state, to the same

control signal that would have been achieved by Ke(k),
K∗

x(k) and K∗

u(k). The application of SAC requires the

explicit knowledge of neither the gains matrix nor the

system dynamics or the exogenous disturbance w(k).

B. Simple Adaptive Control Law

We consider the following SAC scheme [3]:

u(k) = K(k)r(k) (18)

where the definition of the gain K(k) is

K(k) =
[

Ke(k) Kx(k) Ku(k)
]

(19)

and the gain adaptation scheme is

K(k) = (1 − β)K(k − 1) + ey(k)rT (k), (20)

and where 0 < β < 1 is a scalar. The initial condition is

K(0) =
[

Ke0 0 0
]
.

A method for calculating Ke0 is given in the example.

Remark 2: When β = 0 in (20), K(k) steadily increases

while y(k) 6= 0. For 0 < β < 1, K(k) is obtained from a

first-order filtering of y(k)yT (k) and thus cannot diverge,

unless y(k) diverges [3].

We define δ(k) = K∗(k) − K(k), namely δ(k) is the

difference between the ideal gain K∗(k) and the current

SAC gain K(k). The control law of (18) can now be

expressed by the following choice of the auxiliary control

signal ũ(k) of (15):

ũ(k) = δ(k)r(k) (21)

We define

η(k)=K(k)−K(k − 1)

and obtain using (20)

η(k) = ey(k)rT (k)−βK(k − 1). (22)

η(k) is the gain increment between steps, and define

∆K∗(k) = K∗(k) − K∗(k − 1), which is the ideal gain

increment, we obtain that:

δ(k) − δ(k − 1) = ∆K∗(k) − η(k). (23)

and thus the following is obtain using (22)

δ(k)ηT (k) = δ(k)(r(k)eT
y (k) − βKT (k − 1))

= ũ(k)eT
y (k) − βδ(k)KT (k − 1)

(24)

We define the state error:

ex(k) = x∗(k) − x(k)

and using (15) and (8), we obtain that eu(k) of (13) is given

by

eu(k) = −Ke(k)ey(k) + ũ(k). (25)

Applying simple algebraic manipulations, we find that:

ex(k + 1) = Aex(k) + B1 w(k) + B2eu(k)
ey(k) = C2 ex(k) + D21 w(k) + D22 eu(k)

(26a,b)

and substituting (26b) in (25) we obtain:

eu(k)=−Ke(k) (C2ex(k) + D21w(k) + D22 eu(k)) + ũ(k)
(27)

In order to extract eu(k) from (27), we first define

K̂e(k)=(I + Ke(k)D22)
−1Ke(k) (28)

and note that (I + Ke(k)D22)
−1 = I − K̂e(k)D22. An

upper-bound on K̂e(k) is calculated as follows:

K̂e(k) = (I+Ke(k)D22)
−1Ke(k)D22D

−1
22

= D−1
22 −(I+Ke(k)D22)

−1D−1
22

= D−1
22 −ν(k)

where ν(k) = (D22 + D22Ke(k)D22)
−1 so that ν(k) > 0

and ν(k) ≤ D−1
22 . Namely:

0 < K̂e(k) ≤ D−1
22 . (29)

The algebraic loop for eu(k) in (27) thus results in

eu(k) = −K̂e(k)(C2ex(k) + D21 w(k))+

(I − K̂e(k)D22)ũ(k).
(30)

Substituting (30) in (26) and defining

Ã ≡ (A − B2K̂e(k)C2), B̃2 ≡ B2(I − K̂e(k)D22),

C̃2 ≡ (I − D22K̂e(k))C2, D̃22 ≡ D22 (I − K̂e(k)D22),

B̃1 ≡ (B1 + B2 (I − K̂e(k)D22)D21),

D̃21 ≡ (D21 + D22 (I − K̂e(k)D22)D21)

we obtain the closed-loop system

ex(k + 1) = Ã ex(k) + B̃1 w(k) + B̃2ũ(k)

ey(k) = C̃2 ex(k) + D̃21 w(k) + D̃22ũ(k).
(31a,b)

An expression for z(k) is obtained by substituting (25) and

(31b) in (11):

z(k) = C̃1 ex(k) + D̃11 w(k) + D̃12ũ(k) (32)

where

C̃1 = C1C̃2 − D12K̂e(k)C2,

D̃11 = C1D̃21 − D12K̂e(k)D21,

D̃12 = C1D̃22 + D12(1 − K̂e(k)D22)

are weights used to shape the control objective (32). We are

now in a position to state the main result of this section.

Theorem 1: For an ASPR plant, the adaptive scheme

consisting of the plant (10), the control law (18) and the

gain adaptation formula (20), creates, for any input com-

mand, bounded gains and states and achieves a disturbance
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attenuation level γ, for any β ∈ (0, 1) and any w(k) ∈ ℓ2
if there exist a positive definite matrix P ∈ Rn×n and a

compact set K so that the following BMI is feasible for all

K̂e(k) ∈ K :




−P −C̃T
2 0 C̃T

1 ÃT P

∗ −2D̃22 D̃21 D̃T
12 B̃T

2 P

∗ ∗ −γ2I D̃T
11 B̃T

1 P
∗ ∗ ∗ −I 0
∗ ∗ ∗ 0 −P



< 0 (33)

In such a case, the controller that achieves the disturbance

attenuation of γ is given by (18) where the gains are

restricted to Ke that satisfies (28) for K̂e(k) ∈ K.

Proof : In order to establish the desired model following of

(10) with a disturbance attenuation level γ, the asymptotic

stability of the closed-loop system of (31) with the objective

vector (32) should be proven. We consider the following

radially-unbounded Lyapunov function candidate

V (ex(k),K(k)) = eT
x (k)Pex(k)+

tr{δ(k − 1)δT (k − 1)} > 0.
(34)

Note that V (0,K∗(k)) = 0, V (ex(k),K(k)) > 0 for all

(ex(k),K(k)) 6= (0,K∗(k)) and V (ex(k),K(k)) → ∞ as

‖ex(k)‖ → ∞ or ‖K(k)‖ → ∞. To obtain (14) we require

that

∆Vk = Vk+1−Vk ≤ γ2wT (k)w(k) − zT (k)z(k) (35)

where we have suppressed the dependence of Vk on ex(k)
and K(k) for the sake of simplicity. Defining S = ∆Vk −
γ2w(k)T w(k) + zT (k)z(k), we require that

S = ex(k + 1)T Pex(k + 1)−
ex(k)T Pex(k)+tr{δ(k)δT (k)}−
tr{δ(k − 1)δT (k − 1)}
−γ2w(k)T w(k) + zT (k)z(k) < 0

(36)

Substituting (23), we have:

ex(k + 1)T Pex(k + 1)−
ex(k)T Pex(k) + tr{δ(k)δT (k)}−
tr{(δ(k) + η(k) − ∆K∗(k))
(δ(k) + η(k) − ∆K∗(k))T }
−γ2w(k)T w(k) + zT (k)z(k) < 0

We therefore require that

ex(k + 1)T Pex(k + 1)−
ex(k)T Pex(k) − 2tr{δ(k)η(k)T }
−tr{(η(k) − ∆K∗(k))(η(k) − ∆K∗(k))T }
+2tr{δ(k)∆K∗(k)T }
−γ2w(k)T w(k) + zT (k)z(k) < 0

Using (31), (32) and (24) we obtain

(Ã ex(k) + B̃1 w(k) + B̃2ũ(k))T (k)P

(Ã ex(k) + B̃1 w(k) + B̃2ũ(k))T (k) − eT
x (k)Pex(k)

−ũ(k)T (C̃2 ex(k) + D̃21 w(k) + D̃22 ũ(k))

−(C̃2 ex(k) + D̃21 w(k) + D̃22 ũ(k))T ũ(k)
−tr{(η(k) − ∆K∗(k))(η(k) − ∆K∗(k))T }
+2tr{δ(k)(∆K∗(k) + βK(k − 1))T } − γ2w(k)T w(k)

+(C̃1 ex(k) + D̃11 w(k) + D̃12 ũ(k))T

(C̃1 ex(k) + D̃11 w(k) + D̃12 ũ(k)) < 0

where use is made of the fact that tr(AB) = tr(BA). We

define:

S = λ1(k) + λ2(k)

where:

λ1(k) =
[

eT
x (k) ũT (k) wT (k)

]
Γ




ex(k)
ũ(k)
w(k)




λ2(k) = −tr{(η(k) − ∆K∗(k))(η(k) − ∆K∗(k))T }
+2tr{δ(k)(∆K∗(k) + βK(k − 1))T }

and where

Γ
∆
=




E11 E12 ÃT PB̃1 + C̃T
1 D̃11

∗ E22 D̃21 + D̃T
12D̃11 +B̃T

2 PB̃1

∗ ∗ −γ2 +B̃T
1 PB̃1 + D̃T

11D̃11


 < 0,

E11 = ÃT PÃ − P + C̃T
1 C̃1,

E12 = ÃT PB̃2 − C̃2

T
+ C̃T

1 D̃12,

E22 = −2D̃22+B̃T
2 PB̃2 + D̃T

12D̃12.
(37)

We shall show that by requiring (33), λ1(k) will be negative.

Using Schur complements [10], it is readily found that

λ1(k) < 0 for all col{ex(k), w(k), ũ(k)} 6= 0 if (33) is

satisfied. Note that using (23) we find that

λ2(k) = −tr{(δ(k) − δ(k − 1))(δ(k) − δ(k − 1))T }
+2tr{δ(k)(∆K∗(k) + βK(k − 1))T }

is non-definite. But, using (6) and (7) and the fact that the

first term of δ(k) is zero, we obtain that

λ2(k) = −tr{(δ(k) − δ(k − 1))(δ(k) − δ(k − 1))T }
−2βtr{δ(k)δ(k − 1)T }

which for β ∈ (0, 1) is negative, hence ∆V (k) becomes

negative. QED

We note that Theorem 1, deals with the general Multi

Input Multi Output (MIMO) case, but it does not suggest an

algorithm for finding the set K. Therefore, we next focus on

the Single Input Single Output (SISO) case where K̂e(k) is

scalar valued. In such a case, we readily obtain the following

simplified version of Theorem 1 which allows a double line-

search for the gains range:

Theorem 2: For an ASPR plant, the adaptive scheme

consists that plant (10), the control law (18) and the gain

adaptation formula (20), creates for any input command,

bounded gains and states and achieves a disturbance at-

tenuation level γ, for any β ∈ (0, 1) and any w(k) ∈ ℓ2
if there exist a positive definite matrix P ∈ Rn×n and
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0 < K̂emin < K̂emax < D−1
22 so that the BMI of (33) is

feasible for K̂e(k) ∈ {K̂emin, K̂emax}. In such a case, the

controller that achieves the disturbance attenuation of γ is

given by (18) where the gains are limited by K̂emin and

K̂emax.

V. ROBUST SAC WITH DISTURBANCE

We extend the results of Theorem 1 to the case where the

matrices A , B1 and B2 of the system (10) are not exactly

known. Denoting

Ω =
{

A B1 B2

}
(38)

where Ω ∈ Co{Ωi, i = 1, ...N}, namely,

Ω =
N∑

i=1

fiΩi for some 0 ≤ fi ≤ 1,
N∑

i=1

fi = 1 (39)

where the vertices of the polytope are described by

Ωi =
{

A(i) B
(i)
1 B

(i)
2

}
, i = 1, 2..., N. (40)

The next theorem describes conditions that not only guar-

anty that the closed-loop system (31) is stable, but also that

it has a H∞ disturbance attenuation level γ over Co{Ωi}.

Theorem 3: For an ASPR plant, the addressed SAC

scheme, creates bounded gains and states and achieves a

disturbance attenuation level γ for any β ∈ (0, 1) over

Co{Ωi}, for any input command and any w(k) ∈ ℓ2 if

there exist a positive definite matrix P ∈ Rn×n and a

compact set K so that the following BMIs are satisfied for

all K̂e(k) ∈ K:

Φ
∆
=




−P −C̃T
2 0 C̃T

1 Ã(i)T

P

∗ −2D̃22 D̃21 D̃T
12 B̃

(i)T

2 P

∗ ∗ −γ2I D̃T
11 B̃

(i)T

1 P
∗ ∗ ∗ −I 0
∗ ∗ ∗ 0 −P



< 0,

i = 1, 2..., N.
(41)

Proof: The latter is affine in A(i) and B
(i)
1 and B

(i)
2 . We thus

readily obtain that Φ < 0 is satisfied over Ω by multiplying

(41) by fi and summing over i = 1, 2, ..., N .

VI. NUMERICAL EXAMPLE

In this section we present a numerical example to demon-

strate the application of the theory developed above.

Consider a modified version of the angle of attack/pitch-

rate dynamics example of [11]. This example describes the

short period dynamics of a missile and was used in [11]

to study gain scheduled control. A servo model with time

constant of 1/τ = 30[rad/sec] was applied. The state-

vector is x = [θ, α, q, δe]
T where,θ[rad] is the pitch angle,

α[rad] is the angle of attack, q[rad/sec] is the pitch rate

angle and δe[rad] is the elevator angle. The plant input is

the elevator angle command δcom[rad], and the plant output

is the pitch-angle plus 0.1 of pitch-rate plus 0.01δcom where

the latter terms were added in order to respectively improve

the effective damping of the missile short period mode and

to ensure the ASPR property of the open-loop discrete-time

system. It should be also noted that the nonzero but small

D22 = 0.01 has no particular physical significance. The

plant is described by continuous time state-space model for

N = 4, where:

A=




−0.001 0 1 0
0 −Zαj

1 0
0 −Mαj

0 1
0 0 0 −1/τ


, B1 = B2 =




0
0
0

1/τ




(42)

C2 =
[

1 0 0.1 0
]

and D22 = 0.01

C1 =
[

1 0 1 0
]

and D21 = 0.1,D12 = 0.01

and where the parameters of the four vertices (Mach-

Altitude Pairs of (0.5, 0), (0.5, 18km), (4, 0), (4, 18km) are

Zα ∈ {0.5, 0.5, 4, 4} and Mα ∈ {6, 106, 6, 106}. As can be

seen the uncertainty appears only in A. The discrete-time

version of the above continuous-time plant is first derived,

assuming a zero-order hold at the plant input and taking

a sampling-time of Ts = 1/64[sec]. The matrices of the

reference system model are

A=

[
−3 −10
1 0

]
, B=

[
1
0

]
, C =

[
0 10

]
. (43)

Our aim is to track the reference model outputs with, say,

w(k) = 30 sin(50k)e−0.01k.

Note that since D22 = 0.01, it turns out (using (29)) that

0 < K̂e(k) < 100.

For any given value of K̂e(k), the BMI (33) can be

solved numerically to obtain the corresponding minimum

disturbance attenuation level γ and P that depends on

K̂e(k) at all the four vertices. Fig. 1, obtained by performing

this calculation over K̂e(k) within a grid in the latter range,

describes the minimum achievable disturbance attenuation

level γ as a function of the (scalar, in our example) gain

K̂e(k). It can be seen from Fig. 1 that γ sharply increases at

low adaptive gain (K̂e(k) < 50) and at high adaptive gain.

In fact, γ tends to infinity when K̂e(k) tends to D−1
22 . The

smallest γ is 1.72, and it is achieved when K̂e(k) = 68.

We next seek single P and K̂emin, K̂emax that satisfy the

requirements of Theorem 3 for γ = 2. Applying a double

line-search on the latter gain limits, we find that for

P =




16039 −11445 112.04 5.3809
−11445 13873 32.718 1.4446
112.04 32.718 23.073 0.29878
5.3809 1.4446 0.29878 0.027286


 ,

K̂emin = 55 and K̂emax = 83 satisfy (41). Since we have

Ke(k) = (I − K̂e(k)D22)
−1K̂e(k), (44)

each K̂e(k) corresponds to some Ke(k) in the range

[0 ∞). For K̂e(k) = K̂emin the lower bound of Ke(k) is

122.5 and for K̂e(k) = K̂emax the upper bound of Ke(k)
is 488.3. According to Theorem 2, H∞ performance that

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 WeC03.3

3249



corresponding to γ = 2 will be obtained if one adopts the

practice of initializing the gain adaptation by Ke(k) ≈ 123
and by bounding Ke(k) to 488. Simulation results are given

in Fig. 2 for β = 0.01 and Ke0 = 130. Fig. 2 depicts

the input and output of the reference model and the output

of the plant at all the four operating points. Evidently, the

plant output successfully tracks the reference model outputs

by the proposed control law (18) and the gain adaptation

formula (20). Fig. 3 describes the state θ, and the elevator

angle command (δcom) for each time step of the all 4
operation points. Apparently, pitch angle tracks the output

of the reference model and all the other states are regulated

to zero. Somewhat a more sluggish tracking is observed for

the second operating point (dashed line) which corresponds

to the lowest dynamic pressure requiring the largest δcom

which causes the largest |θ − y|.

VII. CONCLUSIONS

In this paper the theory of Simplified Adaptive Con-

trol model following has been generalized to discrete-time

systems with parameter uncertainties and H∞ disturbance

attenuation requirements. The results guaranty closed-loop

stability and prescribed disturbance attenuation level, under

the requirement of Almost-Strictly-Positive-Realness of the

system (or, equivalently, minimum phase requirement).

These results are illustrated via an example from the field

of flight control. The results encourage further research in

this area, such as simplified adaptive control with exogenous

disturbance and measurement noise for non minimum-phase
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Fig. 2. Simulation results at the 4 operating points - The input and output
of the reference model and the output of the plant
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