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Abstract— A well–known problem in constrained optimal
control is the presence of interior boundary conditions for
constrained arcs which require a–priori knowledge of the opti-
mal solution. This paper presents a saturation function method
to transform an optimal control problem (OCP) with a state
constraint into an unconstrained OCP in new coordinates. The
approach allows a tangential entry and exit of constrained arcs
without involving interior boundary conditions. An additional
regularization term is used in the new OCP to avoid singular
arcs which correspond to constrained arcs in the original OCP.
Interestingly, the continuity order of the saturation function
plays an important role for the existence of bounded trajectories
which represent inverse images of the optimal constrained
solution in the original coordinates.

I. INTRODUCTION

In general, numerical methods to solve optimal control

problems (OCPs) can roughly be divided in two different

classes. In direct methods, the OCP is discretized to obtain a

finite–dimensional parameter optimization problem, see e.g.

[1]–[7]. Well–known advantages of the direct approaches are

the good numerical robustness with respect to the initial

guess as well as the efficient handling of constraints.

On the other hand, indirect approaches are based on the

calculus of variations and require the solution of a two–

point boundary value problem (BVP), see e.g. [8]. Indirect

methods are known to show a fast numerical convergence

in the neighborhood of the optimal solution and to deliver

highly accurate solutions, which makes them particularly at-

tractive in aerospace industries [9]–[12]. However, the hand-

ling of constraints via Pontryagin’s maximum principle [13]

is in general non–trivial, since the overall structure of the

BVP depends on the sequence between singular/nonsingular

and unconstrained/constrained arcs, which requires a–priori

knowledge of the optimal solution structure.

This paper proposes a saturation function approach to

circumvent these problems and applies the method to a

single–input optimal control problem (called OCPx) with

a single state constraint. In the first step, the system is

transformed into the input–output normal form by using

the state constraint as linearizing output. An equivalent

OCPy is derived in these coordinates, where the state

constraint appears at top of the normal form cascade. The

constraint is then incorporated by a saturation function and

successive differentiation along the normal form cascade.

These substitutions propagate through the internal dynamics

and eventually define a new dynamics.
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As a consequence, a new unconstrained OCP ε
ξ is derived,

which automatically satisfies the state constraint. An addi-

tional regularization term with parameter ε is introduced

in OCP ε
ξ to account for singular arcs, which correspond

to constrained arcs in OCPy and the original OCPx. The

unconstrained OCP ε
ξ can be readily treated in the calculus

of variations without the necessity of interior boundary

conditions. Nevertheless, the saturation function guarantees

a tangential entry and exit of constrained arcs.
An interesting property of OCP ε

ξ is that the order of

continuity of the saturation function plays an important

role concerning the existence of bounded trajectories as

inverse images of the optimal solution. More precisely, the

continuity order of the saturation function and of the optimal

constrained trajectory have to match which is a necessary

condition for the existence of series expansions along the

unconstrained arcs. An example is used to illustrate the ap-

proach and the influence of the saturation function continuity

on the convergence of the trajectories for decreasing values

of the regularization parameter ε.
The approach is presented for a single–input OCPx with a

single state constraint to rigorously investigate its properties.

However, the concept is extendable to a multiple–input state–

constrained OCPs, where the state constraints have a well–

defined vector relative degree.

II. PROBLEM STATEMENT

This section states the optimal control problem OCPx and

transforms it into an equivalent OCPy in input–output nor-

mal form, which is the basis for the subsequent sections.

A. Optimal control problem OCPx

Consider the constrained optimal control problem OCPx:


























min J(u) := ϕ(x(T )) +

∫ T

0

L(x, u, t) dt (1)

s.t. ẋ = f(x, u), x ∈ R
n, u ∈ R (2)

x(0) = x0, χ(x(T )) = 0 (3)

c(x) ∈ [c−, c+] (4)

The nonlinear single–input system (2) with f : R
n×R → R

n

is assumed to yield a unique state x for each input u, such

that the cost (1) with ϕ : R
n → R and L : R

n×R×[0, T ] →
R can be stated as the functional J(u). The final conditions

χ : R
n → R

l in (3) are of dimension l ≤ n. The state

constraint function c : R → [c−, c+] as well as ϕ, L, f , χ,

and c are sufficiently smooth. The final time T of OCPx is

fixed for the sake of simplicity. In the following, we assume

the existence of a unique optimal solution (u∗, x∗) with

J∗ = min J(u), u∗ = argmin J(u) . (5)
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B. Normal form representation

Following [14], [15], the relative degree r ≤ n of the

constraint function c(x) at a point x = x0 is defined by

∂

∂u
Lifc(x) = 0, i = 1, . . . , r − 1,

∂

∂u
Lrfc(x) 6= 0 ,

where Lf denotes the Lie–derivative along f . We assume

that the relative degree r is well–defined in a sufficiently

large neighborhood of x0. The constraint function c(x) can

be used as (partially) linearizing output to derive a change

of coordinates
(

y
z

)

=

(

θy(x)
θz(x)

)

= θ(x) (6)

with y = (y1, . . . , yr)
T and θy = (θ1, . . . , θr)

T defined by

θ1(x) = c(x), θi(x) = Li−1
f c(x), i = 2, . . . , r . (7)

The additional coordinates z = θz(x) ∈ R
n−r are necessary

to complete the transformation (6) if r < n. In the new

coordinates (6), OCPx is transformed into an equivalent

OCPy in input–output normal form:














































min J̄(u) := ϕ̄(y(T ), z(T )) +

∫ T

0

L̄(y, z, u, t) dt (8)

s.t. ẏi = yi+1, i = 1, . . . , r − 1 (9)

ẏr = α(y, z, u) (10)

ż = β(y, z) (11)

y(0) = y0, z(0) = z0, χ̄(y(T ), z(T )) = 0 (12)

y1 ∈ [c−, c+] (13)

where the initial conditions y0 = θy(x0), z0 = θz(x0), and

ϕ̄ = ϕ ◦ θ−1, L̄ = L ◦ θ−1, χ̄ = χ ◦ θ−1 follow from

OCPx with the change of coordinates (6). 1

The integrators (9)–(10) with α = Lrfc(x) ◦ θ−1 form

the input–output dynamics, where the transformed con-

straint (13) appears at the top of the cascade. The second

part (11) of the dynamics with βi = Lfθz,i(x) ◦ θ
−1, i =

1, . . . , n− r are the internal dynamics of the normal form.

The diffeomorphism (6) represents a (bijective) state trans-

formation, such that OCPy has a unique optimal solution

(u∗, y∗, z∗) with

J∗ = min J̄(u), u∗ = argmin J̄(u) , (14)

which is related to OCPx via y∗ = θy(x
∗) and z∗ = θz(x

∗).

C. Constrained arcs

Along constrained arcs, where the optimal trajectory y∗1(t)
stays at c− or c+ for a non–vanishing time interval t ∈
[tin, tout], the following conditions have to hold:

y∗1(t) = c±, y∗i (t) = 0, i = 2, . . . , r, ẏ∗r (t) = 0, (15)

see Fig. 1. The common approach to account for state

constraints in the calculus of variations is to impose the

conditions (15) at the entry point tin (or exit point tout)
to ensure the tangential entry in the constrained arc, see,

1The notation “◦” is consistently used throughout the text as substitution
rule to replace a specific argument of a function p(·, v, ·) by a given
transformation v = q(w), i.e. p(·, q(w), ·) = p(·, v, ·) ◦ q.

y∗1(t)

ttin tout T0

c+

y1 = c(x)

Fig. 1. Optimal trajectory y∗
1
(t) with active state constraint y∗

1
= c(x∗) =

c+ for t ∈ [tin, tout].

e.g., [8], [9]. The derivation of the optimality conditions then

leads to a two–point boundary value problem (BVP) with

additional interior boundary conditions at tin or tout.
In general, the overall structure of the BVP depends on the

number and sequence of constrained and unconstrained arcs.

Hence, the derivation of the BVP and the interior boundary

conditions requires a–priori knowledge of the structure of

the optimal solution (y∗, z∗, u∗).

Remark 1: An important attribute is the order of con-

tinuity of y∗1 ∈ Cρ, which denotes how many times y∗1(t)
can be continuously differentiated. The conditions (15) imply

ρ ≥ r − 1 to ensure that all states y∗i , i = 1, . . . , r are

continuous over the junction points tin and tout. The explicit

value can be characterized (under certain assumptions) with

respect to the order r of the state constraint [16], [17].

III. SATURATION FUNCTION APPROACH

In the following, a saturation function approach is pre-

sented, which circumvents the interior boundary conditions

for the state constraint. The method systematically incorpo-

rates the constraint (13) within a new system representation

by using a (sufficiently smooth) saturation function and

differentiating along the normal form cascade (9)–(10). This

method results in an unconstrained OCP ε
ξ in new coordi-

nates, where an additional regularization term with parameter

ε accounts for singular arcs, which correspond to constrained

arcs in the previous constrained OCPy .

A. New system representation

In the first step, the state constraint y1 ∈ [c−, c+] is

replaced by a saturation function

y1 = ψ(ξ1) ∈ [c−, c+] (16)

with ψ : R → [c−, c+] and the new unconstrained variable

ξ1 ∈ R, see Figure 2. For ξ1 ∈ (ξ−1 , ξ
+
1 ), the saturation

function ψ(ξ1) stays inside the constraints (c−, c+) and is

strictly monotonically increasing, i.e. dψ
dξ

1

> 0. For ξ1 ≤ ξ−1
and ξ1 ≥ ξ+1 , ψ(ξ1) is in saturation either at c− or c+ with

vanishing derivatives diψ

dξi
1

= 0, i > 0. As stated in Remark 2

at the end of this section, the saturation function ψ(ξ1) ∈ Cσ

has to be sufficiently smooth, where σ denotes the order of

continuity of ψ(ξ1). The construction of ψ(ξ1) as used in

this article is given in Appendix I.

In order to substitute the remaining coordinates y2, . . . , yr,
Eq. (16) is successively differentiated and new states ξi+1 are

introduced for the derivatives ξ̇i = ξi+1. When ẏr is reached,
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ψ

0 ξ+
1 ξ1

ξ−1

c−

c+

Fig. 2. Saturation function ψ(ξ1) with constraints c± and state ξ1.

a new input ũ is used for the final derivative ξ̇r = ũ. For

instance, if the state constraint c(x) is of order r = 2, the

differentiation of (16) leads to

y2 = ψ′ ξ̇1, ξ̇1 = ξ2 ,

ẏ2 = ψ′′ξ22 + ψ′ ξ̇2 , ξ̇2 = ũ
(17)

with the compact notation ψ′ = dψ
dξ

1

and ψ′′ = d2ψ

dξ2
1

.

In summary, a new normal form cascade

ξ̇i = ξi+1, i = 1, . . . , r − 1, ξ̇r = ũ, (18)

is generated with the states ξ = (ξ1, . . . , ξr)
T and the new

input ũ. The coordinates y = (y1, . . . , yr)
T and ẏr are related

to ξ and ũ by

y1 = h1(ξ1) = ψ(ξ1), (19a)

yi = hi(ξ1, . . . , ξi) = γi(ξ1, . . . , ξi−1) + ψ′ ξi , (19b)

i = 2, . . . , r,
ẏr = hr+1(ξ, ũ) = γr+1(ξ) + ψ′ ũ, (19c)

where the relation between y and ξ can be written in the

vector notation

y = h(ξ) = (h1(ξ1), . . . , hr(ξ))
T (20)

with h : R
r → [c−, c+] × R

r−1. The nonlinear terms γi in

(19) follow from the successive application of the product

and chain rule during the differentiations. For instance, (17)

shows that γ2(ξ1) = 0 and γ3(ξ1, ξ2) = ψ′′ξ22 . In the general

case, the terms γi exhibit the particular structure

γi(ξ1, . . . , ξi−1) =
i−1
∑

j=2

djψ

dξj1
γi,j(ξ2, . . . , ξi−1), (21)

which can be proven by induction. The structure of the terms

γi also shows that the relations (19b,c) evaluate to zero

if ψ(ξ1) is in saturation with ξ1 ≤ ξ−1 or ξ1 ≥ ξ+1 and

exactly vanishing derivatives diψ

dξi
1

= 0, i ≥ 1, see Figure 2.

Hence, the conditions (15) are automatically satisfied along

constrained arcs.

The result of the differentiation procedure is that the

new normal form dynamics (18) with state ξ and new

input ũ eventually replaces the input–output dynamics (9)–

(10) and the constraint (13). The original input u can be

recovered from (10) by substituting y and ẏr by the single

expressions (19):

u = hu(ξ, z, ũ) = α−1(h(ξ), z, hr+1(ξ, ũ)) . (22)

Note that the inverse function α−1 exists due to the (as-

sumed) well–defined relative degree.

Remark 2: Equation (21) shows that the final coordinate

yr in (19b) involves derivatives of ψ(ξ1) up to order r − 1.

This implies that the order of continuity of ψ(ξ1) ∈ Cσ must

satisfy σ ≥ r−1 to ensure continuity of yr(t) at the junction

points tin and tout to constrained arcs.

B. New regularized optimal control problem OCP ε
ξ

The new normal form (18) replaces the input–output

dynamics (9)–(10), whereby the new states ξ also propagate

through the internal dynamics (11) via the relations (20),

cf. (27). The saturation function y = ψ(ξ1) thereby ensures

that the constraint (13) is automatically satisfied.

In the new coordinates ξ, the cost functional (8) transforms

to

J̃(ũ) := ϕ̃(ξ(T ), z(T )) +

∫ T

0

L̃(ξ, z, ũ, t) dt (23)

with ϕ̃ = ϕ̄ ◦ h and L̃ = L̄ ◦ h ◦ hu. However, special

attention has to be paid to constrained arcs. As will be

shown in more detail in Section IV, a constrained arc of

OCPy corresponds to a singular arc behavior in the new

variables (ξ, ũ). This effect is compensated by adding a

regularization term with the parameter ε to the cost (23),

which leads to the regularized and unconstrained optimal

control problem OCP ε
ξ :







































min P (ũ, ε) := J̃(ũ) + ε

∫ T

0

ũ2 dt (24)

s.t. ξ̇i = ξi+1, i = 1, . . . , r − 1, (25)

ξ̇r = ũ (26)

ż = β̃(ξ, z) (27)

ξ(0) = ξ0, z(0) = z0, χ̃(ξ(T ), z(T )) = 0 (28)

where β̃ = β ◦ h and χ̃ = χ̄ ◦ h follow from OCPy . To

determine the initial conditions ξ0, the relations (19a)–(19b)

are solved for ξ1, . . . , ξr:

ξ1 = h−1
1 (y1) = ψ−1(y1)

ξi = h−1
i (ξ1, . . . , ξi−1, yi) =

yi − γi(ξ1, . . . , ξi−1)

ψ′(ξ1)

(29a)

with i = 2, . . . , r. The single expressions (29a) are succes-

sively evaluated to obtain the initial values ξ0 in (28), which

can be written in the vector notation

ξ0 = h−1(y0) . (29b)

Naturally, the first element y1,0 of y0 in (12) must strictly

satisfy the constraint y1,0 ∈ (c−, c+) to calculate the inverse

saturation function ψ−1 and to ensure ψ′ > 0 in (29a).

In practice, the new optimal control problem OCP ε
ξ has

to be solved successively with decreasing values of the

regularization parameter ε → 0. 2 The normal form coor-

dinates y and finally the original input u and state x follow

from the relations (20), (22), and the inverse transformation

x = θ−1(y, z) of (6).

2At this point, we assume solvability of OCP ε
ξ for each ε > 0.
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IV. OPTIMALITY CONDITIONS AND

CONSTRAINED ARCS

This section derives the necessary optimality conditions,

which can be used to solve OCP ε
ξ . In particular, the

structure of the optimality conditions reveals the behavior

of OCP ε
ξ along constrained arcs and the influence of the

regularization parameter ε.

A. Necessary optimality conditions

The necessary optimality conditions for OCP ε
ξ follow

from the classical calculus of variations, see, e.g., [8]. Define

the Hamiltonian

H(ξ, z, λ, ũ, t) = L̃(ξ, z, ũ, t) + εũ2+
r−1
∑

i=1

λξ,i ξi+1 + λξ,r ũ+ λT

z β̃(ξ, z)

with the adjoint states λξ = (λξ,1, . . . , λξ,r)
T and λz ∈

R
n−r comprised in λT =

(

λT

ξ , λ
T

z

)

. Then, the optimal

control ũ has to satisfy

∂H

∂ũ
=
∂L̃

∂ũ
+ 2εũ+ λξ,r = 0. (30)

The partial derivative ∂L̃/∂ũ can be expressed in more detail

∂L̃

∂ũ
=

[

∂L

∂u
◦h◦hu

]

∂hu
∂ũ

=

[

∂L

∂u

∂α−1

∂ẏr
◦h◦hu

]

ψ′(ξ1)

(31)

using the relations (20) and (22). In addition, the adjoint

system for λ is defined by λ̇ξ,i = −∂H/∂ξi, i = 1, . . . , r
and λ̇T

z = −∂H/∂z :

λ̇ξ,1 = −
∂L̃

∂ξ1
− λT

z

∂β̃

∂ξ1
(32a)

λ̇ξ,i = −
∂L̃

∂ξi
− λξ,i−1 − λT

z

∂β̃

∂ξi
, i = 2, . . . , r (32b)

λ̇T

z = −
∂L̃

∂z
− λT

z

∂β̃

∂z
(32c)

with the terminal conditions

λT

ξ (T ) =
∂ϕ̃

∂ξ
+ νT

∂χ̃

∂ξ
, λT

z (T ) =
∂ϕ̃

∂z
+ νT

∂χ̃

∂z
(33)

and the additional multipliers ν ∈ R
l. Using the transforma-

tions (20) and (22), the partial derivative of L̃ and β̃ become

∂L̃

∂ξi
=

r
∑

j=1

[

∂L̄

∂yj
◦h◦hu

]

∂hj
∂ξi

+

[

∂L̄

∂u
◦h◦hu

]

∂hu
∂ξi

(34a)

∂β̃

∂ξi
=

r
∑

j=1

[

∂β

∂yj
◦h

]

∂hj
∂ξi

. (34b)

The differential equations and boundary conditions (25)–

(28) and (32)–(33) for the states (ξ, z) and λT = (λT

ξ , λ
T

z )
together with the algebraic equation (30) for ũ defines a

two–point boundary value problem (BVP), which has to

be solved numerically to obtain the input ũ, the states

(ξ, z, λ) and the multipliers ν . Note in particular that no

interior boundary conditions are involved to account for the

state constraint (13) due to its inherent incorporation by the

saturation function y1 = ψ(ξ1).

B. Behavior on constrained arcs

To illustrate the constrained arc behavior, we consider the

case that one constrained subinterval exists for OCP ε
ξ with

a given ε > 0, where y1 = ψ(ξ1) stays at one of the con-

straints (13) for a non–vanishing time interval t ∈ [tin, tout]:

y1(t) = ψ(ξ1(t)) = c±, ξ1(t) R ξ±1 , t ∈ [tin, tout] . (35)

Along the constrained arc, ψ(ξ1) is in saturation with ξ1 ≥
ξ+1 or ξ1 ≤ ξ−1 , respectively, and the derivatives vanish,

i.e. diψ/dξi1 = 0, i ≥ 1, see Fig. 2. Hence, the terms in (31)

and (34) evaluate to zero, cf. (19) and (21), which reduces

the optimality conditions (30) and (32a)–(32b) to

λξ,r + 2εũ = 0 , (36)

λ̇ξ,1 = 0, λ̇ξ,i = −λξ,i−1, i = 2, . . . , r . (37)

for t ∈ [tin, tout]. The reduced optimality condition

∂H/∂ũ = 0 in (36) shows that the regularization term in

the cost (24) is necessary to still be able to compute ũ. For

ε = 0, OCP ε
ξ would be singular (i.e. ∂2H/∂ũ2 = 0) along

constrained arcs. Moreover, note that the adjoint cascade (37)

has the opposite direction to the normal form dynamics (25)–

(26) for ξ.

Based on the simplified optimality conditions (36)–(37),

the following lemma clarifies the structure of ξ and ũ on

constrained arcs:

Lemma 1: Along constrained subintervals t ∈ [tin, tout],
ξ = (ξ1, . . . , ξr)

T and ũ are uniquely determined by time

polynomial functions

ξ(t) = p(ξ(t−in), ξ(t
+
out), t), (38a)

ũ(t) = q(ξ(t−in), ξ(t
+
out), t), t∈ [tin, tout] (38b)

with respect to the junction values of the unconstrained arcs:

ξ(t−in) = lim
t↑tin

ξ(t), ξ(t+out) = lim
t↓tout

ξ(t). (39)

Proof: The normal form dynamics (25)–(26) together

with the simplified optimality conditions (36)–(37) can be

written in the higher–order form

dr

dtr
ξ1 = ξ

(r)
1 = ũ, λ

(r)
ξ,r = 0, λξ,r + 2εũ = 0 . (40)

Using ũ = −λξ,r/2ε in ξ
(r)
1 = −λξ,r/2ε and further

differentiation leads to ξ
(2r)
1 = −λ

(r)
ξ,r/2ε, which evaluates

to ξ
(2r)
1 = 0 for all ε > 0 due to λ

(r)
ξ,r = 0 in (40). Hence,

ξ
(2r)
1 can be re–integrated 2r–times, which yields a time

polynomial of the form

ξ1(t) =
2r−1
∑

i=0

ei t
i , t ∈ [tin, tout] . (41)

The 2r coefficients ei uniquely follow from the set of

linear equations stemming from the 2r junction conditions

ξ(t−in) = ξ(tin) and ξ(t+out) = ξ(tout). Hence, (41) can be

written in the form ξ1(t) = p1(ξ(t
−
in), ξ(t

+
out), t). The overall

vector function p = (p1, . . . , pr)
T and q in (38) follow

from differentiation: pi+1 = di

dti p1, i =, 1, . . . , r − 1 and

q = dr

dtr p1.
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The polynomials p in (38a) smoothly connect the entry and

exit points ξ(t−in) and ξ(t+out) to the unconstrained arcs. An

interesting property thereby is that p is independent of the

regularization parameter ε. However, it depends indirectly on

ε due to the values of ξ(t−in) and ξ(t+out).

V. CORRESPONDENCE TO OCPy FOR ε→ 0

This section considers the limit problem ε → 0 for

OCP ε
ξ and the existence of bounded trajectories (ũ∗, ξ∗, z∗)

as inverse images of the optimal constrained solution

(u∗, y∗, z∗) of OCPy . We consider the case addressed in

Sec. IV-B of one constrained subinterval. As will be shown,

the order of continuity ρ of the saturation function ψ(ξ1) ∈
Cρ plays an important role in this context.

A. Unconstrained arcs and continuity of ψ(ξ1) ∈ Cσ

In the first step, consider the unconstrained time intervals

[0, tin) and (tout, T ]. Since ψ(ξ1) is not in saturation, the

states ξ∗(t) and input ũ∗(t) can be uniquely determined in

terms of the optimal solution (u∗, y∗, z∗) of OCPy

ξ∗(t)=h−1(y∗(t)), ũ∗(t)=hũ(y
∗(t), z∗(t), u∗(t)), (42)

where h−1 is defined in (29a). The function hũ follows from

inverting (19c) with (10)

hũ(y, z, u) =
α(y, z, u) − γr+1(h

−1(y))

ψ′(ψ−1(y1))
. (43)

Note that ψ′ > 0 along unconstrained arcs, such that the

inverse relations (42) and (43) are well–defined.

However, a closer look is required at the limit points t−in
and t+out to the time interval [tin, tout] of the constrained arc.

An important influence has the order of continuity σ of the

saturation function ψ(ξ1) ∈ Cσ , which can be related to the

continuity of the optimal constrained solution y∗1(t) ∈ Cρ

(see Remark 1):

Lemma 2: Assume there exist power series which equal

y∗1(t) on the time intervals [0, tin] and [tout, T ]. Then, the

matching condition

σ = ρ (44)

between y∗1(t) ∈ Cρ and ψ(ξ1) ∈ Cσ is a necessary condition

for the existence of power series of ξ∗(t) on [0, tin], [tout, T ].

In particular, the existence of series formulations of ξ∗(t)
implies boundedness of the junction values of the states

ξ∗(t−in) = lim
t↑tin

h−1(y∗(t)), ξ∗(t+out) = lim
t↓tout

h−1(y∗(t))

(45a)

and of the new input

ũ∗(t−in) = lim
t↑tin

hũ(y
∗(t), z∗(t), u∗(t)),

ũ∗(t+out) = lim
t↓tout

hũ(y
∗(t), z∗(t), u∗(t)).

(45b)

The proof is given in Appendix II. Note that σ = ρ is only a

necessary and not sufficient condition and that the statement

in Lemma 2 concerns series formulations of y∗1(t) and ξ∗1(t).
However, in certain cases where a finite time series of y∗1(t)
exists, the boundedness of ξ∗(t−in) and ξ∗(t+out) can explicitly

be shown for σ = ρ (see Remark 4 in Appendix II and the

example in Section VI).

B. Inverse images of optimal solution to OCPy

The considerations for the unconstrained and constrained

arcs in Sections IV-B and V-A can be pieced together to state

the following result:

Proposition 1: Under the assumption that the bounded

junction values (45) exist, there are bounded trajectories

(ξ∗, z∗, ũ∗) with

ξ∗(t) =

{

h−1(y∗(t)) for t ∈ [0, tin), (tout, T ]

p(ξ∗(t−in), ξ
∗(t+out), t) for t ∈ [tin, tout] (46)

ũ∗(t) =

{

hũ(y
∗(t), z∗(t), u∗(t)) for t ∈ [0, tin), (tout, T ]

q(ξ∗(t−in), ξ
∗(t+out), t) for t ∈ [tin, tout] (47)

which satisfy the system equations (25)–(27) by definition

and are inverse images of the optimal solution (y∗, z∗, u∗)
to OCPy via the relations (20), (22):

y∗ = h(ξ∗), u∗ = hu(ξ
∗, z∗, ũ∗). (48)

Moreover, the regularized cost (24) corresponds to the opti-

mal cost (8) of OCPy according to

J̃(ũ∗) = J̄(u∗) = J∗, lim
ε→0

ε

∫ T

0

(ũ∗)2 dt = 0. (49)

Proof: The trajectories of ξ∗ and u∗ are uniquely deter-

mined over the constrained and unconstrained arcs, see (38)

and (42). The relations (48) are an immediate consequence

and lead to the optimal cost J̃(ũ∗) = J̄(hu(ξ
∗, z∗, ũ∗)) =

J∗. Moreover, the penalty term in (24) vanishes for ε → 0
due to the boundedness of ũ∗.

Proposition 1 only considers the inverse images to the

optimal solution (y∗, z∗, u∗) of OCPy and does not imply

convergence. To prove that the solution of OCP ε
ξ actually

converges towards (ξ∗, z∗, ũ∗) for a decreasing sequence

{εk} would require additional convexity and solvability

assumptions, see, e.g., [18].

Remark 3: In practice, it may be difficult to meet the

condition (44) without a–priori information of the optimal

solution y∗1(t) ∈ Cρ (also see Remark 1). If instead the

saturation function ψ(ξ1) ∈ Cσ is chosen with σ > ρ, the

trajectory (ξ∗, ũ∗) may not exist due to unboundedness of

the junction values (45). However, this is not necessarily

a restriction, since the decreasing sequence {εk} for the

successive solution of OCP ε
ξ is usually stopped at a certain

step k when the corresponding solution is sufficiently close

to the optimal one, see Figure 4.

VI. EXAMPLE

To illustrate the saturation function approach and the

influence of the continuity of the saturation function ψ(ξ1) ∈
Cσ , consider the well–known double–integrator example [8]































min J(u) :=
1

2

∫ 1

0

u2 dt (50)

s.t. ẏ1 = y2, ẏ2 = u, (51)

y(0) = (0, 1)T, y(1) = (0,−1)T (52)

y1 ≤ c+ (53)
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Fig. 3. Simulation results for ψ(ξ1) ∈ C2 with decreasing ε and bounded

junction points at t−in and t+out.

with the state constraint (53) of order r = 2. OCPy has the

analytic solution (for c+ ≤ 1/6)

y∗1(t) =











c+− c+
(

1 − t
3c+

)3
if t ∈ [0, 3c+)

c+ if t ∈ [3c+, 1−3c+]

c+− c+
(

1 − 1−t
3c+

)3
if t ∈ (1−3c+, 1] ,

(54)

which shows that the state constraint (53) is active on the

subinterval t ∈ [3c+, 1−3c+]. The second optimal state y∗2
and optimal input u∗ follow from differentiating (54) and

yield the optimal cost J∗ = J(u∗) = 4/(9c+).
The dynamics (51) are already given in the normal

form (9)–(10) without the internal dynamics (11). The con-

strained state y1 is replaced by the saturation function y1 =
ψ(ξ1) ∈ [c−, c+] with symmetric constraints c±. Additional

differentiation according to (17) then leads to the relations

y1 = ψ(ξ1), y2 = ψ′ξ2, u = ψ′′ξ22 + ψ′ũ (55)

with the new dynamics ξ̇1 = ξ2, ξ̇2 = ũ and the new input

ũ. In summary, the regularized OCP ε
ξ (24)–(28) reads



























min P (ũ, ε) :=
1

2

∫ 1

0

(ψ′′ξ22 + ψ′ũ)2 + εũ2 dt (56)

s. t. ξ̇1 = ξ2, ξ̇2 = ũ (57)

ξ(0) =
(

0,
1

ψ′(0)

)T

, ξ(1) =
(

0,
−1

ψ′(0)

)T

. (58)

The boundary conditions (58) follow from the inverse re-

lations (29a) with ξ1(0) = ψ−1(y1(0)) and ξ2(0) =
y2(0)/ψ′(ξ1(0)). These relations simplify to (58) by using

symmetric values ξ±1 and c± for ψ(ξ1), such that ψ(ξ1)
passes through the origin, see Fig. 2 and Appendix I.

With the Hamiltonian

H(ξ, λξ, ũ, t) = (ψ′′ξ22 + ψ′ũ)2 + εũ2 + λξ,1ξ2 + λξ,2ũ,

0
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Fig. 4. Simulation results for ψ(ξ1) ∈ C3 with decreasing ε and

unboundedness of the junction points at t−in and t+out for ε→ 0.

the optimality conditions (30)–(33) become

0 = (ψ′′ξ22 + ψ′ũ)ψ′ + 2εũ+ λξ,2 (59)

λ̇ξ,1 = −(ψ′′ξ22 + ψ′ũ)(ψ′′′ξ22 + ψ′′ũ), λξ,1(1) = ν1

λ̇ξ,2 = −(ψ′′ξ22 + ψ′ũ)2ψ′′ξ2 − λξ,1, λξ,2(1) = ν2
(60)

with the adjoint states λξ = (λξ,1, λξ,2)
T and the multipliers

ν = (ν1, ν2)
T.

It can be verified by differentiating (54), that the op-

timal solution y∗1(t) is twice continuously differentiable,

i.e. y∗1(t) ∈ C2. According to condition (44), the order of

continuity of the saturation function ψ(ξ1) ∈ Cσ is chosen

as σ = 2 for the boundedness of the junction values (45). 3

The BVP (57)–(60) with the additional algebraic equa-

tion (59) is solved in MATLAB with a modified version of

the collocation–based BVP solver bvp4c, which is applicable

to BVPs of (index 1) differential–algebraic equations, see,

e.g., [19] for a short description. The initial guess for ξ(t) is

a linear interpolation between the boundary conditions (58)

on a uniform time mesh tk ∈ [0, 1] with 30 points. For ũ
and λξ, the initial guess is simply zero over tk ∈ [0, 1]. Note

that the boundary conditions for λξ in (60) can be considered

as being free and are therefore omitted (together with ν)

in the numerical solution. The regularized BVP (57)–(60) is

successively solved with the collocation solver and automatic

mesh refinement for a decreasing sequence {εk} from 100

to 10−10 in 11 steps.

Figure 3 shows the simulation results for the constraint

y∗1 ≤ c+ = 0.1 and the saturation function ψ(ξ1) ∈ C2

in (61) with ξ±1 = ±1. For decreasing values of ε, (ξ1, ξ2, ũ)
approach the bounded trajectories (ξ∗1 , ξ

∗
2 , ũ

∗), as defined

3Note that (44) is a sufficient condition for the existence of bounded
junction values (45), since y∗

1
(t) in (54) is a finite time polynomial, see

Remark 4 in Appendix II.
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in (46)–(47). The original variables (y1, y2, u) in (55) accord-

ingly approach the optimal trajectories following from (54).

Figure 4 presents the corresponding results for a three

times differentiable saturation function ψ(ξ1) ∈ C3. The

peaks in ξ2 and ũ clearly indicate the unboundedness at

the junction points t−in and t+out for ε → 0. Nevertheless,

the original states (y1, y2) and input u approach the optimal

solution in (54) for ε→ 0 (also see Remark 3).

In addition, Figure 5 shows the convergence of the cost

J̃(ũ) to the optimal value J∗ = 4/(9c+) for decreasing ε
and the two saturation functions ψ(ξ1) ∈ C2 and ψ(ξ1) ∈ C3.

For ψ(ξ1) ∈ C2, J̃(ũ) converges faster to J∗ due to the

boundedness of ũ, which results in a smaller value of the

integrated regularization term εũ2 in (56).

10
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10
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10
−4

10
−11

10
−9

10
−7

10
−5

10
−3

ψ(ξ1) ∈ C2

ψ(ξ1) ∈ C3

regularization parameter ε

J̃
(ũ

)
−
J
∗

Fig. 5. Distance of J̃(ũ) (without regularization term) to optimal cost J∗

for decreasing ε using the saturation functions ψ(ξ1) ∈ C2 and ψ(ξ1) ∈ C3.

VII. CONCLUSIONS

The scope of the saturation function approach is to sys-

tematically incorporate the state constraint of an optimal

control problem (OCP) within a new system dynamics.

This transformation results in an unconstrained OCP in new

coordinates with an additional regularization term, which has

to be successively reduced during the numerical solution.

Important is the fact that the saturation function allows a

tangential entry and exit of constrained arcs, although no

interior boundary conditions are involved.

An interesting result for the new OCP is that it plays

an important role for the existence of bounded trajectories

if the saturation function has the same order of continuity

as the optimal trajectory of the state constraint. This con-

dition can be used to appropriately choose the continuity

of the saturation function. If this matching condition is

not satisfied, the trajectories in the new coordinates may

become unbounded in the limit ε → 0. However, this is

not necessarily a drawback, since in practice the numerical

solution with decreasing ε is stopped when the corresponding

trajectories in the original coordinates are sufficiently close

to the optimal ones.

Numerical studies have shown a remarkable numerical

robustness of the approach due to the inherent unconstrained

nature of the new OCP. For instance, the example in this pa-

per can readily be solved for both considered saturation func-

tions by decreasing ε from 100 to 10−10 in one or two steps.

The approach has been presented for the single–input

case with one state constraint. However, the results can

be extended to the multiple input case and multiple state

constraints with well–defined vector relative degree. Then,

the constraints can be used as linearizing outputs to derive

the input–output normal form as the basis for the saturation

function approach.

APPENDIX I – CHOICE OF SATURATION FUNCTION

The saturation function ψ(ξ1) shown in Figure 2 can be

constructed in three parts

ψ(ξ1) =

{

ψ0(ξ1) if ξ1 ∈ (ξ−1 , ξ
+
1 )

c± if ξ1 R ξ±1
(61a)

The function ψ0(ξ1) has to connect the limits c± sufficiently

smoothly to ensure the continuity of ψ(ξ1) ∈ Cσ . This leads

to the 2(1 + σ) boundary conditions

ψ0(ξ
±
1 ) = c±,

diψ0

dξi1

∣

∣

∣

∣

ξ1=ξ
±

1

= 0, i = 1, . . . , σ.

For instance, ψ0(ξ1) can be constructed with the polynomial

ψ0(ξ1) = c+ − (c+ − c−)

2σ+1
∑

i=σ+1

bi

(

ξ+1 − ξ1

ξ+1 − ξ−1

)i

(61b)

for ξ1 ∈ [ξ−1 , ξ
+
1 ], where the coefficients are determined

according to [20], [21]

bi =
(−1)i−σ−1(2σ + 1)!

i · σ!(i− σ − 1)!(2σ + 1 − i)!
. (61c)

APPENDIX II – PROOF OF LEMMA 2

To prove Lemma 2, we restrict our considerations to the

entry point t−in into the (upper) constrained arc, as shown in

Fig. 1. In the first step, let us assume condition (44) holds,

and consider series expressions for y∗1(t) and ξ∗1(t) to the

left of tin to match coefficients. Based on these results, we

show by contradiction that for σ > ρ or σ < ρ, there exists

no power series formulation for ξ∗1(t) which corresponds to

y∗1(t).
A series expression of y∗1(t) around y∗1(tin) = c+ can be

written as

y∗1(tin − τ) = c+ −
∞
∑

i=ρ+1

aiτ
i (62)

with ai = 0, i = 0, 1, . . . , ρ and aρ+1 6= 0 due to the

tangential entry in y∗1(tin) = c+ and the continuity of

y∗1(t) ∈ Cρ with ρ ≥ r − 1, see (15) and Remark 1.

For τ ≥ 0 (i.e. t ≤ tin), the saturation function (61a) is

determined by the polynomial ψ0(ξ1) in (61b). According

to (44), we set σ = ρ, and write ψ(ξ1) = ψ0(ξ1) as

ψ(ξ+1 − ∆ξ1) = c+ −

2ρ+1
∑

i=ρ+1

b̄i∆ξ
i
1 (63)

with b̄i = bi(c
+ − c−)/(ξ+1 − ξ−i )i. Moreover, we consider

a power series of ξ∗1(tin − τ) = ξ+1 − ∆ξ1(τ) with

∆ξ1(τ) =

∞
∑

i=1

ci τ
i. (64)
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In order to determine the coefficients ci, the series (64) is

substituted in (63):

ψ(ξ+1 − ∆ξ(τ))

= c+ − b̄ρ+1

[

c1τ + O(τ2)
]ρ+1

−

2ρ+1
∑

ρ+2

b̄i∆ξ
i
1(τ) (65a)

= c+ −
∞
∑

i=ρ+1

diτ
i . (65b)

Comparing the first coefficient d1 = b̄ρ+1c
ρ+1
1 with aρ+1

in (62) yields c1 of the series (64):

c1 = ρ+1

√

aρ+1/b̄ρ+1 . (66)

The calculation of the further coefficients ci, i = 2, . . . , r
requires a closer look at the structure behind the coefficients

di in (65b). In order to determine the lowest orders of τ
where the single ci appears, the terms c1τ and ciτ

i in (65a)

are rearranged

ψ(ξ+1 − ∆ξ(τ)) = c+− (67)

b̄ρ+1

[

c1τ + ciτ
i+

i−1
∑

j=2

cjτ
j+O(τ i+1)

]ρ+1

+

2ρ+1
∑

j=ρ+2

b̄j ∆ξj1(τ)

and (c1τ+ciτ
i)ρ+1 is expanded using the binomial theorem:

(

c1τ+ciτ
i
)ρ+1

= cρ+1
1 τ ρ+1+(ρ+1)cρ1ciτ

ρ+i+O(τρ+2i−1).

The second term involving ci and τρ+i is the first one in

the series (65a) where the coefficient ci appears. However,

the full evaluation of the series (67) produces further terms

in τρ+i depending on the previous coefficients c1, . . . , ci−1.

Hence, the coefficients di in (65b) exhibit the structure

dρ+i = d 0
ρ+i(b̄, c1, . . . , ci−1) + (ρ+ 1) b̄ρ+1 c

ρ
1ci (68)

with b̄ = (b̄ρ+1, . . . , b̄2ρ+1)
T. Comparing this expression

with the corresponding term aρ+i in the Taylor series (62)

of y∗1(t) finally leads to the coefficient

ci =
aρ+i − d0

ρ+i(b̄, c1, . . . , ci−1)

(ρ+ 1)b̄ρ+1c
ρ
1

, i ≥ 2. (69)

Note that ci is bounded due to b̄ρ+1, c1 6= 0, cf. (61c) and

(66). Finally, the series (64) can be used to recover the

original state ξ∗1(tin− τ) = ξ+1 −∆ξ1(τ) and the derivatives
di

dti ξ
∗
1(t) = (−1)i+1 di

dτ i ∆ξ1(τ), i = 1, . . . , r. This yields the

bounded junction values at t = t−in:

ξ1(t
−
in) = ξ+1 , ξi(t

−
in) = (−1)i (i−1)! ci−1 , i = 2, . . . , r

ũ(t−in) = (−1)r+1r! cr .

Now consider the case that condition (44) were not satisfied

and assume e.g. σ = ρ + 1. Then, the series in (65b) starts

with dρ+2τ
ρ+2 and dρ+1 evaluates to zero. This however

contradicts the first non–zero term aρ+1τ
ρ+1 with aρ+1 6= 0

of the series (62).

Next, consider the case σ = ρ− 1, where the series (65b)

already starts with dρτ
ρ and dρ = b̄ρ c

ρ
1. Comparison with

the corresponding zero term in (62), 0 = aρ = b̄ρc
ρ
1, leads to

c1 = 0. However, the further coefficients in the series (65b)

have the structure (68) which involves the next ci multiplied

by c1 = 0. As a consequence, ci cannot be determined from

the comparison of the series (65b) with (62).

The conclusion is that in both cases σ < ρ and σ > ρ,

there exists no power series of the form (64) which equals

the power series (62) of the optimal trajectory y∗1(t) =
ψ(ξ∗(t)) = ψ(ξ+1 − ∆ξ1(τ)). This proves Lemma 2.

Remark 4: If the Taylor series (62) for y∗1(t) has only a

finite number of terms and thus reduces to a time polynomial,

the series (64) is also finite and represents an exact solution

of ξ∗1(t) over t ∈ [0, tin]. Then, σ = ρ is a sufficient condition

for the boundedness of the junction values ξ∗(t−in). This is

e.g. the case for the example in Section VI, see Eq. (54).
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