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Abstract— In this paper we consider the problem of global
finite-time stabilization for a class of triangular nonlinear
systems. The proposed design method is based on backstepping
and dynamic exponent scaling using an augmented dynamics,
from which, a dynamic smooth feedback controller is derived.
The finite-time stability of the closed-loop system and the
boundedness of the controller are proved by the finite-time
Lyapunov stability theory and a new notion ‘degree indicator’.

I. INTRODUCTION

After the concept of finite-time stability was introduced
in the 1950s [12], many researchers have made an effort to
solve this problem because of fast convergence and good
performances on robustness and disturbance rejection. Since
the bang-bang time optimal feedback control was applied to
the double integrator [1], many results have been presented
in the literature for various systems [2]–[5], [7]–[11], [14]–
[17].

Most of them are concerned with the continuous state
feedback and output feedback. In particular, the authors of
[4] introduced the Lyapunov theory for finite-time stability
and suggested the continuous state feedback which achieves
finite-time stability of the double integrator system. After
then, the paper [5] gave the Lyapunov theorem for finite-
time stability of continuous autonomous systems. Results
based on the concept of homogeneity appear in [8]–[10].
In [8], an output feedback finite-time stabilization problem
for the double integrator system was handled and, in [9], a
continuous finite-time stabilizer for a class of controllable
systems, especially a chain of power-integrators, was pro-
posed. Moreover, the problem of finite-time output feedback
was studied in [10], which solved the problem using finite-
time state feedback and finite-time observer for the same
system. On the other hand, by backstepping and domination
approach, the consequence of [11] constructed Hölder con-
tinuous state feedback for a lower-triangular systems with
uncertainty and its notions are extended to output feedback
problem for various systems [14]–[17]. These techniques
were further extended in [2].

Our objective is to design a global finite-time stabilizer
for a class of triangular nonlinear systems using an aug-
mented dynamics. Our tools are backstepping and ‘dynamic
exponent scaling’ in conjunction with a specially designed
augmented dynamics, from which a smooth (C∞) state
feedback is obtained. One benefit of smooth (C∞) feedback
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over the continuous (C0) feedback is that the uniqueness
of the solution is directly guaranteed because the closed-
loop system becomes smooth. In contrast, most of previous
results such as [2], [11], [14]–[17] just guaranteed global
‘strong stability1’, or some authors of, e.g., [3]–[5], [8]–[10]
presumed uniqueness of the solution in forward time, which
is hard to verify. Another benefit of the proposed design is
that it gives relatively less hardened2 feedback, compared
to, e.g., [11]. This is because the domination method used
in [11] intrinsically yields somewhat hardened control, while
the proposed method need not use the domination method.
Finally, the proposed design is relatively simple compared
to [11]. This is again the benefit from the smoothness. In
fact, since the virtual control at each step is also smooth, the
domination method need not be used which makes the design
relatively simple. The only cost to pay for the proposed
design is that the proof should guarantee that the proposed
controller is bounded until the solution gets into the origin
in finite-time because the proposed controller has some state
in its denominator (that will become zero). In this paper, we
provide the proof using a new notion ‘degree indicator’.

To introduce our idea, while avoiding unnecessary com-
plexity, we limit ourselves in this paper to the 3rd-order
triangular systems of the form

ẋ1 = x2 + f1(x1),
ẋ2 = x3 + f2(x1, x2),
ẋ3 = u + f3(x1, x2, x3),

(1)

where [x1, x2, x3]T ∈ R3 is the system state, u ∈ R1 is the
system input, and fi(·), i = 1, 2, 3, are smooth functions
with fi(0) = 0. For (1), a dynamic controller of the form

ẋ0 = f0(x0, x1, x2, x3), x0(0) > 0, (2)
u = u(x0, x1, x2, x3), (3)

will be constructed. The dynamics (2) is called as an aug-
mented system, whose intial condition is always set to be
any positive number.

The paper is organized as follows. In Section II, we present
a motivational example where uniqueness of solution, finite-
time stability of the closed-loop system, and boundedness of
the controller are studied in a simplified setting. Section III
is devoted to the main theorem and the proof, which consists
of two parts: an algebraic design of the control law and a
consideration of the dynamics to prove boundedness of the
controller. Concluding remarks are given in Section IV.

1That is, there may be many solutions but they are all stable.
2The ‘hardened’ control exhibits unnecessarily high local gains in some

regions of the state space, which might cause excessive control effort such
as high-magnitude chattering in the control signal [6].
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II. MOTIVATIONAL EXAMPLE

To see the basic idea effectively, we begin by

ẋ = u. (4)

For this system, consider a dynamic controller3

ẋ0 = −k0x
d
0 +

x2

x2−d
0

=: f0(x0, x) (5a)

u = −
(

1 +
1
b

)
x

x1−d
0

=: u(x0, x) (5b)

where d is a fraction such that 0 < d < 1 whose numerator
and denominator are odd integers, k0 = 1 + 1/a where a =
2/(1−d), and b = 2/(1+d). Note that the controller is well-
defined and smooth in the set R(+,1) := {(x0, x) : x0 > 0}.
We set the initial condition x0(0) of (5a) to be any positive
number (i.e., x0(0) > 0), and it will be seen that the solution
x0(t) remains positive before the solution (x0(t), x(t)) gets
to the origin in finite time. We now claim that the controller
(5) plays the role of finite-time stabilizer by the following
arguments.

(1) For any initial condition x(0) and any x0(0) > 0, the
unique solution (x0(t), x(t)) of the closed-loop system (4)
and (5) exists as long as (x0(t), x(t)) ∈ R(+,1).

This is because the closed-loop system is smooth in the
open set R(+,1) (see [13]).

(2) The solution (x0(t), x(t)) becomes (0, 0) at a finite
time T > 0, and x0(t) > 0 for 0 ≤ t < T .

Basically, it is enough to show that the solution escapes
from the set R(+,1) in finite time through the origin. To see
this, let the Lyapunov function V = (x2

0 + x2)/2. Then, we
have

V̇ = −k0x
1+d
0 +

x2

x1−d
0

+ xu + (−x1+d + x1+d),

in which the term x1+d is added and subtracted. Here,
to make the term x1+d to be x2, we use the following
inequality4:

x1+d × xr
0

xr
0

= xr
0 ×

x1+d

xr
0

≤ x1+d
0

a
+

1
b

x2

x1−d
0

, (6)

with a = 2/(1− d), b = 2/(1 + d), and r = (1 + d)/a. We
name the above inequality ‘dynamic exponent scaling’ since
the augmented state x0 is used to increase the degree of x.

Using the inequality (6), we arrive at

V̇ ≤ −
(

k0 − 1
a

)
x1+d

0 − x1+d + xu +
(

1 +
1
b

)
x2

x1−d
0

.

Therefore, the control (5) with k0 = 1 + 1/a yields that

V̇ ≤ −x1+d
0 − x1+d.

3Precisely speaking, the controller (5) should be

ẋ0 =

{
(5a), x0 6= 0

0, x0 = 0
and u =

{
(5b), x0 6= 0

0, x0 = 0

since the controller (5) is not defined when x0 = 0.
4It is based on Young’s inequality:

|x||y| ≤ |x|a
a

+
|y|b
b

where 1/a + 1/b = 1.

Now we use the fact that if there exists a C1 positive
definite radially unbounded Lyapunov function V such that
V̇ + kV α ≤ 0 along the solution of the system, with k > 0
and 0 < α < 1, then the origin is globally finite-time stable
[4]. For our case, with α = (1 + d)/2, it follows that

V̇ + kV α ≤ −(x1+d
0 + x1+d) + k

(
x2

0 + x2

2

)α

≤ −(x1+d
0 + x1+d) +

k

2α

(
x1+d

0 + x1+d
)

= −
(

1− k

2α

) (
x1+d

0 + x1+d
) ≤ 0,

(7)

in which we choose k such that 0 < k ≤ 2α.
We suppose that x0(t) > 0 for 0 ≤ t < Tx0 and

x0(Tx0) = 0, with the possibility that Tx0 = ∞. Then,
during 0 ≤ t < Tx0 , the solution (x0(t), x(t)) is in the set
R(+,1), and thus, the inequality (7) is valid for that period.
This in turn implies that the function V becomes zero at a
time TV > 0 (noting that V > 0 at t = 0). Because V = 0
implies that x0 = 0, it is not possible that Tx0 = ∞ or Tx0 >
TV . On the other hand, Tx0 < TV is not possible either. In
fact, if Tx0 < TV , then x0(Tx0) = 0 and x(Tx0) 6= 0. This
implies from (5a) that ẋ0 = −k0x0(t)d + x(t)2

x0(t)2−d > 0 for
a short time period just before Tx0 , say t ∈ [Tx0 − ε, Tx0),
because x0 is very small but positive while |x(t)| is strictly
greater than zero. This implies that x0(t) does not decrease,
which is a contradiction. Therefore, it follows that TV = Tx0 ,
and proves the claim with T = TV .

(3) The right-hand sides of the controller (5a) and (5b)
(i.e., f0(x0, x) and u(x0, x)) remain bounded for 0 ≤ t < T .

Define P := {(x0, x) : k0x
2
0 ≥ x2, x0 > 0}, and

PR := P ∩ BR where BR is a ball of a positive radius R
centered at the origin. The state x0(t) does not increase in
the set P because of (5a), while x0(t) increases in R(+,1)\P .
There exist R > 0 and TR ≥ 0 such that the solution
(x0(t), x(t)) remains in PR for t ∈ [TR, T ). This is because
x0(t) should decrease just before it becomes zero. Obviously,
for t ∈ [0, TR], the singular terms x2/x2−d

0 and x/x1−d
0 in

(5) are bounded because they are continuous on a compact
time interval. Hence, it is left to show that they are still
bounded for the period [TR, T ). In fact, it will be shown
that two functions f0 and u are bounded in the set PR.

By noting that the singularity happens only when x0 = 0,
we need to prove that

lim
x0→0+

max√
x2/k0≤x0

|g(x0, x)| < ∞

where g represents f0 and u, respectively. To facilitate it, we
define ‘degree indicator’ as

D(g(x0, x)) := inf β subject to

lim sup
x0→0+

ḡ(x0)x
β
0 < ∞ (8)

where ḡ(x0) := max√
x2/k0≤x0

|g(x0, x)|. Then, the
function g(x0, x) is unbounded in PR if and only if
D(g(x0, x)) > 0. Finally, since D(f0(x0, x)) = −d and
D(u(x0, x)) = −d, it is ensured that they are bounded in
PR.5

5In fact, D(f0(x0, x)) = −d if k0 6= 1 or D(f0(x0, x)) = −∞ if
k0 = 1, for example. (But, note that k0 > 1 in the example.)
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Fig. 1 shows the phase portrait of the closed-loop system
(4) and (5) for various initial conditions, d = 1/3 and k0 =
1 + 1/a = 4/3.

Fig. 1. Phase portrait of the closed-loop system (4) and (5).

III. FINITE-TIME STABILIZER FOR TRIANGULAR
SYSTEMS

In this section we present the main theorem with its
proof. For this, let x := [x1, x2, · · · , xn]T and R(+,n) :=
{(x0, x) ∈ Rn+1 : x0 > 0}. (However, we consider only
when n = 3 in this paper.)

Theorem 1: Let d be a fraction whose numerator and
denominator are odd integers satisfying

2n−1 − 1
2n−1

< d < 1. (9)

Then, for the system (1), there exists a dynamic controller

ẋ0 = f0(x0, x)
u = u(x0, x)

(10)

with any x0(0) > 0, where f0 and u are smooth functions
in R(+,3), and the controller (10) renders the origin of the
closed-loop system globally finite-time stable (in the sense
that the origin is stable and, for each (x0(0), x(0)) ∈ R(+,3),
there exists T > 0 such that limt→T (x0(t), x(t)) = (0, 0)).
In addition, the right-hand sides of (10) (i.e., f0(x0(t), x(t))
and u(x0(t), x(t))) are bounded while the solution reaches
the origin.

In order to prove Theorem 1, we first present an alge-
braic construction of the smooth controller (10) based on
the dynamic exponent scaling technique, which yields the
inequality V̇ ≤ −kV α with some k > 0 and 0 < α < 1. As
a second step, we then provide the proof that the right-hand
sides of the controller are bounded throughout the control
horizon, with the help of degree indicator.

A. Algebraic Construction of the Smooth Dynamic Con-
troller

In this subsection, we construct the controller (10) with
a Lyapunov function, which will show the global finite-time
stability of the origin of the closed-loop system.

For the system (1), the augmented system can be designed
as

ẋ0 = −k0x
d
0 +

∑3
i=1 γix̄

2
i

x2−d
0

=: f0(x0, x), (11)

where
x̄i = xi − x∗i ,

in which, x∗i ’s (i = 1, 2, 3) are virtual controls to be designed,
and k0 and γi’s are tuning gains also to be determined. The
reason to design x0-dynamics such as (11) is to ensure that
x0(t) never reaches zero before any system state does.

Step 1: We define x∗1 ≡ 0 and design the virtual control
x∗2 in this step. Choosing the Lyapunov function V1 =
(x2

0 + x̄2
1)/2 yields

V̇1 = −k0x
1+d
0 +

∑3
i=1 γix̄

2
i

x1−d
0

+ x̄1(x2 + f1(x1))± k1x̄
1+d
1

where k1 is any positive number of the designer’s choice.
Using the dynamic exponent scaling

|k1x̄
1+d
1 | × xr

0

xr
0

≤ x1+d
0

a
+

x̄2
1σ1

x1−d
0

, (12)

where a, b, and r are the same as in Section II, and σ1 =
kb
1/b, we have

V̇1 ≤−
(

k0 − 1
a

)
x1+d

0 − k1x̄
1+d
1 +

∑3
i=1 γix̄

2
i

x1−d
0

+ x̄1(x2 + f1(x1)) +
x̄2

1σ1

x1−d
0

.

Our strategy is that each term γix̄
2
i in

∑3
i=1 γix̄

2
i will be

removed in the step i. With this in mind, we pull γ1x̄2
1

x1−d
0

out

of
∑3

i=2 γix̄
2
i

x1−d
0

as

V̇1 ≤−
(

k0 − 1
a

)
x1+d

0 − k1x̄
1+d
1 +

∑3
i=2 γix̄

2
i

x1−d
0

+ x̄1(x2 + f1(x1)) +
x̄2

1(σ1 + γ1)
x1−d

0

.

Now the virtual control x∗2 is constructed as

x∗2 = −f1(x1)− x̄1(σ1 + γ1)
x1−d

0

, (13)

which yields that

V̇1 ≤ −
(

k0 − 1
a

)
x1+d

0 − k1x̄
1+d
1 +

∑3
i=2 γix̄

2
i

x1−d
0

+ x̄1x̄2.

Step 2: With the Lyapunov function V2 = V1 + x̄2
2/2, we

have

V̇2 = V̇1 + x̄2(x3 + f2(·))− x̄2

1∑

i=0

∂x∗2
∂xi

ẋi.

By adding and subtracting k2x̄
1+d
2 , with any k2 > 0, and

using the dynamic exponent scaling similar to (12), we obtain
that

V̇2 ≤−
(

k0 − 2
a

)
x1+d

0 −
2∑

i=1

kix̄
1+d
i +

∑3
i=2 γix̄

2
i

x1−d
0

+ x̄1x̄2 + x̄2(x3 + f2(·))− x̄2

1∑

i=0

∂x∗2
∂xi

ẋi +
x̄2

2σ2

x1−d
0

,

(14)
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where σ2 = kb
2/b. Noting that ẋ0 contains

∑3
i=1 γix̄

2
i /x2−d

0 ,
we design x∗3 only to cancel

∑2
i=1 γix̄

2
i /x2−d

0 leaving
γ3x̄

2
3/x2−d

0 to be handled in the next step. As the same
manner, only the term γ2x̄

2
2/x1−d

0 will be handled in the
third term of (14). As a result, the virtual control x∗i is kept
as a function of variables x1, . . . , xi−1, (or x̄1, . . . , x̄i−1)
only. Therefore,

V̇2 ≤−
(

k0 − 2
a

)
x1+d

0 −
2∑

i=1

kix̄
1+d
i +

γ3x̄
2
3

x1−d
0

+ x̄1x̄2

+ x̄2(x3 + f2(·))− x̄2
∂x∗2
∂x0

(
−k0x

d
0 +

∑2
i=1 γix̄

2
i

x2−d
0

)

− x̄2
∂x∗2
∂x0

γ3x̄
2
3

x2−d
0

− x̄2
∂x∗2
∂x1

ẋ1 +
x̄2

2(σ2 + γ2)
x1−d

0

≤−
(

k0 − 2
a

)
x1+d

0 −
2∑

i=1

kix̄
1+d
i +

γ3x̄
2
3

x1−d
0

+ x̄2x̄3

− x̄2
∂x∗2
∂x0

γ3x̄
2
3

x2−d
0

.

with the virtual control

x∗3 = −x̄1 − f2(·) +
∂x∗2
∂x0

(
−k0x

d
0 +

∑2
i=1 γix̄

2
i

x2−d
0

)

+
∂x∗2
∂x1

ẋ1 − x̄2(σ2 + γ2)
x1−d

0

.

(15)

Final Step: Let the Lyapunov function V = V2 + x̄3/2.
Then, we have

V̇ = V̇2+x̄3(u+f3(·))−x̄3

2∑

i=0

∂x∗3
∂xi

ẋi+(k3x̄
1+d
3 −k3x̄

1+d
3 ).

After the scaling for k3x̄
1+d
3 , we arrive at

V̇ ≤−
(

k0 − 3
a

)
x1+d

0 −
3∑

i=1

kix̄
1+d
i +

γ3x̄
2
3

x1−d
0

+ x̄2x̄3

− x̄2
∂x∗2
∂x0

γ3x̄
2
3

x2−d
0

+ x̄3(u + f3(·))− x̄3

2∑

i=0

∂x∗3
∂xi

ẋi

+
x̄2

3σ3

x1−d
0

where σ3 = kb
3/b. Therefore, the final control u would be

u = −x̄2−f3(·)+
2∑

i=0

∂x∗3
∂xi

ẋi +
∂x∗2
∂x0

γ3x̄2x̄3

x2−d
0

− x̄3(γ3 + σ3)
x1−d

0

,

(16)
so that

V̇ ≤ −
(

k0 − 3
a

)
x1+d

0 −
3∑

i=1

kix̄
1+d
i .

Now choose k0 > 3/a.

Finally, it can be shown, similarly to Section II, that

V̇ + kV α ≤ −
(

min{k1, k2, k3, k0 − 3/a} − k

2α

)

×
(

x1+d
0 +

3∑

i=1

x̄1+d
i

)
≤ 0.

(17)

with k and α such that α = (1 + d)/2 and 0 < k ≤
2α min{ki, k0 − 3/a}.

B. Boundedness of the Controller

Boundedness is proved in the x̄ coordinate where x̄ :=
[x̄1, x̄2, x̄3]T since (x0, x) on R(+,3) is smoothly trans-
formable into (x0, x̄) on R(+,3).

Define P := {(x0, x) ∈ R4 : k0x
2
0 ≥

∑3
i=1 γix̄

2
i }, and

PR := P∩BR with some R > 0. Now we define the degree
indicator as

D(g(x0, x̄)) := inf β subject to

lim sup
x0→0+

ḡ(x0)x
β
0 < ∞ (18)

where
ḡ(x0) := max√∑3

i=1 γix̄2
i /k0≤x0

|g(x0, x̄)|.

By denoting the collection of functions that are smooth on
R(+,3) (i.e., such as g : R(+,3) → R) by G, it should be noted
that the degree indicator is an operator well-defined on G. In
addition, note that the degree indicator measures the degree
in the x̄-coordinates. Therefore, if we write D(g(x0, x)), it
is interpreted as D

(
g(x0, x)|x=φ(x̄)

)
where φ is the diffeo-

morphism (i.e., coordinate change) between x and x̄, which
is obtained in the previous subsection. If D(g(x0, x̄)) ≤ 0,
the function g(·) is bounded on PR. Moreover, the following
properties are helpful in the developments to come.

(1) For g, g1, and g2 in G such that g(x0, x̄) = g1(x0, x̄)+
g2(x0, x̄),

D(g(·)) ≤ max{D(g1(·)), D(g2(·))}. (19)

(2) For g, g1, and g2 in G such that g(x0, x̄) =
g1(x0, x̄)g2(x0, x̄),

D(g(·)) ≤ D(g1(·)) + D(g2(·)). (20)

They can be proved by the fact that ḡ(·) ≤ ḡ1(·) + ḡ2(·)
and ḡ(·) ≤ ḡ1(·)ḡ2(·). Some examples of the degree indicator
are presented here:
• Let g = 0 and g1 = g2 = 1. Then, D(g) = −∞ and

D(g1) = D(g2) = 0, which satisfies the item (1).
• Let g(x0, x̄1, x̄2) = 1 + x̄1

x0
+ x̄1x̄2

x3
0

+ x4
0. Then,

D(g(·)) ≤ max
{

D(1), D
(

x̄1

x0

)
, D

(
x̄1x̄2

x3
0

)
, D(x4

0)
}

= max{0, 0, 1,−4} = 1.

• Let g(x0, x̄1) = x̄2
1

x1−d
0

= x̄2
1× 1

x1−d
0

=: g1(x̄1)× g2(x0).
Then D(g(·)) = −1 − d, D(g1(x)) = −2, and
D(g2(x0)) = 1− d, with which the item (2) holds.

It is also worthwhile to observe the following.
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(3) Suppose that D(gi(x0, x̄)) ≤ −ci with ci ≥ 0 for
gi ∈ G, i = 1, · · · , k and a smooth function f : Rk → R.
Let fc = f(0, · · · , 0). Then it holds that

D(f(g1(x0, x̄), · · · , gk(x0, x̄))){
≤ −min{c1, · · · , ck} if fc = 0
= 0 if fc 6= 0.

(21)

In fact, D(gi(x0, x̄)) ≤ 0 implies that, for any R > 0,
gi is uniformly bounded on PR (i.e., there exists K ≥ 0
such that |gi(x0, x̄)| ≤ K for all (x0, x̄) ∈ PR). Let fs(·) =
f(·) − fc. Then, from the smoothness of fs(·) and the fact
that fs(0, · · · , 0) = 0, it follows that

fs(g1(x0, x̄), · · · , gk(x0, x̄))

= Fs(g1(x0, x̄), · · · , gk(x0, x̄))




g1(x0, x̄)
...

gk(x0, x̄)


 ,

where Fs : Rk → R1×k is a smooth function [13]. Therefore,
D(fs(g1(x0, x̄), · · · , gk(x0, x̄))) = inf β subject to

lim sup
x0→0+

max√∑3
i=1 γix̄2

i /k0≤x0∥∥∥∥∥∥∥
Fs(g1(x0, x̄), · · · , gk(x0, x̄))




g1(x0, x̄)
...

gk(x0, x̄)




∥∥∥∥∥∥∥
xβ

0 < ∞.

The left-hand side of the above inequality is less than or
equal to

lim sup
x0→0+

max√∑3
i=1 γix̄2

i /k0≤x0

‖Fs(g1(x0, x̄), · · · , gk(x0, x̄))‖

× lim sup
x0→0+

max√∑3
i=1 γix̄2

i /k0≤x0

∥∥∥∥∥∥∥



|g1(x0, x̄)|xβ

0
...

|gk(x0, x̄)|xβ
0




∥∥∥∥∥∥∥
.

Since Fs(g1(x0, x̄), · · · , gk(x0, x̄)) is uniformly bounded on
PR (by the fact that D(gi) ≤ −ci ≤ 0),

D(fs(·)) ≤ −min{c1, . . . , ck}.
Finally, since D(fc) = 0 if fc 6= 0 and D(0) = −∞, the
claim easily follows by (19).

From now on, we are going to prove that D(f0(x0, x)) ≤
0 and D(u(x0, x)) ≤ 0 where f0 and u are given in (11) and
(16), respectively. The former is obvious from (11) since a
direct evaluation of D(f0(x0, x)) leads to the conclusion. To
show that D(u(x0, x)) ≤ 0, we first show that D(x∗i ) ≤ 0
for i = 2, 3 step by step under the condition of d in (9).

Let us consider x∗2 in (13), which is composed of two
terms: the drift term f1(·) and − x̄1(σ1+γ1)

x1−d
0

. The drift term
f1(·) may be 0 or a function of x1 and the partial derivatives
of f1(·) may satisfy ∂n1f1

∂x
n1
1

(0) = 0 or ∂n1f1

∂x
n1
1

(0) 6= 0.
But, since (21) applies to all cases, it is induced that

D(f1(·)) ≤ −1, D

(
∂n1f1

∂xn1
1

)
≤ 0, n1 ≥ 1. (22)

The result (22) will be used to compute D(x∗i ), i ≥ 3
in the following procedure. The fact D

(
∂n1+···+nifi(·)

∂x
n1
1 ···∂x

ni
i

)
≤

0, i ≥ 1, which will be proved, is helpful in estimating
D(x∗i ), i ≥ 3.

Therefore, with (22) and D
(
− x̄1(σ1+γ1)

x1−d
0

)
= −d, we

obtain

D(x∗2) = −d, D(ẋ1) = D (x̄2 + x∗2 + f1(·)) = −d. (23)

Next we will get the condition of x∗3 to be bounded. The
feature of x∗3 is that it includes the partial derivatives of x∗2,
which may cause D(x∗3) to be positive. We start with the
drift term f2(·). Since the drift term f2(·) have xi, i = 1, 2
as variables, substituting x̄1 = x1 and x̄2 = x2 − x∗2 into
f2(x1, x2) yields f2(x̄1, x̄2 + x∗2) and, by (13) and (21), we
can easily prove that

D(f2(·)) ≤ −d, D

(
∂n1+n2f2(·)
∂xn1

1 ∂xn2
2

)
≤ 0, n1 + n2 ≥ 1.

The third and forth terms of x∗3 include partial derivatives
of x∗2 and we have to handle those carefully for reason of
D

(
∂x∗2
∂xi

)
> 0, i = 0, 1. After simple calculations, the results

are summarized as

D

(
∂n0+n1x∗2
∂xn0

0 ∂xn1
1

) {
= (n0 + n1 − d), n0 ≥ 0, 0 ≤ n1 ≤ 1
≤ 0 n0 ≥ 0, n1 ≥ 2.

(24)

From (20), (23), (24), and D
(
−k0x

d
0 +

∑2
i=1 γix̄

2
i

x2−d
0

)
≤

−d, it is clear that

D

(
∂x∗2
∂x0

(
−k0x

d
0 +

∑2
i=1 γix̄

2
i

x2−d
0

))
≤ 1− 2d

D

(
∂x∗2
∂x1

ẋ1

)
= 1− 2d.

Therefore, by D(x̄1) = −1, D
(

x̄2(γ2+σ2)

x1−d
0

)
= −d, and

(19), it is obtained that

D(x∗3) = 1− 2d, D(ẋ2) = 1− 2d. (25)

In order to guarantee that x∗3 is bounded, we select the
value of d such that 1

2 ≤ d < 1 and suppose this fact forward.
Finally, we compute the value of the degree indicator of

the controller (16) and show that the controller is bounded
under (9). After transforming the drift term f3(x1, x2, x3)
into f3(x̄1, x̄2 + x∗2, x̄3 + x∗3), applying (23) and (25) under
1
2 ≤ d < 1 into (21) results in

D (f3(·)) ≤ 1−2d, D

(
∂n1+n2+n3f3(·)
∂xn1

1 ∂xn2
2 ∂xn3

3

)
≤ 0,

3∑

i=1

ni ≥ 1.

To estimate the third term of the controller (16), which
includes partial derivatives of x∗3 with respect to xi, i =
0, 1, 2, we need to simplify the process and define

Π3(x1, x2) =: −k0x
d
0 +

∑2
i=1 γix̄

2
i

x2−d
0
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and the degree indicators of the partial derivatives of Π3(·)
yield

D

(
∂Π3(·)

∂xi

)
=

{
1− d if i = 2,

2(1− d) if i = 0, 1,
(26)

which is based on (19), (20), and (24).
In the course of evaluating D

(
∂x∗3
∂xi

)
, i = 0, 1, 2,

∂Π3(·)
∂xi

, i = 0, 1, 2 are essential. To give a detailed expla-
nation, we present the partial derivatives of x∗3 as

∂x∗3
∂x2

=− ∂f2(·)
∂x2

− (γ2 + σ2)
x1−d

0

+
∂x∗2
∂x0

∂Π3

∂x2
+

∂x∗2
∂x1

,

∂x∗3
∂x1

=− 1− ∂f2(·)
∂x1

+
∂x∗2
∂x1

(γ2 + σ2)
x1−d

0

+
∂2x∗2

∂x0∂x1
Π3

+
∂x∗2
∂x0

∂Π3

∂x1
+

∂x∗2
∂x1

∂f1

∂x1

∂x∗3
∂x0

=
(γ2 + σ2)

x1−d
0

(
∂x∗2
∂x0

− (d− 1)x̄2

x0

)
+

∂2x∗2
∂x2

0

Π3

+
∂x∗2
∂x0

∂Π3

∂x0
+

∂2x∗2
∂x0∂x1

ẋ1,

By (20), (24), and (26), the terms ∂x∗2
∂x0

∂Π3
∂xi

, i = 0, 1, 2 have

D

(
∂x∗2
∂x0

∂Π3

∂xi

)
=

{
2(1− d) if i = 2
3(1− d) if i = 0, 1.

(27)

The result shows that each D
(

∂Π3
∂xi

)
makes D

(
∂x∗2
∂x0

∂Π3
∂xi

)

have the largest value of the terms of ∂x∗3
∂xi

and decides the

value of D
(

∂x∗3
∂xi

)
, which explains the reason why ∂Π3(·)

∂xi
, i =

0, 1, 2 are important.
Hence, using (23), (24), (25), (27), and the properties (19),

(20), and (21), we arrive at

D

(
−x̄2 − f3(·)− x̄2(γ2 + σ2)

x1−d
0

+
∂x∗2
∂x0

x̄2x̄3

x2−d
0

)
≤ 0

D

(
∂x∗3
∂x2

ẋ2

)
= 2(1− d) + (1− 2d) = 3− 4d

D

(
∂x∗3
∂xi

ẋi

)
= 3(1− d)− d = 3− 4d, i = 0, 1

and

D(u) = 3− 4d.

With the help of the approach above, we conclude that,
if we choose d satisfying 3

4 ≤ d < 1, the controller (16) is
bounded.

Remark 1: For n ≥ 2 system, it is very important
to evaluate the partial derivatives of virtual controls since
considering every term of them is a tedious and complicated
work. The degree indicator (18) proposed in this paper is a
very useful and efficient tool since it only notices the term
of which the value of the degree indicator is positive, i.e., it
may be unbounded without the condition (9) on d.

C. Proof of Theorem 1
Smoothness of the closed-loop system (1) and (10) in

R(+,3) guarantees existence and uniqueness of the solution
(x0(t), x(t)) as long as x0(t) > 0. Hence, while x0(t) > 0,
the inequality (17) holds which ensures stability of the
origin and the finite-time convergence of the solution into
the origin. It can be shown similarly to Section II that the
solution (x0(t), x(t)) becomes (0, 0) at the same time, and
before that time, x0(t) > 0.

Now, by the definition of the set P , it can be seen (as
in Section II) that any solution enters PR with any R >
0 in a finite-time. Since we have shown that the functions
f0(x0, x) and u(x0, x) of (10) are bounded on PR (in the
previous subsection), it is concluded that both f0(x0(t), x(t))
and u(x0(t), x(t)) are bounded from the initial time to the
time when the solution gets to the origin.

IV. CONCLUSION

This paper has proposed a smooth dynamic controller for
a class of triangular nonlinear systems. Boundedness of the
controller has been proved with the help of a new tool ‘degree
indicator,’ which turned out very useful to evaluate degrees
of singular terms. Although the presentation in this paper is
limited to the 3rd-order system, it is extensible to general
nth-order systems. Our future works include some extension
to uncertain systems.

REFERENCES

[1] M. Athans and P. I. Falb, Optima Control: An Introduction to the
Theory and Its Applications, New York: McGraw-Hill, 1966.

[2] J. Back, S.G. Cheong, H. Shim, and J.H. Seo, “Nonsmooth feedback
stabilizer for strict-feedback nonlinear systems that may not be lin-
earizable at the origin,” Syst. and Contr. Letters, vol. 56, pp. 742-752,
2007.

[3] S.P. Bhat and D.S. Berstein, “Finite-time stability of homogeneous
systems,” Proc. of American Control Conf., pp. 2513-2514, 1997.

[4] S.P. Bhat and D.S. Berstein, “Continuous finite-time stabilization of
the translational rotational double integrators,” IEEE Trans. Automat.
Contr., vol. 43, no. 5, pp. 678-682, 1998.

[5] S.P. Bhat and D.S. Berstein, “Finite-time stability of continuous
autonomous systems,” SIAM J. Control Optim., vol. 38, no. 3, pp.
751-766, 2000.

[6] R.A. Freeman and P.V. Kokotovic, Robust Nonlinear Control Design,
Birkhauser, 1996.

[7] V.T. Haimo, “Finite-time controllers,” SIAM J. Control Optim., vol.
24, no. 4, pp. 760-770, 1986.

[8] Y. Hong, J. Huang, and Y. Wu, “On an output feedback finite-time
stabilization problem,” IEEE Trans. Automat. Contr., vol. 46, no. 2,
pp. 305-309, 2001.

[9] Y. Hong, “Finite-time stabilization and stability of a class of control-
lable systems,” Syst. and Contr. Letters, vol. 46, pp. 231-236, 2002.

[10] Y. Hong, G. Yang, L. Bushnell, and H.O. Wang “Global finite-time
stabilization: from state feedback to output feedback,” Proc. 39th IEEE
Conf. on Decision and Control, pp. 2908-2913, 2000.

[11] X. Huang, W. Lin, and B. Yang, “Global finite-time stabilization of
a class of uncertain nonlinear systems,” Automatica, vol. 41, pp. 881-
888, 2005.

[12] G. Kamenkov, “On stability of motion over a finite interval of time,”
J. of Applied Math. and Mechanics, vol. 17, pp. 529-540, 1953.

[13] H.K. Khalil, Nonlinear systems, NJ:Prentice-Hall, 3rd edition, 2002.
[14] J. Li and C. Qian, “Global finite-time stabilization of a class of

nonsmooth systems by output feedback,” Proc. of American Contr.
Conf., pp. 4716-4721, 2005.

[15] J. Li and C. Qian, “Global finite-time stabilization by dynamic output
feedback for a class of continuous nonlinear systems,” IEEE Trans.
Automat. Contr., vol. 51, no. 5, pp. 879-884, 2006.

[16] C. Qian and J. Li, “Global finite-time stabilization by output feedback
for planar systems without observable linearization,” IEEE Trans.
Automat. Contr., vol. 50, no. 6, pp. 885-890, 2005.

[17] C. Qian and J. Li, “Global output stabilization of upper-triangular
nonlinear systems using a homogeneous domination approach,” Int. J.
Robust Noninear Control, vol. 16, pp. 441-463, 2006.

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 ThA01.6

3810


